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Resumo: Este artigo aborda o problema de otimização na geração da grade horária escolar. Tal problema consiste 
em definir os dias e horários das disciplinas a serem ministradas por cada um dos professores de instituições de 
ensino. Para isto foi desenvolvida uma ferramenta que faz uso de técnicas de Pesquisa Operacional (PO), com foco 
na geração e otimização de grade horária de instituições de Ensino Fundamental, considerando as preferências 
dos professores, tais como, preferências por dias de aula e por aulas em sequência (geminadas). Para a resolução 
do problema foi utilizado um modelo matemático de Programação Não Linear Inteira Binária (PNLIB) e os 
procedimentos Busca Local (BL) e Iterated Local Search (ILS), comparativamente. Foi aqui analisado um problema 
real com 14 grades horárias de escolas públicas da cidade de Araucária, PR. Os resultados indicam que o tempo 
computacional demandado pelo modelo matemático é viável para os problemas analisados. A técnica ILS possui 
potencial para testes em problemas de maior porte, já que apresenta uma dispersão de 3,5% a 7,7% em relação à 
solução ótima (obtida pelo PNLIB), com tempo computacional de 15 a 338 vezes mais rápido.
Palavras-chave: Grade horária; Iterated Local Search; Busca local; Programação Não Linear Inteira Binária.

Abstract: This paper addresses the school timetabling problem, which consists of defining the date and time in which 
classes will be given by teachers in educational institutions. For this purpose, a tool that uses Operational Research 
(OR) techniques was developed, focused on generating and optimizing Elementary and High School timetables, 
taking into account teachers’ preferences for certain days or for sequenced (twinned) classes. Conductive to solving 
the problem, a Non Linear Binary Integer Programming mathematical model (NLBIP) and Local Search (LS) and 
Iterated Local Search (ILS) procedures were comparatively applied. A real problem with 14 timetables of public 
schools in the city of Araucária (in Paraná State, Brazil) was analyzed. The results indicate that the computational 
time required by the mathematical model is feasible for the problems in question. The ILS technique has the potential 
for testing larger scale problems, as it presents a dispersion of 3.5% to 7.7% relative to the optimal solution (obtained 
by the NLBIP) and a computational time that is 15 to 338 times faster.
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1 Introduction
The need to optimize the use of every type of 

resource is as much a requirement in teaching 
institutions as in any other type of institution. Among 
the resources of schools that can be optimized are 
the classrooms and the time available for teachers 
to define the times of their commitments, in other 
words, their timetable.

Timetabling involves a number of variables, 
including preferences for times, days of teaching 
(or not teaching), twinned classes (or not), daily 
workload of subjects and, finally, minimization of 
school days. Therefore, manual timetabling is often 
highly complex, and merely achieving a feasible 
solution is considered satisfactory, as is the case 
in many schools nowadays. Thus, the creation of 
a system capable of automating timetabling allows 
schools to prepare their timetables more quickly and 
with better quality.

Several works on this topic, some of which will 
be discussed in more detail later, may be cited, 
including Saviniec et al. (2018), Fonseca et al. (2017), 
Soria-Alcaraz et al. (2014), Andrade et al. (2012), 
Góes et al. (2010), Sousa et al. (2008), Cooper & 
Kingston (1995), Souza et al. (2001) and Gotlieb (1963).

In this work, the development of a computer program 
is presented that makes use of Operational Research 
(OR) techniques, created to produce timetables with 
maximum optimization for elementary schools. It is 
based on three techniques: a mathematical model of 
Non Linear Binary Integer Programming (NLBIP); 
the Local Search (LS) heuristic; and the Iterated Local 
Search (ILS) meta-heuristic. As ILS contains LS, the 
gain that it provides in relation to the application 
of isolated (pure) local search is analyzed, as is the 
dispersion of techniques for the optimal solution. 
To illustrate the use of this tool better, it was applied 
to 14 timetables at three schools in the municipality 
of Araucária in Paraná State, Brazil.

This article is organized into five section, including 
this introduction. In Section 2, the timetabling problem 
and the 14 case studies analyzed are described. 
In Section 3, the methodology is described, i.e., how 
each technique (NLBIP; LS; ILS) was applied to the 
problem. The results are presented in Section 4, and 
the conclusions in Section 5.

2 Description of the problem
Timetabling is a Combinatorial Optimization 

problem, classified as NP-Complete (Cooper & 
Kingston, 1995). According to Babaei et al. (2015), 
the computational processing time required to 
generate a timetable using exact methods increases 
exponentially as the number of students increases. 
This problem involves some factors that must be 
respected for the timetable to be considered feasible 

(“hard constraints”). Of these, the following may 
be mentioned: 1) a class cannot have more than one 
teacher at the same time; 2) a teacher cannot teach 
more than one class at the same time; 3) groups of 
students must have a fully occupied weekly timetable; 
4) a teacher’s weekly workload with each class must 
be equal to the sum of the workload of subjects that 
he teaches to this class.

Other factors are considered in different timetabling 
problems, but only need to be complied with as far as 
is possible, so-called “soft” constraints (Silva et al., 
2004). They are: 1) complying with teachers’ preferences 
for twinned classes (or not); 2) complying with the 
preferences of each teacher regarding the days when 
they teach; 3) allocating the minimum possible number 
of school days to each teacher.

2.1 Case study of schools in Araucária, 
Paraná State

To gauge the efficiency of the proposed techniques 
when it comes to optimizing timetabling, the 
techniques were applied to 14 different scenarios 
of public schools in the municipality of Araucária, 
Paraná State, which differ from one another only in 
the number of classes and teachers. Table 1, below, 
illustrates for one of these scenarios the subjects 
taught by teachers to each class, as well as their 
workload and preferences in terms of their day off 
and day for class preparation. A day off is the day the 
teacher chooses not to have any commitments at the 
school, and the day for class preparation is a day the 
teacher sets aside for preparing lessons. The remaining 
13 scenarios, containing all the data, are available 
and illustrated in Andrade (2014).

As highlighted in Line 9 of Table 1, the first 
geography teacher (GEOTEACH1) teaches the three 
seventh grade classes (7D, 7E and 7F) and the three 
ninth grade classes (9D, 9E and 9F). Furthermore, 
his day off is Monday and his class preparation 
activities are on Fridays. Finally, his workload in 
the classroom is 15 hours of teaching. It should be 
noted that the sixth and eighth grade classes are 
taught by the second geography teacher. It should 
be highlighted that the names of the teachers are not 
shown to protect their identities.

