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Resumo: A Programação por Metas (Goal Programming - GP) é uma abordagem multicritério da Pesquisa 
Operacional que vem sendo empregada na solução de complexos problemas de decisão. Este trabalho propõe um novo 
modelo de Programação por Metas Fuzzy (Fuzzy Goal Programming - FGP) para tratar o processo de orçamento de 
capital de empresas em um ambiente econômico sob incerteza. Para fins de comparação de desempenho, o modelo 
FGP e outro modelo desenvolvido com os mesmos fins, recentemente publicado, foram aplicados considerando-se 
os dados de uma empresa que foi o objeto do estudo. A modelagem e otimização foram feitas com o software 
GAMS - 23.6.5 e utilizando-se o solver CPLEX. Os resultados do modelo FGP proporcionaram melhorias com 
relação aos obtidos com o modelo alternativo citado, por exemplo: aumento do índice de lucratividade, redução 
do payback e melhor aplicação do capital disponível no orçamento. Além disto, o modelo FGP tem características 
de flexibilidade que permitem ao gestor simular, obter resultados rapidamente e com facilidade, acerca de cenários 
sob incerteza de seu interesse.
Palavras-chave: Programação por Metas Fuzzy; Orçamento de capital; Ambiente econômico sob incerteza.

Abstract: The Goal Programming (GP) is a multi-criteria approach of Operational Research that has been used 
for solving complex decision problems. This paper proposes a new Fuzzy Goal Programming (FGP) model to 
handle the process of capital budget of companies in an economic environment under uncertainty. For performance 
comparison purposes, the FGP and another recently published model developed for the same purposes were applied 
to data from a company that was the object of the study. The modeling and optimization were made with the 
GAMS software - 23.6.5 and using the CPLEX solver. The results obtained from the FGP model provided higher 
improvements than those obtained with the alternative model, as for example: increased profitability index, reduced 
payback and better application of the capital available in the budget. Furthermore, the FGP model has flexibility 
features that allow the manager to simulate, quickly and easily obtaining results about scenarios under uncertainty.
Keywords: Fuzzy Goal Programming; Capital budget; Economic environment under uncertainty.

Fuzzy Goal Programming applied to the process of 
capital budget in an economic environment under 
uncertainty

Programação por Metas Fuzzy aplicada ao processo de orçamento 
de capital em um ambiente econômico sob incerteza

Aneirson Francisco da Silva1

Fernando Augusto Silva Marins1

Erica Ximenes Dias1

Rafael de Carvalho Miranda2

1	 Faculdade de Engenharia, Universidade Estadual Paulista – UNESP, Av. Ariberto Pereira da Cunha, 333, CEP 12516-410, Guaratinguetá, 
SP, Brazil, e-mail: aneirson@feg.unesp.br; fmarins@feg.unesp.br; ericaximenes@yahoo.com.br

2	Universidade Federal de Itajubá – UNIFEI, Campus Prof. José Rodrigues Seabra - Sede, Av. BPS, 1303, Bairro Pinheirinho, Caixa 
Postal 50, CEP 37500 903, Itajubá, MG, Brazil, e-mail: mirandaprod@yahoo.com.br

Received June 1, 2015 - Accepted Oct. 26, 2015
Financial support: This research was partially supported by The National Council for Scientific and Technological Development 
(CNPq - 306214/2015-6, CNPq - 431758/2016-6), São Paulo Research Foundation (FAPESP - 2015/12711-4; FAPESP - 2015/24560-
0), and FAPEMIG (APQ-01188-16).

1 Introduction
In complex industrial problems, the decision 

taking involves inaccurate or incomplete information, 
multiple decision agents and, in general, multiple 
objectives that can be conflicting with each other 
(Deb, 2001). This is the case of investment project 

selection problems, or capital budget problems, 
(Santos & Barros, 2011), according to Brigham et al. 
(2001), there are many ways to select the best set of 
investment projects, and the traditional investment 
assessment methods are (Abensur, 2012):
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•	 Net Present Value Method (NPV) – it allows 
comparing initial investments with future returns, 
in which, when the NPV is positive, it means 
that the capital invested will be recovered;

•	 Internal Rate of Return Method (IRR) – it considers 
the discount rate that equates the inflows and 
outflows of an investment, in which, for the 
project to be viable, the value of the IRR 
must be greater than or equal to the Minimum 
Attractive Rate of Return (MARR) adopted by 
the company;

•	 Payback Method – it analyzes the recovery 
period of the invested capital, that is, the period 
necessary to a certain investment can be paid;

•	 Profitability Index Method (PI) – it considers 
the ratio between the NPV of net cash inflows 
of the project and the initial investment value.

In this type of problem, the budget constraint plays 
important role with respect to limit the decisions 
that can be taken in the selection of the investment 
projects, and it is recommended the use of optimization 
techniques aiming at the optimal allocation of available 
financial resources (Abensur, 2012).

