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Resumo: Apresenta-se neste trabalho um estudo sobre testes não paramétricos para verificar a semelhança entre 
duas pequenas amostras de variáveis classificadas em múltiplas categorias. Mostra-se que, para essa situação, os 
únicos testes disponíveis são qui-quadrado e os testes exatos. Porém, testes assintóticos (como o qui-quadrado) 
podem não funcionar bem para pequenas amostras, sobrando como alterativa a aplicação de testes exatos. Mas, se 
o número de categorias cresce, a aplicação desses testes pode-se tornar bastante difícil, além de requerer algoritmos 
específicos, que podem exigir grande esforço computacional. Assim, um novo teste baseado na diferença de duas 
distribuições uniformes é proposto como uma alternativa ao teste exato. Ensaios computacionais são realizados 
para avaliar o desempenho desses três testes. Embora testes não paramétricos tenham inúmeras aplicações em 
diversas áreas de conhecimento, este trabalho surgiu motivado pela necessidade de verificar se a estratégia de 
negócio adotada pela empresa é um fator determinante para sua competitividade.
Palavras-chave: Testes não paramétricos; Pequenas amostras; Simulação computacional; Estratégia competitiva.

Abstract: This paper presents a study on non-parametric tests to verify the similarity between two small samples 
of variables classified into multiple categories. The study shows that the only tests available for this situation are 
the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small 
samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation 
of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable 
computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two 
uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three 
tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was 
motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its 
competitiveness.
Keywords: Non-parametric tests; Small samples; Computer simulation; Competitive strategy.
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1 Introduction
This work was motivated by a need to create an 

easily applied statistical test to aid research based 
on the development of the Fields and Weapons of 
Competition (FWC) model (Contador, 2008) to gauge 
(among other things) whether the business strategy 
adopted by a company is a determining factor of its 
competitiveness. In his research, the author of this 
model collected a small sample of companies and 
divided them into two groups. One group was formed 
by the most competitive companies and the other by 

the least competitive. The test is used to determine 
whether both groups adopt similar business strategies 
(null hypothesis H0).

The proposed test can be used for any problem 
with the following characteristics:

a)	 Two different groups, I and II (for example, more 
competitive and less competitive companies), 
representing samples of larger populations, with 
n1 and n2 elements in each group, where n1 and 
n2 are small values;
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b)	 For each group or sample, the random variable 
assumes values of frequencies in each of the 
m classes, m>2 (see Table 1), i.e., the random 
variable is measured on a nominal scale or 
categorized with more than two categories

c)	 The number of classes or categories that the 
random variable may assume (value of m) is 
moderate in relation to the n1 and n2 values

It should be noted that if the random variable 
could be classified into only two categories (e.g., 
two strategies), the problem could be easily solved 
by Fisher’s exact test (see Section 4), whatever the 
size of n1 and n2 of the samples from the two groups.

If, on the other hand, there were more than two 
categories for the random variable, but for each class a 
sufficiently large number of individuals (which would 
generate a problem with large samples), it would also 
be easy to determine the similarity between the two 
sets of responses using the chi-square text, which 
can fail when small samples are involved.

The other non-parametric tests that are available 
(sign test, Wilcoxon signal rank test, rank sum 
test, median test and t-test for paired dataset) are 
inadequate, as will be demonstrated through examples. 
Thus, for the case of small samples and more than 
two classes for the random variable, the problem is 
difficult to solve.

Therefore, the only safe alternative for addressing 
this type of problem is exact tests, such as the one 
presented in StatXact (2008), with the solution based 
on an extension of Fisher’s Exact Test (Fisher, 1970) 
proposed by Freeman & Halton (1951). However, 
the implementation of this test requires specific 
algorithms and, in some cases, requires considerable 
computational effort, which justifies the search for 
new tests for this type of problem.

In light of this, the present article presents a 
comparative performance study (capacity to decide 
H0 correctly) of the exact tests, chi-square and a new 
test based on the difference between two uniform 
distributions, proposed here. The effectiveness of these 
tests is compared using three indicators (risks α and β 

and the characteristic indicator, CI, extracted from 
the power curve, which will be constructed through 
simulation.

The studies developed here focus on attempting 
to solve the problem of strategy related to the FWC 
model. For this reason, some concepts of this model 
are given in the following section, as they are essential 
for understanding the problem in question. The aim 
of this article is not to discuss or introduce the FWC 
model. If the reader would like to know more about 
the model, a source of further information is provided 
in the references.