In the teaching network associated with Table 1, the 
teachers have a workload of up to 20 hours per week 
(up to 15 hours in the classroom and 5 hours for class 
preparation). As each class lasts one hour, and teachers 
can work up to five hours per day, their workload in 
the classroom should preferably be distributed over 
a period of up to 3 days, leaving two days without 
classes, one for class preparation and one as their day 
off. Thus, one of the aims in generating timetables 
for this problem is to minimize the number of days 
that teachers spend in the classroom.
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3 Correlated works
Here, an analysis will be presented of some 

correlated works in the literature, in chronological 
order, which are summarized in Table 2. Two Linear 
Binary Integer Programming (LBIP) mathematical 
models, in addition to a Taboo Search (TS) associated 
with a Random Local Search (RLS) were presented 
in the study conducted by Sousa et al. (2008) to 
generate school timetables. The approaches are 
compared in real cases of Brazilian state schools, 
and the processing time of the exact techniques was 
limited to 6 hours. The authors conclude that the three 
techniques had a similar performance with regard to 
small problems. However, for large problems, the 
meta-heuristics outperformed the exact approach with 
a lower computational time. The school timetabling 
problem was solved by Soria-Alcaraz et al. (2014) 
through a learning hyper-heuristic. The proposed 
technique is based on an ILS procedure with autonomy 
to combine diverse statistical and dynamic operators. 
The approach was tested on 44 problems of the 
International Timetabling Competition (ITC), showing 

In this problem, no teacher exceeded the limit of 
fifteen hours of teaching per week (last column in 
Table 1). However, this did not occur in all 14 case 
studies, as in 11 problems there is at least one teacher 
with a heavier workload, exceeding 15 hours of 
teaching per week. Of these, in eight problems, 
there is at least one teacher with over 20 hours of 
teaching per week. In these cases, depending on the 
workload, the teacher will not have a day off or a 
day for preparing classes. However, he will be paid 
more for working overtime.

Considering the specific features of the teaching 
network in question and current legislation, other 
hard constraints were added: 1) every subject must 
be taught by only one teacher; 2) each group of 
students cannot have more than two classes on 
the same subject per day, whether twinned or not; 
3) specific subjects, selected by the user cannot have 
more than 50% of their workload concentrated in a 
single day. The latter constraint is intended to make 
specific subjects with a light workload (2 or 3 hours 
per week) be taught at a maximum of one hour per 
day, when this is the preference.

Table 2. Selected articles with timetabling. 

Researchers (Year) Problem Addressed Techniques Used
Sousa et al. (2008) School timetabling. TS with RLS and two LBIP 

mathematical models.

Soria-Alcaraz et al. (2014) School timetabling. ILS-based hyper-heuristics.

Babaei et al. (2015) Timetabling and classroom 
distribution in universities.

Multiple agents based on hybrid 
techniques with graph coloring and 
LS.

Lewis & Thompson (2015) University timetabling. Own meta-heuristic with operators to 
increase solution space connectivity.

Veenstra & Vis (2016) Reprogramming school timetabling. ILP mathematical model; Simple 
general rule; and Heuristic.

Jardim et al. (2016) Timetabling for a department of the 
UFF

ILS meta-heuristic.

Bucco et al. (2017) University timetabling. MILP model.

Fonseca et al. (2017) School timetabling. ILP model with new cutting 
algorithms.

Ghiani et al. (2017) Course timetabling for remedial 
education in high schools.

ILP mathematical model; and 
Heuristic.

Lindahl et al. (2018) University timetabling. e-constraint algorithm applied to 
bi-objective MILP mathematical 
models.

Liu & Dessouky (2019) Railway timetabling. B&B with hybrid heuristic in the 
solving of a mathematical model.

Saviniec et al. (2018) School timetabling. Parallel LS algorithms, ILS, TS, SA.
B&B = Branch-and-Bound; LS = Local Search; RLS = Random Local Search; TS = Taboo Search; ILS = Iterated Local Search; 
ILP = Integer Linear Programming; LBIP = Linear Binary Integer Programming; MILP = Mixed Integer Linear Programming; 
SA = Simulated Annealing. Source: The authors (2019).
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Fonseca et al. (2017) studied ILP techniques 
to generate school timetables, proposing cutting 
techniques and new formulations for the problem. 
The authors achieved notable results in the solving 
of diverse instances, including the ITC 2011, as the 
optimal solution, hitherto unknown, was obtained 
for two instances. Furthermore, the approach found 
the best-known solution for some instances, and 
for the linear relaxation of 14 instances, it found 
the best upper and lower bounds. The problem 
of course timetabling for remedial education was 
analyzed by Ghiani et al. (2017), deciding which 
courses should be offered and at what time. An ILP 
mathematical model and a heuristic technique were 
compared based on randomly generated instances. 
The authors concluded that the heuristic achieves a 
balance between execution time and solution quality.

The timetabling and classroom distribution problem 
in universities was studied by Lindahl et al. (2018), 
analyzing the relationship between three factors 
that influenced the solution: teaching period; room 
distribution; and quality. The authors proposed three 
bi-objective MILP models and an algorithm to solve 
them called the e-constraint method. The models and 
solution method were evaluated based on the solution 
of the instances of the ITC 2007. The authors positively 
evaluated the techniques, as they are applicable to 
almost all the instances, enabling an analysis of the 
relationship between each of the factors and their 
influence on solution quality. Liu & Dessouky (2019) 
used a mathematical model to optimize the timetable 
of a passenger and cargo railway network. The authors 
proposed a solution based on Branch-and-Bound (B&B) 
with hybrid heuristic procedures to solve the nodes 
in the search tree and to return to a feasible solution. 
Computational experiments with real data show the 
feasibility of the proposed technique, outdoing other 
heuristics in the literature. Saviniec et al. (2018) 
solved the school timetabling problem using the 
parallel processing of LS heuristics with an exchange 
of information between agents. The solutions were 
compared with the solution of the instances by the ILS 
meta-heuristics, TS and Simulated Annealing (SA), in 
addition to techniques from the literature. The most 
efficient parallel algorithm was considered promising, 
as it achieved good quality solutions consistently, 
outperforming the state-of-the-art algorithms in the 
literature in two variants of the problem.

4 Description of techniques applied 
to the timetabling problem
In this section, the techniques applied to the 

14 problems described in Section 2.1 are described: 
the NLBIP mathematical model and the ILS and LS 
procedures.

that the dynamic operators exceed the statistical ones, 
as they are competitive with other techniques applied 
in the literature, since this approach generated the 
best-known solution for one of the cases.