In this sense, an alternative is to apply to this type 
of complex and critical situation for companies, the 
models and techniques of the Goal Programming (GP). 
In fact, the GP is a method of Operational Research 
(OR), which allows the modelling and solution of 
multiobjective problems, including under the occurrence 
of uncertainties, as is typical in economic scenarios 
associated with decisions in investment portfolios 
(Silva & Marins, 2014). Some researchers developed 
interesting related works:

•	 Bradi et al. (2000) applied a binary GP model 
to the problem of project selection, without 
considering the occurrence of uncertainty;

•	 Lee & Kim (2000) combined the ANP (Analytic 
Network Process) (Saaty, 2006) with the GP to 
select information system projects;

•	 Santos et al. (2012) investigated the performance 
of business managers based on the knowledge 
about cost management and budget participation;

•	 Ghahtarani & Najafi (2013) combined the 
robust stochastic optimization (Mulvey et al., 
1995) with the GP, developing the Robust 
Goal Programming (RGP) model, which was 
applied in selecting investment portfolios in 
the stock market;

•	 Bakirli et al. (2013) combined the AHP method 
(Saaty, 1977) and a Fuzzy Goal Programming 
(FGP) model with the QFD (Quality Function 
Deployment) matrix (Lam & Lai, 2015), to select 
projects that offer the maximum benefits when 
performed within various budgets;

•	 Abensur (2013) evaluated the capital budget in 
a context in which the managers can establish 
the completion sequence of projects previously 
selected, which minimizes the need for investment;

•	 Khalili-Damghani et al. (2013) applied the FGP 
model combined with the TOPSIS - Technique 
for Order Preference by Similarity to Ideal 
Solution multicriteria method (Joshi & Kumar, 
2016) to select multi-period projects in a context 
under uncertainty;

•	 Li & Wan (2014) developed a Fuzzy Linear 
Programming model for the selection of supply 
chain projects.

Although there are many studies linked to the 
selection of investment projects, the use of Fuzzy Goal 
Programming (FGP) models in this type of problem is 
recent, corroborating therefore the importance of this 
research. So, this study aimed to develop and apply 
a FGP model to solve the capital budget problem. 
In addition, it was performed a comparison of its 
results with those obtained by Abensur (2012), who 
proposed, recently, an alternative model to the same 
class of investment problems.

Considering the classification proposed by Bertrand 
& Fransoo (2002), this research can be classified as an 
applied research, because it provides contributions for 
the current literature, possessing normative empirical 
objective, since the model aims to understand policies 
and strategies that allow actions to better understand a 
current situation. Besides, with respect to the form of 
approach of the problem, the research is quantitative 
type and the research method adopted is the modeling.

This article is organized in 5 sections. Section 2 briefly 
describes the theoretical foundations of the GP and, in 
particular, addresses the FGP model. Section 3 addresses 
the problem description; Section 4 presents the problem 
modeling and the results obtained; finally, Section 5 
brings the conclusion and the recommendations for 
future researches, followed by the bibliography.

2 Goal programming
According to Charnes & Cooper (1961), Romero 

(2001, 2004), Silva & Marins (2014, 2015), Chang 
(2007, 2008), Jamalnia & Soukhakian (2009) and 
Yaghoobi & Tamiz (2007), the three most used types 
of deterministic models of the GP, are:
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•	 Weighted Goal Programming (WGP) – weights 
are attributed to the (positive and negative) 
deviation variables with regard to the goals 
chosen for the objectives. This was the first 
model of GP developed and, due to this; it will 
be briefly described below;

•	 Lexicographic Goal Programming (LGP) or 
Preemptive Goal Programming – objective 
functions are ordered according to their 
importance established from a prioritization 
made by the managers;

•	 Minmax Goal Programming (Minmax GP) – objective 
functions, which consider the sum of the deviation 
variables, are included in the model.

2.1 Weighted Goal Programming
In the WGP models, the deviation variables 

present equivalent hierarchies, being the weighting 
what will distinguish the most important objectives. 
The decision-makers need to estimate the weights in 
such a way that a large part of the objectives is satisfied, 
which generates problems with the subjectivism in 
the estimation of these weights. To try minimizing 
the subjectivism, a method that has been very adopted 
in the prioritization of objectives is the Analytic 
Hierarchy Process – AHP (Saaty, 1977).