Numerous other problems related to biology, 
medicine and the social and human sciences have 
the characteristics described above and could be 
addressed using the statistical techniques used here. 
Some examples of problems directly related to social 
engineering are:

−	 Determining whether two different types of 
employees (machine operators and office 
workers, for example) in small companies 
(with few workers) have similar motivations 
in order to develop a single incentives program 
(or include all workers in a single program);

−	 Determining, through a small sample of companies 
from different sectors (e.g., manufacturing 
and services) whether these companies value 
the same characteristics in their executives to 
standardize human development programs;

−	 Determining whether executives (few in number) 
from different business units of a corporation 
have similar managerial capacity;

−	 Determining whether two different production 
processes, by analyzing few parts, create products 
with similar levels of quality for different 
characteristics (size, finishing, etc.).

The main result of the work was that effectiveness 
of the proposed test was similar to that of exact 
tests and that it performs well in situations in which 
the chi-square test fails (small samples and scanty, 
unbalanced data). Therefore, it is a real alternative to 
the exact test, the application of which often requires 
special software with restricted access.

In Section 3, there is a brief discussion on 
non-parametric tests and a critical analysis of 
their application to solve the problem in question 
(strategy). In Section 4, the solution adopted by the 
StatXact for problems with categorized variables 
is presented. In Section 5, the development of the 
proposed test is presented, based on the difference 
between two uniform distributions. In Section 6, the 
studies conducted to assess the performance of the 

Table 1. Frequencies of strategies (FC) for the groups of 
companies.

FC j fj gj

A 1 2 4
B 2 1 0
C 3 3 2
D 4 2 1
E 5 2 2
F 6 0 2
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three tests (the proposed test, the exact test and the 
chi-square) are presented. The conclusions are given 
in Section 7. This final section also shows how the 
proposed test can be extended for problems with more 
than two independent samples, and are presented two 
examples in which the proposed test shows a clear 
advantage over the chi-square.

2 Fields and weapons of competition 
model
According to the FWC model, companies focus 

their competitive strategy on one of the 14 fields of 
competition (clustered in five macro fields), although 
they can adopt another (two or three) supporting 
fields. The fields of competition, according to the 
FWC model, are as follows:

−	 Macro-field of competition in price: (1) the price 
itself, (2) payment conditions, and (3)  prize 
and/or promotion;

−	 Macro-field of competition in product, goods 
or services: (4) product project, (5) product 
quality, and (6) variety of models;

−	 Macro-field of competition in attendance: 
(7) presales technological service, (8) assistance 
during sale, and (9) after-sales technical service;

−	 Macro-field of competition in delivery time: 
(10)  deadline of budgeting and negotiation, 
and (11) product delivery deadline;

−	 Macro-field of competition in image: (12) product 
and brand name, (13) reliability of the company, 
and (14) social responsibility (civil and 
preservationist).

The test of the FWC model assumes that a 
company’s competitiveness is not determined by 
its choice of competitive strategy. Rather, it is the 
correct alignment of its core competence (Hamel & 
Prahalad, 1995) with the chosen field of competition, 
whatever it may be. Evidently, the model assumes 
that it is necessary to choose for each product/market 
pair one of the fields that is of interest to the market.

For a better understanding of the problem in 
question, consider the data in Chart 1, extracted from 
one of the studies conducted by Contador (2008), 
with the set of 21 companies which, by degree of 
competitiveness (DC), were divided into two groups: 
the most and least competitive. To determine the 
degree of competitive of the company i (DCi), the 
FWC model normally uses the variation that occurs 
in a given period of time for invoicing or net turnover 
of the company.

A company i is classified as being in the group of 
the most or least competitive, in the FWC model, using 
the Nihans index (N). For a group of n companies, 
the Nihans index is calculated using the following 
formula (Equation 1):
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n
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=

=
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Thus, if DCi ≥ N, then the company is classified 
among the most competitive. Otherwise, it is considered 
as among the least competitive.

The FC column for each group of companies in 
Chart 1 represents the codes of the main fields of 
competition declared by the respective companies. 
Thus, the strategies of both groups of companies 
can be represented by the C1 lists (Set 1 - the most 

Chart 1. Classification of companies in the most and least competitive groups.

Group I: Most competitive companies Group II: Least competitive companies

Code Main field of competition (FC) FC DCi Code Main field of competition (FC) FC DCiDenomination Denomination
E10 Product and brand image A 1.51 E05 Variety of models D 0.82
E13 Product delivery deadline B 1.43 E11 After-sales service C 0.80
E17 After-sales service C 1.39 E06 Product and brand image A 0.79
E19 After-sales service C 1.32 E12 Product and brand image A 0.79
E21 Variety of models D 1.25 E04 Product and brand image A 0.69
E02 Product and brand image A 1.19 E14 Presales service F 0.62
E08 Product project E 1.16 E16 Product project E 0.54
E03 After-sales service C 1.14 E07 Product and brand image A 0.47
E13 Product project E 1.11 E09 Presales service F 0.38
E01 Variety of models D 1.07 E20 Product project E 0.30

E18 After-sales service C 0.25
Source: Contador (2008).
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competitive companies) and the C2 (Set 2 - the least 
competitive companies), as follows:

C1 = {A, A, B, C, C, C, D, D, E, E} Set 1
C2 = {A, A, A, A, C, C, D, E, E, F, F} Set 2
Therefore, the null hypothesis H0 considers that 

the lists of strategies C1 and C2 are samples from the 
same population and, if it is not possible to reject H0, 
it is accepted that the choice of business strategy is 
not a determiner of the level of competitiveness of a 
company. The aim of the presented work is to study 
how to answer this question through statistical tests.