Babaei et al. (2015) introduced a new approach 
to solving the timetabling problem in universities, a 
multiple agent technique based on multiple hybrid 
meta-heuristics with LS graph coloring. Tests were 
performed to compare different techniques in instances 
from the literature with diverse characteristics. 
The authors conclude that exact approaches do not 
have good efficiency in solving this problem because 
of the growing complexity with a higher number of 
students. Furthermore, they highlight the advantages 
of using multi-agent approaches, such as greater 
independence in the allocation of classes between 
different departments of the university. Lewis & 
Thompson (2015) proposed a two-stage meta-heuristic 
for the university timetabling problem. The first stage 
is intended to achieve a feasible solution without 
considering soft constraints. The second stage, 
considering hard and soft constraints, seeks to improve 
the solution by increasing solution space connectivity 
using a neighborhood operator. The approach was 
tested in instances of the ITC 2007, and the authors 
found that the quality of the solution is generally 
better with increased solution space connectivity, 
as the technique generated better results than the 
methods in the literature for most of the instances 
that were analyzed.

Veenstra & Vis (2016) analyzed the performance 
of three proposed techniques to reprogram a school 
timetable: an exact method of Integer Linear 
Programming (ILP) method, a simple general rule 
and a heuristic technique. The techniques were tested 
with the data of five schools in the Netherlands in 
two scenarios (minor or major alterations to the 
timetable). The results show that, for minor alterations, 
the heuristic achieved the optimal solution in 50% 
of the tests. When major alterations were required, 
the ILP method could not find the optimal solution 
in the established computational time (12 hours). 
Jardim et al. (2016) solved and optimized the 
timetabling problem of a department of the Federal 
Fluminense University (UFF) using the ILS heuristic, 
which had better results than those of the tool used 
by the department at the time when the study took 
place. In the article written by Bucco et al. (2017), a 
Mixed Integer Linear programming (MILP) model 
was applied to the timetabling problem of university 
courses, focusing on optimizing the use of classrooms. 
To enable the processing of the proposed approach, 
the problem was divided into two sub-problems. 
The first addressed the generation of the timetable, 
while the second focused on classroom distribution. 
Tests were conducted with real data from a Brazilian 
university, demonstrating that the proposed approach 
could reduce the number of classrooms required.
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satisfied, while those at the bottom of the list have 
fewer chances of having their preferences met. 
Therefore, the value of the coefficient tCT  is “10” for 
the teacher lowest down in the hierarchy. The next 
teacher has a weight equal to “11”, and so forth, up 
to the first teacher in the hierarchy, who will have 
the highest value for this coefficient.

D is calculated based on the workload allocated 
to each teacher. The minimum number of school 
days is calculated: up to 5 hours a week (inclusive), 
the minimum is 1 day of teaching; between 6 and 
10 hours a week (inclusive), the minimum is 2 days; 
between 11 and 15 hours a week (inclusive), 3 days; 
between 16 and 20 hours a week (inclusive), 4 days; 
and from 21 hours a week (inclusive), the minimum is 
5 days of teaching. Thus, the difference is calculated 
between the minimum number of teaching days and 
the days allocated, as shown in Equation 2.

( )  .   .  
T

t t t
t 1

D 10 CT DD DM
=

= −∑   (2)

The multiplication of the number of days over by 
the weight of the teachers’ hierarchy prioritizes the 
quality of the timetable of teachers higher up in the 
hierarchy and makes the value of D adapt to the size 
of each problem, given that tCT  is also a function of 
the number of teachers in the problem.

The coefficient W  is defined by the sum of the 
coefficients '

ntW  and ''
wtW  (Equations 3, 4 and 5).

' ''
 ' ''  

n w

n w
n w

t t

t t
t 1 t 1

W W W
= =

= +∑ ∑   (3)

( ), , , , , ,'  .  . .  ,    
n n n n

G D H 1
t t t g d h t g d h 1 n

g 1 d 1 h 1

1W CT X X 2 t
2

−

+
= = =

    = − − ∀   
    

∑ ∑ ∑  (4)

( ), , , , , ,''  .  . .  ,   
w w w w

G D H 1
t t t g d h t g d h 1 w

g 1 d 1 h 1

1W CT X X 2 t
2

−

+
= = =

    = − ∀   
    

∑ ∑ ∑  (5)

The product between a variable and the variable of 
the following period, as shown in Equations 4 and 5, 
despite making the model non-linear, in this case 
does not significantly affect the complexity of the 
model. As the variables are binaries, the result will 
also be 0 or 1. The product results in 0 when the 
teacher does not have twinned classes and in 1 when 
he does. Therefore, in Equation 4, 1 is the result for 
each day that the teacher does not have twinned 
classes (in accordance with his preference), and the 
result is “-1” if he is allocated to a twinned class on 
the day. As the difference between Equations 4 and 5 
is only a sign, the results will be opposites. Thus, it 
can be said that in both cases, positive results are 
achieved on the days when preferences are satisfied 
and negative ones on the days when they are not.

4.1 Mathematical model
In the proposed model, the aim is to maximize 

the satisfaction of teachers’ preferences for the days 
that they teach and for twinned classes, as well as 
to minimize the number of days that each teacher 
gives classes. The terms used in the modeling will 
now be defined:

Indexes:
t = 1, ..., T: T is the total number of teachers;
nt  = '1t , '2t , ..., 'nt : nt  is a subgroup of t, with 'nt  

representing the t index of the last teaching that does 
not have a preference for twinned classes;

wt  = ''1t , ''2t , ..., ''wt : wt  is a subgroup of t, with ''wt  
representing the t index of the last teacher with a 
preference for twinned classes;

g = 1, ..., G: G is the number of groups;
d = 1, ..., D: D is the number of school days in 

a week;
h = 1, ..., H: H is the number of teaching periods 

in a school day;
Parameters:

,t dCD : Coefficient of preference of the teacher t 
to teach each day d;

tCT : Coefficient of the hierarchy of the teacher t;
wtCT : Coefficient of the hierarchy of a teacher with 

preference for twinned classes;
ntCT : Coefficient of the hierarchy of a teacher 

without a preference for twinned classes;
tDM : Minimum number of day of teaching that 

teacher t may have;
,t gK : Workload of the subject that the teacher t 

teaches to the group g;
Variables:

, , ,t g d hX : Binary variable representing whether a 
teacher t teaches the group g on day d, time h, or not;

D: Penalty in the case of a teacher having more 
days of teaching than the minimum;

tDD : Number of days of teaching designated to 
the teacher t.

W: Total coefficient of twinned classes;
'

ntW : Coefficient of satisfaction of preferences for 
not having twinned classes;

''
wtW : Coefficient of satisfaction of preferences for 

twinned classes;
Thus, the Objective Function (OF) is represented 

by Equation 1, below.