According to Martel & Aouni (1998), the original 
WGP model can be expressed by:

Equation 1 eβ α  are weights attributed, respectively, 
to i id and d+ −

1
( )

n

i i i i  
i

Min d dβ α+ −

=
+∑ 		  (1)

Subject to:
Constraint 2 where x is the vector of the decision 

variables of the model xi; fi (x) is an objective function 
I, gi is a goal value chosen to fi, i id and d+ −  are, 
respectively, the auxiliary (positive and negative) 
deviation variables related to the goal gi

( ) , 1, 2,..., .i i i if x d d g i n+ −− + = = 	 (2)

Constraint 3 A and c are, respectively, a matrix of 
the LHS (Left Hand-Side) coefficients and a RHS 
(Right Hand-Side) vector for hard restrictions in the 
original multi-criteria model, and F is Feasible set.

  Ax c≤ 		  (3)

Constraint 4 It is observed that, by only one of 
the deviation variable associated with each goal can 
have value different from zero.

, ,    0, . 0, 1, 2,..., .i i i i ix d d d d i n x F+ − + −≥ = = ∈ 	 (4)

There are other deterministic GP models; however, 
they are not presented in this work, for more details 
it is recommended to consult a GP review by Silva 
& Marins (2015).

2.2 Fuzzy Goal Programming (FGP) Model
It should be noted that management decision 

problems have as natural characteristics the occurrence 
of uncertainty in their parameters, such as, for 
example, problems related to aggregate production 
planning and budgetary problems (Wang & Liang, 
2004). The main GP models under uncertainty are 
(Silva & Marins, 2015):

-	 Multi-Choice Goal Programming (Chang, 2007);

-	 Revised Multi-Choice Goal Programming 
(Chang, 2008);

-	 Integer Multi-Choice Goal Programming 
(Silva et al., 2013a);

-	 Fuzzy Multi-Choice Goal Programming 
(Bankian-Tabrizi et al., 2012);

-	 Multi-Segment Goal Programming (Liao, 2009);

-	 Revised Multi-Segment Goal Programming - RMSGP 
(Chang et al., 2012a);

- Multi-Coefficients Goal Programming - MCGP 
(Chang et al., 2012b);

-	 Revised multi-choice Goal Programming - LHS 
(Silva et al., 2015);

-	 Fuzzy Goal Programming - FGP (Silva & Marins, 
2014; Jamalnia & Soukhakian, 2009; 
Yaghoobi & Tamiz, 2007; Liang & Wang, 1993; 
Zimmermann, 1978);

-	 Robust stochastic optimization (Mulvey et al., 
1995).

In this research, it was applied the FGP model, 
because it is the oldest GP model under uncertainty, 
having a wide range of real applications (Silva & Marins, 
2014, 2015). Concepts and results relating to the 
inclusion of uncertainty occurrence in the problem 
data, the contribution of the GP, and the basic theory 
of Fuzzy sets to handle these situations are presented 
(Chang, 2007).

Zimmermann (1978) used the triangular fuzzy 
number to characterize linguistic values and Liang 
& Wang (1993) justified the use of triangular fuzzy 
functions, because they properly characterize the 
human trials, and also allow simulating uncertainty 
occurrence in the data and parameters involved. 
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This was the option adopted in this work that is going 
to be detailed subsequently.

In this line, according to Jamalnia & Soukhakian 
(2009), and Yaghoobi & Tamiz (2007), there are three 
most common types of pertinence functions, denoted 
by kZµ  for a given objective function Gk, when we 
are working with triangular fuzzy numbers, as show 
the expressions (5)-(7) and illustrate the Figures 1-3. 
It was adopted the notation [~] to represent a fuzzy 
goal value (desired and imprecise) gk chosen to a 
fuzzy objective function Gk:

Equation 5 there is a fuzzy objective function of 
the type “the lower its value in relation to gk, the 
better it is”;

( ) ,  1,... ,   G x g k mk k≤ = 		  (5)

Equation 6 there is a fuzzy objective function of 
the type “the higher its value in relation to gk, the 
better it is”

( ) ,   1,..., ,k kG x g k m n≥ = + 	 (6)

Equation 7 there is a objective function that is 
wanted to be achieved exactly at the value gk chosen.

( ) ,   1,..., .k kG x g k n l≅ = + 		  (7)

The fuzzy goals can be identified as fuzzy sets 
defined on the feasible set of solutions associated with 
a pertinence function. The linear pertinence functions 
are the functions most adopted both in the theoretical 
and practical works (Jamalnia & Soukhakian, 2009). 
For the fuzzy constraints (5) and (6), by adopting 
the triangular fuzzy numbers, in which Lk and Uk, 
respectively, are the minimum and maximum values 
chosen by the decision-maker to be attributed to the 
fuzzy goal gk, the linear pertinence functions can be 
expressed by (8)-(10):

1                              se  ( )
( )( )             se       1,....,  

0                             se

k

k k

k k
Z k k k

k k

k k

G x g
U G xx g G (x) U k m

U g
 G (x) U    

µ

 ≤


−= ≤ ≤ = −
 ≥

	 (8)