( ) , , , ,  .  .  
T G D H

t d t t g d h
t 1g 1d 1h 1

Max Z X CD CT X D W
= = = =

 
= − +  
 
∑ ∑ ∑ ∑  (1)

To define the values of the coefficient ,t dCD , the day 
off has a value of 1; the class preparation day “4”; and 
for the other days the value is “10”. Meanwhile, the 
hierarchy of teachers represented by tCT , is defined by 
the decision maker using a list of teachers, with the 
first teachers on the list being those higher up in the 
hierarchy, i.e., more likely to have their preferences 
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The heuristic created to generate the initial solution 
used as a base for LS and ILS will now be explained.

4.2.1 Generation of the initial solution

The heuristic for generating the initial solution is 
based on an order among the teachers. Thus, all the 
classes for one teacher are allocated before moving 
on to the next. To choose the next teacher for the 
allocation of the teaching period, a draw is made. 
In accordance with heuristic logic, the next teacher 
on the list always has an 80% chance of being chosen, 
and so forth, until when the last teacher is reached, 
he has a 100% chance of being chosen.

This percentage choice criterion was defined so 
that whenever the heuristic is applied to a problem, 
there is a high probability of generating different 
initial solutions. For each of the 14 problems solved, 
10 initial solutions were generated, and to each of 
these the LS and ILS techniques were applied. Thus, 
the chances of achieving a better quality solution 
increase in comparison with a method without a 
random factor, in other words, that always generates 
the same initial solution.

During the allocation of subjects, the tool attempts 
to designate subjects to the preferred teaching times 
of the teacher, which is more likely to be guaranteed 
in the first allocations. Thus, the last teachers to be 
allocated generally have few of their preferences 
satisfied.

After all the teachers have been chosen, if subjects 
remain unallocated due to conflicting times between 
teachers and groups, there is an adjustment stage. 
The lacking allocations are detected along with the 
groups of students in question. The times of some 
subjects already allocated to these groups are then 
altered to make a new attempt at allocating subjects 
to free teaching periods and finalize the process with 
a feasible initial solution.

4.2.2 Local search applied to the problem

The LS, in the proposed problem, was structured in 
accordance with the following sequence. At each LS 
application, the procedure shown below is repeated 
until it is no longer capable of improving the solution.

1. A teacher is selected with more teaching days 
than the minimum (Teacher 1);

2. A subject allocated to Teacher 1’s day off or 
class preparation day is found (Subject 1);

3. A free teaching period of Teacher 1 is found, on 
days when he has to teach (Teaching Period 1);

For '
ntW  and ''

wtW , the sum of each teacher is multiplied 
by the hierarchy coefficient. Thus, the choices of the 
first teachers are given priority.

The constraints developed in the mathematical 
models are presented below in Equations 6 to 10.

, , , ,  , ,    
T

t g d h
t 1

X 1 g d h
=

= ∀ ∀ ∀∑   (6)

, , , ,  , ,  
G

t g d h
g 1

X 1 t d h
=

≤ ∀ ∀ ∀∑   (7)

, , , ,  ,  ,  
D H

t g d h t g
d 1h 1

X K t g
= =

= ∀ ∀∑ ∑   (8)

, , , ,  , ,  
H

t g d h
h 1

X 2 t g d
=

≤ ∀ ∀ ∀∑   (9)

{ }, , , ;   t g d hX 0 1=    (10)

The constraints in (6) ensure that all class times 
are filled and that for each period only one teacher 
will teach each group. The constraints in (7) prevent 
teachers from teaching more than one group in the 
same teaching period. The constraints in (8) guarantee 
that one teacher will teach the whole workload of 
the subject to which he was allocated for each group. 
The constraints in (9) prevent groups from having 
more than two classes in the same subject per day. 
Equation 10 guarantees that the variables , , ,t g d hX  are 
binary.

All the hard constraints presented in Sections 2 and 2.1 
are considered in Constraints (6) to (9) above, with 
the exception of hard constraint 3, which is optional. 
This constraint alters Equation 9: subjects chosen 
come to have at most 1 lesson per day rather than 2, 
like all the other subjects.

4.2 Local search and Iterated Local Search 
procedures

For a better visualization of the techniques that will 
be presented, LS and ILS, a fictitious problem was 
created with only 3 groups of students (6A, 7A and 8A), 
5 teachers (of Portuguese, Mathematics, Science, 
History and Geography), 3 days of classes per week 
and 3 teaching periods per day.

The aim of the LS, starting form an initial 
solution, is to find the best solution for a restricted 
search area (Resende & Silva, 2013). According to 
Guersola (2013), Penna et al. (2013) and Ribeiro et al. 
(2008), the ILS, starting from an initial solution, first 
applies a perturbation to this solution so that it will 
be displaced to another search area and then the LS 
procedure will be applied, seeking the best solution 
in this area. Analyzing several different search areas, 
the ILS procedure increases the chances of finding 
good quality solutions (Lourenço et al., 2002). 
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periods of the Portuguese teacher within his preference 
would be analyzed.

It is important to highlight that at each exchange no 
hard constraints are violated and that the improvement 
to the LS only occurs if, in the example provided, the 
history teacher already had at least one class on Day 
3. This prevents his timetable from being affected 
to improve that of the Portuguese teacher, which 
would not necessarily mean a real improvement 
to the problem. Alterations that do not make a real 
improvement may be important when it comes to 
increasing the chances for improvement in future 
changes. Therefore, in the perturbation of the ILS 
explained below, within a limit, declines in solution 
quality are accepted.

4.2.3 Iterated Local Search applied to the 
problem

ILS first applies a perturbation to the solution, as 
follows: A teacher with an opportunity to improve 
his timetable is chosen. A subject is then selected 
that he teaches on the days that he does not prefer 
(Subject 1). The time of this subject (Perturbation 
Time) will be changed to a new time (Destined Time), 
decided at random within the teacher’s preferences.

For this change, two aspects are analyzed: the 
time of the group of students who are taught this 
subject (Group 1), and their teacher (Teacher 1). 
These analyses are conducted in order to return to 
a feasible solution at the end of the perturbation.