1                              se  ( )
( )( )              se       1,....,  

0                            se

k

k k

k k
Z k k k

k k

k k

G x g
G x Lx L G (x) g k m n

g L
 G (x) L    

µ

 ≥


−= ≤ ≤ = + −
 ≤

	 (9)

0                              
( )             se  ( )

( )       1,...,  
( )             se  

0                             se

k

k k
k k k

k k
Z

k k
k k k

k k

k k

U G x L G x g
U g

x k n l
U G x g G (x) U

U g
 G (x) U    

µ


 − ≤ ≤
 −= = + − ≤ ≤
 −


≥

	 (10)

Other form to visualize this pertinence functions 
is in Figures 1-3:

It is observed that, usually, the limits Lk and Uk are 
subjectively chosen by the decision-makers, or are 
associated with the tolerances existing in a technical 
process. The choice of these tolerance limits is very 
important, once they directly influence the model 
optimization (Silva & Marins, 2014).

The model of the Fuzzy Goal Programming (FGP), 
proposed by Yaghoobi & Tamiz (2007), using the 
triangular pertinence functions, can be expressed by:

Equation 11 objective function aims to maximize the 
total degree of fuzzy achievement and, when λ =1, it 
means that all fuzzy goals were fully satisfied or met.

  Max λ 		  (11)

Figure 2. ( )k kG x g≥ .

Figure 1. ( )k kG x g≤ .

Figure 3. ( )k kG x g≅ .
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Subject to:
Constraint 12 represents a situation for which it is 

desired to penalize the positive deviation.

( ) 0 ,     1, 2,...,i i iG X d g i i+− ≤ = 	 (12)

Constraint 13 represents a situation for which it is 
desired to penalize the negative deviation.

( ) 0 0,     1, 2,...,i i iG X d g i i j−+ ≥ = + 	 (13)

Constraint 14 represents a situation for which 
it is desired to penalize both positive and negative 
deviations.

( ) 0 ,     1, 2,...,i i i iG X d d g i j K− ++ − = = + 	 (14)

Constraints 15 to 17 are related to the limitations 
imposed to the degree of achievement of the scenarios 
associated to constraints (5)-(7).

0
1 1 , 1, 2,...,i
iU

d i iλ ++ ≤ =
∆ 	 (15)

0 0
1 1, 1,2,...,i
iL

d i i jλ −+ ≤ = +
∆ 	 (16)

0
1 1 1, 1,2,...,K  i i
iL iU

d d i jλ − ++ + ≤ = +
∆ ∆

	 (17)

Constraints 18 to 19 indicate the domains of 
variables.

. 0, 1, 2,...,     i id d i K+ − = = 	 (18)

, , 0,i id dλ + − ≥ X F∈  (F is a feasible set)	 (19)

where λ = i
i
λ∑ is the degree of achievement of the 

fuzzy goals, gi is the level of aspiration (or desired 
value) for the objective function Gi, iL iUand∆ ∆ are, 
respectively, the difference between the minimum 
value (L) and the maximum value (U) with respect 
to the goal gi.

It can be observed that [ ]0,1iλ ∈  and, when the 
value of iλ =1, it means that the fuzzy, goal gi was 
fully achieved. In this 

In the sequence, it is presented the capital budget 
problem and the steps followed for its resolution.

3 Problem description and research 
steps
In this article, the FGP model was applied to the 

capital budget problem, considering the economic 
environment in which there is occurrence of uncertainties 
in the data and parameters involved in the decision 
taking. The research steps were:

•	 Problem identification – It was chosen the 
capital budget problem proposed and studied 
by Abensur (2012), in which it is desired to 
select, among a set of 45 investment projects, 
which projects should be executed;

•	 Data collection – The data used were those 
available in Abensur (2012) and they are in 
Table 1;

•	 Modeling, model solution and comparison of 
results – The FGP model was developed and 
implemented using the GAMS software - version 
23.6.5, and was solved using the CPLEX Solver, 
as described in Section 4 (GAMS, 2014).

For the comparison between the results of the 
FGP model and the model of Abensur (2012), three 
objective functions were considered, related to:

•	 The Profitability Index (PI) – given by the ratio 
between the NPV and the initial payout value;

•	 The Total Discounted Payback (TDP) – associated 
with the time taken to recover the capital invested;

•	 The Degree of Total Financial Leverage (DTFL) – is 
a risk measure to evaluate investment projects.

The constraints considered in the model by Abensur 
(2012) are relating to:

•	 Mutually exclusive relationships and relationships 
of dependence of projects;

•	 Investment limits foreseen for the projects;

•	 Additional relationships that ensure that the 
projects of the optimal solution have Modified 
Internal Rate of Return (MIRR) above the 
Minimum Acceptable Rate of Return (MARR), 
PI above 1 and TDP lower or equal to the useful 
life (economic life or their duration) of projects.

The model by Abensur (2012) also has as premises 
that:

•	 All projects begin their activities on the same 
initial date;

•	 The project groups are independent of each other;

•	 There are groups with mutually exclusive projects;

•	 There are independent projects;

•	 There are projects with relationship of dependence;

•	 The capital budget constraint occurs only once 
on the initial date of analysis of the projects;
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Table 1. Projects analyzed and their respective indicators of profitability, risk and return.

Group Project
DI

[Brazilian 
Reais - R$]

TMA
[% per year]

N
[year]

VPL
[Brazilian 
Reais - R$]

IL
[%]

MTIR
[%]

PBD
[year]

GAFT
[%]

A 1 1,000 10 4 39 3.91 11.06 2.90 15.57
2 1,000 10 4 53 5.35 11.44 4.70 19.32

B 3 1,000 12 4 58 5.80 13.59 4.60 20.06
4 1,000 12 4 39 3.99 13.10 3.70 15.88

C 5 22,000 12 6 3,860 17.55 15.06 5.30 33.58
6 17,500 12 6 3,057 17.47 15.05 5.30 33.49

D 7 10,000 12 5 814 8.14 13.77 5.10 22.41
8 25,000 12 5 1,675 6.70 13.46 5.10 20.77

E 9 300,000 9 5 -43,883 -14.43 5.66 20.00 8.29
10 120,000 9 5 253,406 211.17 36.78 2.40 250.13

F 11 68,000 10 10 84,385 124.10 19.24 4.20 156.74
12 28,000 10 5 44,783 159.94 33.16 2.70 193.09

G

13 5,000 8 4 701 14.03 11.60 4.60 28.13
14 10,000 8 3 970 9.70 11.39 3.80 22.59
15 10,000 8 4 3,248 32.49 15.87 3.80 48.29
16 12,000 8 3 885 7.38 10.59 3.70 19.80
17 8,000 8 2 2,699 33.74 24.90 2.50 48.71
18 5,000 8 2 -216 -4.32 5.64 10.00 6.64
19 6,000 8 4 2,153 35.89 16.60 3.90 52.31

H 20 100 10 2 38 38.84 29.61 2.40 54.75
21 80 10 2 32 41.01 30.62 2.40 57.17

I 22 100 10 2 17 17.36 19.16 2.80 31.22
23 100 10 2 16 16.74 18.85 2.40 29.81

J
24 480 9 7 170 35.46 13.83 5.90 53.90
25 620 9 7 92 14.97 11.19 6.80 30.59
26 750 9 7 192 25.60 12.61 6.30 42.67

K
27 10 10 2 21 214.05 94.94 0.60 248.97
28 5 10 2 16 321.49 125.83 2.00 371.05
29 5 10 2 11 238.84 102.48 2.00 278.52

L 30 5,000 10 5 1,338 26.76 15.34 4.50 42.93
31 8,000 10 10 1,794 22.43 12.35 6.90 40.26

M

32 1,500 10 5 -610 -40.68 2.16 10.00 35.37
33 1,500 10 5 766 51.07 19.46 5.20 72.63
34 1,500 10 5 796 53.09 19.78 5.20 74.33
35 1,500 10 5 779 51.95 19.60 4.40 72.06

N

36 85,000 20 4 18,549 21.82 26.07 3.90 38.92
37 150,000 20 4 51,921 34.61 29.26 3.60 53.51
38 250,000 20 4 87,577 35.03 29.36 4.50 58.03
39 378,000 20 4 19,337 5.12 21.51 4.10 18.52

O 40 100,000 10 5 84,337 84.34 16.94 5.20 111.19
41 70,000 10 5 52,891 75.56 16.37 5.50 101.13

P

42 80,000 10 5 -9,339 -11.67 7.30 10.00 5.41
43 20,000 15 7 2,399 12.00 16.88 6.50 29.07
44 500 20 10 128 25.70 22.78 7.00 47.23
45 200 20 10 219 109.62 29.22 3.82 145.39

Total 45 1,805,450 672,213 2.271 3.160
Min 5 8 2 -43,883 -40.68 2.16 0.60 5.41
Max 378,000 20 10 253,406 321.49 125.83 20.00 371.05
Source: Abensur (2012).
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•	 It is attributed, in the second stage of the 
model, the same weight to all components of 
the objective function.

Besides, to consider the situation of economic 
environment under uncertainty, the values of the upper 
(U) and lower (L) limits, desired for the fuzzy goals 
to PI, TDP and DTFL (see Table 2), were chosen by 
the researchers involved with this work, seeking to 
provide a better use of the budget, that is, seeking 
the reduction of the gap that occurred in the solution 
proposed by Abensur (2012).

•	 Analysis of Results and Conclusions – These issues 
are developed in Sections 4 and 5.