4. The teacher that teaches in Teaching Period 1 
is found so that the group of students can be 
taught Subject 1 (Teacher 2);

5. If Teacher 2 is available for the time of Subject 
1, he exchanges his subject with Subject 1. End 
of process;

5.1. Otherwise, if there is an unanalyzed option 
for Teaching Time 1, then return to Step 3;

5.2. Otherwise, if there is an unanalyzed option 
for Subject 1, then return to Step 2;

5.3. Otherwise, if there is an unanalyzed option 
for Teacher 1, then return to Step 1;

5.4. Otherwise, end of process.

Table 3 illustrates the Local Search process.
It should be noted that in Table 3, Teacher 1 is 

the Portuguese teacher, as he has the opportunity 
to improve his timetable. Subject 1 is Portuguese 
for Class 8A, teaching time 3, day 3, as this subject 
is in the teaching time to be exchanged. Teaching 
Time 1 is the third of Day 2, as it is the teaching 
period available on the teaching days of Teacher 1. 
Teacher 2 is the History teacher, as he teaches the 
first teaching period to Group 8A.

The greatest chance of the LS not succeeding 
would occur if the history teacher were not available 
for the third period on Day 3, as this would preclude 
the improvement. In this case, if possible, other free 

Table 3. LS applied to Fictitious problem.

Math Teacher 1º 2º 3º 6A 1º 2º 3º
1º 8A 6A 1º Sciences History Mathematics
2º 8A 6A 2º Portuguese Portuguese Mathematics
3º 7A 7A 3º Geography Geography Sciences

Port Teacher 1º 2º 3º 7A 1º 2º 3º
1º 7A 7A 1º Portuguese Portuguese History
2º 6A 6A 2º Geography History Sciences
3º 8A # $8A 3º Sciences Mathematics Mathematics

Sci Teacher 1º 2º 3º 8A 1º 2º 3º
1º 6A 8A 1º Geography Mathematics Sciences
2º 7A 2º Mathematics Geography History
3º 7A 6A 3º Portuguese History Portuguese

Hist Teacher 1º 2º 3º
1º 6A 7A
2º 7A 8A
3º #8A $

Geo Teacher 1º 2º 3º
1º 8A
2º 7A 8A
3º 6A 6A

Symbols # and $ help to identify that Portuguese and History teachers can change their classes as explained in the text. 
Source: Andrade (2014).
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5.1. If one of the Teachers 3 is free at the class 
period of Teacher 4, the four times are 
exchanged: from Teacher 1 to Teacher 2, 
from Teacher 2 to 3, who exchanges with 
Teacher 4, who exchanges with Teacher 1. 
Then, end of process;

5.2. Otherwise, all the draws are made again. 
Then, return to Step 1. The following tables 
will enable a better understanding of the 
steps involved in this process.

In Table 4, below, Subject 1 is at Perturbation 
Time, and Subject 2 at the Destined Time. In other 
words, the aim is to change Subject 1 to the time of 
Subject 2. If Teacher 2 is free at the time of Subject 1, 
the two subject are exchanged and the teaching period 
for Group 1 is solved.

In Table 5, Teacher 2’s free periods have been 
filled and Teachers 3’ and 3” teach Group 1 at these 
times. If one of them is free at the time of Subject 1, 
the three subjects are exchanged: Subject 1 with 2, 
then 2 with Teacher 3 (3’ or 3”), who in turn changes 
with Subject 1.

If it is not possible to make the exchange described, 
the process continues with a teacher who is free at the 

The changes required in the timetable of Group 1 
are explained below:

1. The teacher of Group 1 at the Destined Time 
is found (Teacher 2);

2. If Teacher 2 is free at perturbation time, his 
subject changes times with Subject 1. Then, 
end of process;

2.1. Otherwise, free teaching periods of Teacher 
2 are found (Free Periods);

3. Teachers of Group 1 are found in Free Periods 
(Teachers 3);

4. If one of Teachers 3 is free at Perturbation 
Time, the three times are exchanged: from 
Teacher 1 to 2, from Teacher 2 to Teacher 3, who 
changes with Teacher 1. Then, end of process;

4.1. Otherwise, a teacher of Group 1 is found who 
is free at Perturbation Time (Teacher 4);

5. If no teacher is free at Perturbation Time, all the 
draws are performed again. Then, return to Step 1;

Table 4. Changes in the group’s timetable – ILS (1).

Group 1 1º 2º 3º
1º
2º Subject 2
3º Subject 1

Teacher 2 1º 2º 3º
1º
2º Group 1
3º

Source: Andrade (2014).

Table 5. Changes in the times of the group – ILS (2).

Group 1 1º 2º 3º
1º Subject 3”
2º Subject 3’ Subject 2
3º Subject 1

Teacher 2 1º 2º 3º
1º
2º Group 1
3º Group X

Teacher 3’ 1º 2º 3º
1º
2º Group 1
3º

Teacher 3” 1º 2º 3º
1º Group 1
2º
3º

Source: Andrade (2014).
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3.1. Otherwise, a teacher of Group 2 is found 
who is free at the Destined Time (Teacher 3);

4. If no teacher is free at the Destined Time, the 
draws are remade and the process returns to the 
analysis of the time of Group 1;

4.1. If one of Teachers 2 is free at the time of 
Teacher 3’s class, the three subjects are 
exchanged: from Teacher 1 to Teacher 2, 
from Teacher 2 to Teacher 3, who changes 
with Teacher 1. Then, end of process;

4.2. Otherwise, the draws are redone and the 
process return s to analyzing the timetable 
of Group 1. The following tables enable a 
better understanding of the steps described.

In the example, the aim of the perturbation is to 
allocate the subject of Group 1 to the Destined Time 
(Table 7). If Teacher 1 is free at this time, the subject 
of Group 1 is changed to the Destined Time, and the 
process ends.

If Teacher 1 teaches another group at the destined 
time (Group 2), the teachers who teach Group 2 in 
Teacher 1’s free periods are found (as shown in Table 8, 
Teachers 2’ and 2”). If one of these teachers is free at 
the time of Subject 1, his subject is exchanged with 
Subject 1 and the timetable of Teacher 1 is solved.

time of Subject 1 (Teacher 4). If no teacher is free at 
this time, the draws are made again and the process 
reinitiated. It is then determined whether one of the 
Teachers 3’ and 3” is free at the teaching period of 
Teacher 4. If no one is free, the draws are made again 
and the process reinitiated. In Table 6, Teacher 3’ 
is available at the time of Teacher 4. Therefore, 
the four subjects are exchanged: Subject 1 with 2, 
Subject 2 with Subject 3’, which is exchanged with 
Subject 4, which changes with Subject 1. Therefore, 
the timetable of Group 1 is resolved.