In the next section, the FGP model is customized 
for solving the investment problem studied by 
Abensur (2012).

4 Problem modeling
Initially, the indices, sets, parameters and variables 

considered in the FGP model proposed are presented:
Indices and Sets:
j   Projects j ∈ J, J = {1, 2,…, 45}.
i Objective functions, i ϵ I, I = {1, 2, 3}.
Parameters:

jε : Initial payout of the project j;
jϕ : Minimum Acceptable Rate of Return of the 

project j;
jγ : Profitability Index of the project j;
jη : Modified Internal Rate of Return of the project j;
jθ : Discounted Payback of the project j;
jρ : Degree of Leverage of the project j;

jτ : Useful life of the project j.
Decision variables:
xj: Binary variable associated with the selection 

of the project j.
Auxiliary variables:

id + : Positive deviation variable for the ith goal
id − : Negative deviation variable for the ith goal
iλ : Degree achievement fuzzy function with 0 ≤ λi ≤ 1.

Fuzzy goal objective functions
The expressions (20)-(22) are related to the 

maximization of the liquidity index (function Z1) 
under uncertainty, being adopted the values of the 
upper and lower limits given in Table 2:

1max j j
j J

Z x γ
∈

= ∑ 		  (20)

1,700j j
j J

x γ
∈

≥∑  		  (21)

1

l

1
l

1

1                                              se Z 1,700

1,700 ,                    se 1,700  2,000
2,000 1,700

0,                                            se  1,700               

Z
G Z

Z

µ

≥

− = ≤ ≤ − 
≤     








	(22)

Figure 4 illustrates the behavior of the fuzzy goal 
1 (liquidity index accumulated), being considered a 
linear function of triangular pertinence:

The expressions (23)-(25) are bound to the 
minimization of the payback (function Z2) under the 
situation with uncertainty, being adopted the values 
of the upper and lower limits given in Table 2:

2 j j j j
j J j J

Min Z x xθ τ
∈ ∈

= −∑ ∑ 	 (23)

4j j j j
j J j J

x xθ τ
∈ ∈

− ≤∑ ∑  		  (24)

2

2

2
2

2

1 se 4
4 ,                se  0 4 
4 0

                                      
0,                                 se 4   

 

Z

Z
G Z

Z

µ

≤
 −  ≤ ≤ = − 


 ≥

	 (25)

Figure 5 describes the behavior of the fuzzy goal 2 
(total payback), as a linear triangular pertinence 
function:

The expressions (26)-(28) are related to the 
maximization of the DTFL (function Z3) under 
uncertainty, being adopted the values of the upper 
and lower limits given in Table 2:

3 j j
j J

Max Z x ρ
∈

= ∑ 		  (26)

2,200j j
j J

x ρ
∈

≥∑  		  (27)
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≥
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≤    








	(28)

Table 2. Goals and Lower (L) and Upper (U) Bounds chosen 
for the objective functions.

Goals L U
PI 1,700 1,800

TDP 1 4
DTFL 2,200 2,500

Figure 4. Function of triangular pertinence for the fuzzy 
goal associated to the accumulated liquidity index.
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Figure 6 shows the behavior of the fuzzy goal 3 (DTFL), 
as a linear triangular pertinence function:

Finally, considering the data in Table 1, the FGP 
model can be formulated for the situation proposed 
by Abensur (2012):

FGP Model
Equation 29 is the objective function, which aims 

the maximization of the degree of achievement of the 
fuzzy goals associated to each objective.

i
i I

Max λ
∈
∑ 		  (29)

Subject to:
Hard constraints (Abensur, 2012)
Constraint 30 is the constraint that concerned to 

the budget use.

452,000j j
j J

x ε
∈

≤∑ 		  (30)

Constraints 31 to 32 are constraints to the mutually 
exclusive projects.

32 34 42 1x x x− − + ≤ 		  (31)

19 35

13 32
1j j

j j
x x

= =
+ ≤∑ ∑ 		  (32)

Constraint 33 is the constraint that establishes 
that the total modified internal rate of return must 
be higher or equal to the total minimum acceptable 
rate of return.

j j j j
j J j J

x xη ϕ
∈ ∈

≥∑ ∑ 		  (33)

Fuzzy constraints (new)
Constraints 34 to 35 are fuzzy constraints that 

associate the maximization of liquidity to the goal 
value R$1,700.00.

1 1,700j j
j J

x dγ −

∈
+ ≥∑ 		  (34)

1 1
1 1

300
d λ− + ≤ 		  (35)

Constraints 36 to 37 are fuzzy constraints that 
associate the minimization of the total discounted 
payback to the goal value established in 4 years.

2 4j j j j
j J j J

x x dθ τ +

∈ ∈
− − ≤∑ ∑ 	 (36)

2 2
1 1
3

d λ+ + ≤ 		  (37)

Constraints 38 to 39 are fuzzy constraints that 
associate the maximization of the degree of total 
financial leverage to the goal value R$2,200.00.

3 2,200j j
j J

x dρ −

∈
+ ≥∑ 		  (38)

3 3
1 1

200
d λ− + ≤ 		  (39)

Constraints 40 is the constraint associated to the 
domain of the variables.

{ }0, 1 , , 0, 0, 0, . 0 , .j i i i ix j J d d d d i Iφλ
+ − + −∈ ∀ ∈ ≥ ≥ ≥ = ∀ ∈ 	(40)

Tables 3  and 4 summarize the results obtained 
with both models (FGP Model and Abensur Model), 
being highlighted that the Abensur model does not 
contemplate the occurrence of uncertainty and that 
the resolution times of the FGP model, for any 
scenarios, were on average 4 seconds that facilitate 
the generation of alternative scenarios of interest for 
the problem manager.

It can be observed in Tables 3 and 4 that:

•	 There was an increase of 380% in the number of 
projects selected by FGP Model (24 projects) in 
comparison to Abensur Model (only 05 projects). 
This represents that FGP Model offers a higher 
flexibility to the manager;

•	 It was generated a higher value of PI 
(= R$1,660.50) by FGP Model than by Abensur 
Model (PI = R$854.17), corresponding to 
an increase of 94.4%. This means that the 
FGP model provided a better remuneration of 
invested capital;

Figure 5. Triangular Pertinence Function for the fuzzy goal 
associated to the minimization of the total payback.

Figure 6. Triangular Pertinence Function for the fuzzy goal 
associated to the maximization of DTFL.



156
156/159

Silva, A. F. et al. Gest. Prod., São Carlos, v. 25, n. 1, p. 148-159, 2018

•	 It was generated a higher value of DTFL 
(= R$2,181.38) by FGP Model than by Abensur 
Model (DTFL = R$1,031.72), corresponding 
to an increase of 111.4%. This means that the 
FGP model allows a better financial turnover;

•	 Using FGP Model, the value of TDP (=0.02 year) 
was substantially lower (99.5%) than by Abensur 
Model (TDP = 4.4 years), despite the occurrence 
of uncertainty in the data. This means that FGP 
Model allows shorter time to investment recovery;

•	 There was a better use of the budget available 
(R$452,000.00) by FGP Model (investing 
R$446,450.00, almost 98.77% of the total 
resources available for investment) than by 
Abensur Model (investing R$149,705.00, 
only 33,12% of the total resources available 
for investment);

•	 The degree of achievement iλ  for TDP was 
equal to 1.0. This means that, with the FGP 
model, it was obtained a value of TDP below 
the chosen fuzzy goal (4 years);

•	 The degree of achievement iλ  for PI was 
equal to 0.87. This means that, with the FGP 
Model, the value of PI was only 13% below 
the chosen fuzzy goal (R$1,700.00), which is 
fully acceptable due to the uncertainties were 
incorporated to the data;

•	 The degree of achievement iλ  for DTFL was 
equal to 0.91. This means that, with the FGP 
Model, the value of DTFL was only 9% below 
the chosen fuzzy goal (R$ 2,200.00), which is 
fully acceptable due to the uncertainties were 
incorporated to the data.

As an additional exercise to verify the sensitivity 
of the FGP model, two scenarios were generated with 
respect to the requirements for PI and DTFL values. 
In the first scenery it was considered a decrease in 
those values – it means a less strict project selection, 
and in the second scenery it was considered an increase 
in the values - it means a stricter project selection, 
as explained below, and the new solution results are 
in Tables 5 and 6:

•	 First scenery – the fuzzy goal for PI was decreased 
from R$1,700.00 to R$1,600.00 and the fuzzy 
goal for DTFL was decreased from R$2,200.00 
to R$2,100.00;

•	 Second scenery – the fuzzy goal for PI was 
increased from R$1,700.00 to R$1,800.00 and 
the fuzzy goal for DTFL was increased from 
R$2,200.00 para R$2,300.00.

As can be observed in Tables  5, for both new 
scenarios with uncertainty, the number of projects 
selected was the same previously obtained by 
FGP Model, i.e. 24 projects, but note that projects 
6, 11 and 43 were selected only for the first scenery. 

Table 3. Results of the Abensur Model and FGP model.
Item Abensur Model FGP Model Difference [%]

Number of selected 
projects 5 24 380

Chosen Projects 10-12-28-35-45

1-2-3-4-5-7-10-
12-18-20-21-22-23-24-
25-26-27-28-29-30-40-

41-42-45
PI [Brazilian Reais - R$] 854.17 1,660. 50 94.4

TDP [year] 4.4 years 0.02 years -99.5
DTFL [Brazilian Reais -R$] 1,031.72 2,181.38 111,4

Utilized Resources 
[Brazilian Reais -R$] 149,705.00 446,450.00 198.2

Table 4. Analysis with respect to degree of achievement fuzzy functions and deviation variables values.