At the time of Teacher 1, the time of Subject 1 will 
change to the Destined Time. The changes necessary 
to return to a feasible solution now follow:

1. If Teacher 1 is free at the Destined Time, no 
change is necessary. Thus, end of process;

1.1. Otherwise, his free periods are found (Free 
Periods), and the group that he teaches at 
the Destined Time (Group 2);

2. The teachers of Group 2 in the Free Periods are 
found (Teachers 2);

3. If one of Teachers 2 is free at the Destined Time, 
the subjects of Teachers 1 and 2 are exchanged. 
Then, end of process;

Table 6. Changes in the timetable of the group – ILS (3).

Group 1 1º 2º 3º
1º Subject 4
2º Subject 3’ Subject 2
3º Subject 1

Teacher 2 1º 2º 3º
1º
2º Group 1
3º Group X

Teacher 3’ 1º 2º 3º
1º
2º Group 1
3º Group Y

Teacher 4 1º 2º 3º
1º Group 1
2º
3º

Source: Andrade (2014).

Table 7. Alteration of teacher’s timetable – ILS (1).

Teacher 1 1º 2º 3º
1º
2º Destined T.
3º Group 1

Source: Andrade (2014).
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which changes with Subject 1. Thus, the timetable 
of Teacher 1 is resolved.

The outlined process illustrates one perturbation. 
The perturbation is repeated until the OF varies 
more than 5% (positively or negatively) or until 
it is repeated by a number equal to 20% of the 
total number of teachers. The first ILS iteration 
ends when, after the end of the perturbation, it is 
applied to LS. To end the ILS process, 100 iterations 
are performed. The initial solution is always the 
best-known solution so far.

If it is not possible to make the exchange described 
above, the process continues. A teacher (Teacher 3) 
of Group 2 who is free on the day and at the time of 
Subject 1 is found. If no teacher is available, the draws 
are made again and the entire process is reinitiated. 
Finally, a teacher is found between Teachers 2’ and 2”, 
who is free at the time of Teacher 3’s class. If neither 
of these teachers is available, the draws are made 
again and the process reinitiated. Table 9 shows 
that Teacher 2’ is available, so the three subjects are 
exchanged: Subject 1 with 2’, then 2’ with Subject 3, 

Table 8. Changes to the teacher’s timetable – ILS (2).

Teacher 1 1º 2º 3º
1º
2º Group 2
3º Group 1

Group 2 1º 2º 3º
1º Subject 2’
2º Subject 1
3º Subject 2”

Teacher 2’ 1º 2º 3º
1º Group 2
2º
3º

Teacher 2” 1º 2º 3º
1º
2º
3º Group 2

Source: Andrade (2014).

Table 9. Changes in the teacher’s timetable – ILS (3).

Teacher 1 1º 2º 3º
1º

2º Group 2

3º Group 1
Group 2 1º 2º 3º

1º Subject 2’

2º Subject 3 Subject 1

3º
Teacher 2’ 1º 2º 3º

1º Group 2

2º Group X

3º
Teacher 3 1º 2º 3º

1º

2º Group 2

3º
Source: Andrade (2014).
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5.1.2 Result of the local search
The timetable of the same teachers shown in 

Table 10, obtained through the application of LS, is 
shown in Table 11. The value of the OF is 66,853, 
with teachers giving classes in 21 days more than the 
minimum. The values of the coefficients D and W 
are 4,120 and 9,823, respectively.

There are 6 teachers giving classes on the minimum 
number of teaching days, including Mathematics 
Teachers 1 and 2, as shown in Table 11. With the 
application of the initial solution, only 2 teachers 
had optimized timetables. Analyzing Table 11 from 
left to right and from top to bottom, the timetables of 
the last teachers, i.e., those with less priority, are the 
ones with the greatest opportunities for improvement.

5.1.3 Result of the Iterated Local Search
The results achieved by ILS are presented in 

Table 12. There was an expressive improvement in 
relation to that of LS, as 11 teachers have an optimized 
timetable, and of those who do not, only 1 or 2 classes 
are allocated outside of their preferences. The value 
of the OF in this case is 70,234. The teachers give 
classes on 13 days more than the minimum and the 
values of coefficients D and W are 2,290 and 9.403, 
respectively.

5.1.4 Comparison of the results
A comparison of the results obtained for the 10 initial 

solutions generated following the application of LS 
and ILS are shown in Table 13, below. The values of 
the OF (Z(x)), teaching days more than the minimum 
(Days), the coefficients D and W, and the processing 
time required by the ILS (t(s)) are presented. In the LS 
and ILS results, there are percentages of improvement 
in relation to the previous solution, both for Z(x) 
(ΔZ(x)) and the extra days (ΔDays).

Due to space limitations, the solution of the 
mathematical model is not included in Table 13. 
Therefore, it should be remembered that the value 
of the OF of the exact solution is 75,003, with the 
teachers giving classes on two days more than 
the minimum necessary. Moreover, the values of 
coefficients D and W are 290 and 9,973, respectively.

It should be noted in Table 13 that, in general, the 
solutions with fewer extra days generate a better result 
of Z(x). However, this is not a rule, as the solution with 
fewer teaching days was achieved in the application 
of ILS in Solution 1.4 (12 days), although the best 
solution is that of the ILS in Solution 1.6 (13 days). 
It may be concluded that Solution 1.6, compared with 
Solution 1.4, generated more teaching days for less 
preferential teachers, as the value of the penalty D 
was 2290, in comparison with 2350 in Solution 1.4.

5 Achievement and discussion of the 
results
The solutions of the developed program are 

evaluated in accordance with their proximity to the 
optimal solution. The LS and ILS results are also 
compared. It should be highlighted that a mathematical 
model was applied to the problems of the case study 
considering the magnitude of these problems. In other 
cases, which involved more groups and teachers, the 
mathematical model may prove to be unfeasible. Thus, 
it is essential to use other techniques, including LS 
and ILS, as presented here.

The system was executed using a computer with a 
Core i3 processor and 4GB of RAM memory. In all of 
the cases, the processing time for the initial problem 
and LS was less than one second.

As there is a random component in the initial 
solution, the generated solutions mostly differ from 
one another. For this reason, in each problem, 10 initial 
solutions are generated. The results presented are 
those that generated the best solution following the 
application of the techniques.

5.1 Analysis of the results of problem 01
The results of the Exact Model, LS and ILS 

applied to the data of the problem shown in Table 1, 
Section 2.1 are presented here.

5.1.1 Result of the exact method
The mathematical model of this problem has 

2,515 variables and 1,590 constraints. It was solved 
using LINGO 12.0 software, and the processing 
time was 1,066 seconds. The OF value was 75,003, 
and the values of coefficients D and W were 
290 and 9,973, respectively.

Table 10 shows the timetables generated using 
the exact methods for 9 teachers, selected by 
order of priority. The timetable generated by the 
mathematical model is of much higher quality than 
those generated by LS or ILS, which will be presented 
in Sections 5.1.2 and 5.1.3, below. In this solution, 
only 2 teachers did not have a fully optimized timetable: 
Geography Teacher 2 and History Teacher 3.

Thus, it cannot be concluded that this is the feasible 
solution with the lowest number of teaching days for 
teachers. As the solution found by LINGO 12.0 is 
the optimal one for this problem, it can be said that 
if there is a feasible solution with fewer teaching 
days, this will certainly have a lower OF value. This 
occurs because the issue of minimizing teaching days 
is not a hard constraint, influencing the OF through 
coefficient D, which is the penalty for the case of 
teachers not having an optimized timetable.
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illustrates the value of the OF divided by the number 
of teachers (“Z(x)/T”).

In practice, the complexity of the problems is 
inversely proportional to the value of the ratio 
between the number of teachers and groups of students 
(Column “T/G”, as shown in Table 14). This is 
explained because it is easier for institutions with many 
teachers available for few groups of students (high 
value of “T/G”) to generate timetables. Meanwhile, 
when there are few teachers to teach many groups 
of students (low value of “T/G”), it is more difficult 
to generate timetables.

For a deeper analysis of the results, in Table 15 
there is a line with the best solution to the problem, 
another with the mean of the 10 generated solutions 
(µ), and the following line with the standard deviation 
of the mean (σ).

A pertinent issue is that the high “T/G” ratio 
(illustrated in Table 14) in a problem generates more 
dispersion in the initial solution, because in these 
problems there are more possibilities of feasible 
times. Therefore, it is natural for initial solutions to be 
more varied. Problem 5, for instance, has the highest 
“T/G” ratio, and generated a mean of 72,635, with a 
standard deviation of 1,290, a high value compared 
with the other initial solutions.

On the other hand, the opposite ratio is also true, as 
Problem 14 has the lowest “T/G” ratio, with a mean 
of 52,461 and standard deviation of 191, a low value 
compared with the other problems. This occurs because 
this type of problem is highly constrained, with few 
possibilities of feasible solutions and, therefore, with 
less dispersion between them.

An analysis of Table 15 shows that the ILS results 
are more stable for the larger problems, in terms of 
number of teachers (this information is shown in 

Although the quality of the initial solution has a 
considerable influence on the quality of the solution 
obtained, the best initial solution does not always generate 
better results in terms of LS and ILS. Solution 1.2, 
for example, was one of the best initial solution, but 
it generated one of the worst ILS results. This occurs 
because the improved quality of the solution is not 
only linked to the current quality of the solution, 
but rather to more subtle and even random factors. 
An example of these factors is a teacher being free 
at a specific time, allowing for an exchange with 
another teacher, resulting in a better quality solution. 
Another example would be a random draw of this 
teacher during the ILS process.

5.2 Analysis of the results of problems 01 to 14
The results of Section 5.1, above, were intended 

to illustrate the application of each technique in more 
detail and thus the results of only one problem were 
explained. It is important to highlight that the data 
for the other 13 problems are available and illustrated 
in Andrade (2014). In this section, the summarized 
results of all 14 problems are presented.

Initially, the results of the Exact Method for all 
the problems are presented in Table 14, along with 
the characteristics of the problems, such as number 
of teachers (T), groups (G), and the ratio between 
these values (T/G). Then, in Table 15, the results 
of the initial solution and the LS and ILS solutions 
are presented.

The values of Z(x), when analyzed in absolute 
form, may distort the reality, given that a naturally 
large problem will have a higher OF value, even if 
its quality is worse. Therefore, to generate a base 
for comparing the problems, a column of Table 14 

Table 14. Results for all 14 problems – Exact Method.

Nº T G T/G Exact Method
Z(x) Z(x)/T D W Days t(s)

1 23 12 1.92 75003 3261 290 9973 2 1066
2 14 8 1.75 37295 2664 170 5015 1 6767
3 22 12 1.83 70370 3199 310 9670 2 1530
4 22 13 1.69 75878 3449 0 10561 0 1622
5 26 13 2.00 85504 3289 470 11426 4 2738
6 35 20 1.75 158056 6079 250 21360 2 8808
7 22 12 1.83 70034 3183 110 10160 1 2174
8 23 12 1.92 72742 3163 110 9662 1 2104
9 22 12 1.83 68784 3127 120 10252 1 1754
10 23 13 1.77 79414 3453 410 11499 3 3609
11 22 12 1.83 70343 3197 330 10549 2 2020
12 22 12 1.83 71637 3256 260 10276 2 1447
13 22 13 1.69 74946 3407 190 10886 1 1094
14 18 12 1.50 60478 3360 0 9587 0 1809

Source: Andrade (2014).
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the three that have been presented: Exact Method, LS 
and ILS. The (ΔZ(x)) column shows the dispersion 
between the technique and the optimal solution. 
The last column (Δt) shows “how many times faster” 
the processing of the ILS was compared with the 
Exact Method.

An analysis of Table 16 shows that the best results 
for all the problems were achieved by the Exact 
Method, with a variation of 3.5% to 7.7% in relation 
to the ILS solution, and 10.6% to 15.2% in relation 
to the LS solution.

Problems with a low “T/G” ratio have a higher 
“Z(x)/P” value. In these cases, teachers have a 
fuller timetable, i.e., they generate a higher OF 
value compared with others in which teachers have 
emptier timetables (high “T/G” value). For example, 
Problems 4, 6, 13 and 14 have the lowest “T/G” 
ratios (Table 14), and generated the highest “Z(x)/T” 
values, mainly in the columns of the ILS and Exact 
Method (Table 16).

6 Conclusions
Through the study of real cases in this article, it may 

be concluded that the aims of the work were achieved 
in a satisfactory manner. OR techniques were used 
to generate comparatively the optimized timetables 
of Elementary and High Schools (Mathematical 
model, LS and ILS).

The performance of the Exact Method was 3.5% to 
7.7% better than that of ILS in the cases in question. 
Furthermore, the computational time required is 
feasible, as this activity generally takes place once 
or twice a year in teaching institutions. Therefore, it 
is clear that for problems that can be solved exactly, 
even if the entire computational procedure lasts for a 
few hours, this is how the solution should be found.

In the case of larger problems, which cannot be 
solved exactly, ILS is a promising alternative, but 
not conclusive. Therefore, for the larger problems, 
LS and ILS procedures and others would have to be 
tested, always attempting to achieve the best results 
possible.