Function
Degree achievement

fuzzy function iλ

Positive deviation 
variables

−
id

Negative deviation 
variables

+
id

PI 0.87 39.5 0
TDP 1 0 0

DTFL 0.91 18.62 0
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As justification for this different selection, it is verified 
that for the second scenery are selected projects with 
the highest goals values, which is not the case of 
these three projects mentioned.

In Table 5, it can be observed, also, that, although 
for the first scenery has presented lower values of PI 
and DTFL, it presents the higher value of payback and 
provides the best allocation of the available resources.

Observing Table  6, for the first scenery 
(with uncertainty), all fuzzy goals were fully 
achieved ( iλ = 1), and it presents the best allocation 
(almost 99% were invested) of the available resources, 
while the Abensur Model proposed to invest only 
33% for a situation without uncertainty.

For the second scenery, the values of PI, TDP 
and DTFL were the same previously got by FGP 
Model, but the degree of achievement of the fuzzy 
goals associated to PI and DTFL objectives were 
substantially lower, respectively, 0.54 and 0.41, than 
those previously got by FGP Model, respectively, 
0.87 and 0.91.

The sensitivity analysis shows the existence of 
trade-offs between objectives, enabling managers 
assess the impact on the solution caused by changing 
goals of an objective function. It also allows the 
decision maker identifies which are the most important 
objective functions for certain projects, for example, 

for the shareholder would be desirable to maximize 
profitability, and, for other hand, the company would 
can be interested in to obtain the return on investment 
in the project in a shortest possible time.

5 Conclusions
The project selection of different nature is a very 

difficult task, because usually there are many criteria 
(objectives) to be optimized, the traditional investment 
analysis method are restricted to a mono-objective 
function, and they do not consider the occurrence 
of uncertainty. This was the main motivation to this 
work that used multi-objective GP models under 
uncertainty.

As conclusions of this paper, it can be affirmed 
that the application of the FGP model was viable 
and relevant to solve the capital budget problem, 
presenting advantages in relation to the adoption of 
classical optimization methods (deterministic). In the 
case described here, the improvements found were, 
mainly, with regard to the increase in the number of 
projects included in the selected portfolio, in PI and 
DTFL values, in the reduction of the payback and 
in a better resources allocation.

In fact, the FGP model had a better performance 
than Abensur Model, offering better PI, TDP and DTFL 
values in all optimizations carried out, allowing more 

Table 5. Previous and new (Sensibility Analysis) results from FGP model.
Previous results - FGP 

Model First Scenery Second Scenery

Number of projects 24 24 24

Projects

1-2-3-4-5-7-10-
12-18-20-21-22-23-24-
25-26-27-28-29-30-40-

41-42-45

2-3-4-5-6-7-10-
11-12-18-20-21-22-23-
24-25-26-27-28-29-30-

41-42-43

1-2-3-4-5-7-10-
12-18-20-21-22-23-24-
25-26-27-28-29-30-40-

41-42-45
PI [Brazilian Reais - R$] 1,660. 50 1,616.2 1,660.50

TDP [year] 0.02 0.1 0.02
DTFL 

[Brazilian Reais -R$] 2,181.38 2,128.53 2,181.50

Budget 
[Brazilian Reais -R$] 446,450.00 450,750.00 446,450.00

Table 6. New degree of achievement fuzzy function and deviation variables values (Sensibility Analysis).

Degree achievement
fuzzy function iλ

Positive deviation 
variables

−
id

Negative deviation 
variables

+
id

First Scenery
PI 1 0 0

TDP 1 0 0
DTFL 1 0 0

Second Scenery
PI 0.54 139.50 0

TDP 1 0 0
DTFL 0.41 118.62 0
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flexibility to the managers with regard to the use of 
the resources, allowing testing variations in the goals.

Finally, it should also be highlighted that the 
FGP model allows aggregating the occurrence of 
uncertainty in the problem of capital budget, as it is 
much verified in the practice, not occasioning higher 
mathematical and computational complexity both in 
the modeling phase and model solution, presenting 
low solution times.

As proposals for future researches, it is suggested 
to apply to the capital budget problems:

•	 Data Envelopment Analysis - DEA Models 
(Silva et al., 2013b);

•	 The Revised Multi-Choice Goal Programming 
- RCMGP- LHS (Silva et al., 2015);

•	 Monte Carlo simulation combined with GP 
models under uncertainty (Silva et al., 2014);

•	 Models proposed by Ekel  et  al. (2008) and 
Pereira et al. (2015) combined with GP models 
under uncertainty.
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