As for the performance of the heuristic and 
meta-heuristic techniques applied here, the ILS 
technique achieved the best results, providing a 
successful differential over LS for the problems 
in question. Moreover, it had good computational 
performance, ranging from 15 to 338 times faster 
than the Exact Method. With these results, the 
application of ILS proved to be a promising technique 
for testing in larger problems, in which, as verified 
by Babaei et al. (2015), and Veenstra & Vis (2016), 
the computational time for the exact solution may 
be unfeasible.

The characteristics of the timetabling problem in 
public schools are very similar to each other, and in 
compliance with legislation, there appear to be no 

Table 14). For instance, Problem 6, which is the 
largest of all, generated a mean of 145539, with a 
standard deviation of 765 in the value of “Z(x)” of 
the ILS process, a low value compared with the other 
problems. The opposite is also true, because smaller 
problems generate more variability in the ILS results. 
This can be explained, since a small problem has a 
more constrained universe of possibilities. Therefore, 
any improvement achieved by ILS has a great influence 
in terms of percentages on the result of the problem, 
causing this greater variation in the results.

In Table 15, there were cases in which the ILS 
processing time for the best solution was longer than 
the average of the other solutions, and cases in which 
it was shorter. Therefore, it may be concluded that 
the ILS processing time is more closely related to 
the size of the problem rather than the quality of the 
result. This is because in general, larger problems in 
terms of number of teachers require more processing 
time for ILS. The graph in Figure 1 was created to 
illustrate this, with the vertical axis of the graph 
showing the average ILS processing time and the 
horizontal axis presenting the number of teachers 
involved in the problem.

It should be noted that in Figure 1 the greater the 
problem, the longer the processing time, although 
there are exceptions, such as Problems 10 and 14. 
The exceptions occur due to other parameters that also 
affect the processing time, such as the “T/G” ratio, 
and other specific characteristics of each problem, 
such as the distribution of workloads among teachers 
and their days of preference.

Table 16, below, compares the best solutions of 
each technique for each problem. The information 
regarding the initial solution was not included in this 
table, as it has already been shown in Table 15, and 
because the techniques in question in this study are 

Figure 1. Graph of the number of teachers versus ILS 
processing time. Source: The authors (2018).
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Fonseca, G. H. G., Santos, H. G., Carrano, E. G., & 
Stidsen, T. J. (2017). Integer programming techniques 
for educational timetabling. European Journal of 
Operational Research, 262(1), 28-39. http://dx.doi.
org/10.1016/j.ejor.2017.03.020.

Ghiani, G., Manni, E., & Romano, A. (2017). Training 
offer selection and course timetabling for remedial 
education. Computers & Industrial Engineering, 111, 
282-288. http://dx.doi.org/10.1016/j.cie.2017.07.034.

Góes, A. R. T., Costa, D. M. B., & Steiner, M. T. A. (2010). 
Otimização na programação de horários de professores/
turmas: modelo matemático, abordagem heurística e 
método misto. Revista Eletrônica Sistemas & Gestão, 
5(1), 50-66.

Gotlieb, C.C. (1963). The construction of class-teacher 
time-tables. In Proceedings of International Federation 
for Information Processing (IFIP) Congress (pp. 73-77). 
Munich: North Holland Publishing Company.

Guersola, M. S. (2013). Otimização na distribuição física 
de produtos a granel: uma aplicação à distribuição 
de gás (Dissertação de mestrado). Programa de Pós-
graduação em Engenharia de Produção, Universidade 
Federal do Paraná, Curitiba.

Jardim, A. M., Semaan, G. S., & Penna, P. H. V. (2016). 
Uma heurística para o problema de programação 
de horários: um estudo de caso. In Anais do XLVIII 
Simpósio Brasileiro de Pesquisa Operacional (SBPO). 
Vitória: SOBRAPO.

Lewis, R., & Thompson, J. (2015). Analyzing the effects of 
solution space connectivity with an effective metaheuristic 
for the course timetabling problem. European Journal 
of Operational Research, 240(3), 637-648. http://dx.doi.
org/10.1016/j.ejor.2014.07.041.

Lindahl, M., Mason, A. J., Stidsen, T., & Sørensen, M. 
(2018). A strategic view of University timetabling. 
European Journal of Operational Research, 266(1), 
35-45. http://dx.doi.org/10.1016/j.ejor.2017.09.022.

Liu, L., & Dessouky, M. (2019). Stochastic passenger 
train timetabling using a branch and bound approach. 
Computers & Industrial Engineering, 127, 1223-1240. 
http://dx.doi.org/10.1016/j.cie.2018.03.016.

Lourenço, H., Martin, O., & Stützle, T. (2002). Iterated 
Local Search. In F. Glover & G. Kochenberger, (Eds.), 
Handbook of metaheuristics (pp. 321-353). Boston: 
Kluwer Academic Publishers.

Penna, P., Subramanian, A., & Ochi, L. (2013). An iterated 
local search heuristic for the heterogeneous Fleet vehicle 
routing problem. Journal of Heuristics, 19(2), 201-232. 
http://dx.doi.org/10.1007/s10732-011-9186-y.

Resende, M. G. C., & Silva, R. M. A. (2013). GRASP: 
procedimentos de busca gulosos, aleatórios e adaptativos. 
In H. S. Lopes, L. C. A. Rodrigues & M. T. A. Steiner 
(Eds.), Meta-heurísticas em pesquisa operacional. 
Curitiba: Omnipax. http://dx.doi.org/10.7436/2013.
mhpo.01.

obstacles to using the developed program in other 
Brazilian public schools. In private schools, the aim 
is to reduce teachers’ intervals, given that they result 
in higher costs for their employers. As the program 
was projected to reduce teachers’ teaching days, the 
focus is on the days, meaning that the solution will 
also meet the expectations of private schools.

A suggestion for future works is the development 
of an intergroup heuristic, similar to the one used 
by Souza et al. (2001), which would complement 
the adjustment stage of the initial solution and LS. 
This would lead these techniques to analyze changes 
between the subjects of different groups of students, 
thus achieving better quality solutions.

Another suggestion would be to apply the tool 
to other instances, i.e., schools whose realities 
differ from the ones analyzed here. Furthermore, an 
analysis of the sensitivity in the parameters of the 
mathematical model and ILS is suggested. With this 
analysis, it will be possible, for example, to gauge 
whether the increase of the coefficient D in the OF 
generates an optimal solution with fewer teaching 
days, or the impact of the alteration of the coefficients 

,t dCD  and tCT , on the optimal solution. Moreover, it 
would also be possible to analyze the size limit of 
problems to make the processing time of the exact 
method feasible.
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