This type of test may be done by determining 
whether the sets of values fj and gj can be considered 
as coming from the same population, where fj and gj 
are the distributions of the frequencies with which the 
strategies j = 1, 2, ..., m appear in Group I and Group II 
of companies, respectively, so that 11

m
jj f n

=
=∑  and 

21
m

jj g n
=

=∑ . For the case of Chart 1, fj and gj assume 
the values expressed in Table 1.

3 Non-parametric tests and the 
problem of similarity of strategies
Non-parametric statistics include a large number 

of inference techniques whose preponderant factors 
are the few assumptions regarding how the data were 
generated. Normally, they only require the samples to 
be independents or the data to be obtained at random.

The fundamental problem in non-parametric 
statistics is determining, from the data of a sample, 
the probability value ρ (tail value) that will lead to 
the decision whether to accept the null hypothesis, 
which can be done in two ways:

a)	 Using the equation ρ=P(X ≥ xcal), where X 
represents a known probability distribution 
and xcal is a value calculated from a (statistical) 
function of the sample data, so that xcal ∈ X; or

b)	 Using the equation ρ= 1
r

ii p
=∑ , where pi, for 

i=1, is the probability of that configuration of 
values occurring reflected by the sample and 
pi, i = 2, ..., r is the probability of any one of the 
other possible (r – 1) occurring, more extreme 
than the original sample.

Small ρ values (normally lower than α = 0.05) 
indicate that the null hypothesis (H0) should be 
rejected. Thus, it is vitally important to determine 
the value of ρ as accurately as possible.

The way that the ρ value is calculated divides 
non-parametric tests into two classes: approximate 
tests (or asymptotic tests), when ρ is determined as 
in (a), described above, and exact tests, when ρ is 
calculated as in (b). When the first way is chosen, for 
the obtained ρ value to be reliable, it is necessary to 

be certain that the test variable xcal reproduces, with 
good approximation, a distribution element of X. 
A requisite condition for this is that the size of the 
sample should be sufficiently large. For this reason, 
they are called asymptotic tests. On the other hand, 
using method (b) there is the exact value for each pi, 
which accounts for the origin of the term exact test.

A very common problem in statistical inference is 
determining, for a given level of test α, i.e., with the 
certainty of (1 – α), whether differences observed in 
two samples mean that the corresponding populations 
really differ from one another, which would lead to 
the rejection of the null hypothesis H0, coinciding 
with the problem of interest to the FWC model.

The first tests developed in non-parametric statistics 
belong to the class of asymptotic tests. Lehmann 
(1975) attributes to John Arbuthnot (1710) the first 
work in the field through the presentation of the sign 
test, the purpose of which was to verify whether two 
samples stem from the same population, applying it 
to problems with ordinal variables. For a discussion 
on the types of variables (ordinal or categorized), 
several works can be consulted, including that of 
Siegel & Castellan (2006)

Pearson (1900) made a significant advance towards 
the creation of non-parametric tests applied to nominal 
or categorized variables. He demonstrated that the 
statistical test based on the sum of m samples formed 
by the differences between the observed frequency 
and expected frequency of variables distributed into 
m categories, when generated from a multinomial, 
hypergeometric or Poisson distribution, have a 
chi-square distribution providing the sample size 
is sufficiently large. This resulted in one of the 
most important asymptotic non-parametric tests 
(chi-square), applicable to a wide range of problems 
with categorized variables.

In the mid-twentieth century, non-parametric 
methods applied to problems with ordinal variables 
were given a boost by an article by Wilcoxon (1945), 
which presented a test based on the sum of ranks of 
two samples to verify whether they were extracted 
from the same population. Later, Mann & Whitney 
(1947) developed a more adequate procedure, which 
resulted in the Wilcoxon-Mann-Whitney test (Mann, 
Whitney and Wilcoxon, and others, independently 
proposed non-parametric tests that are essentially 
identical)

Other important works on non-parametric statistics 
that also addressed ordinal variables are those of 
Friedman (1937), Pitman (1937a, b, c), Kendall (1938), 
Smirnov (1939), Wald & Wolfowitz (1940), Kruskal 
& Wallis (1952), and Chernoff & Savage (1958).

From these works the following non-parametric tests 
were derived, and could be applied to the problem in 
question: sign test; Wilcoxon’s sign rank test (1945); 
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Wilcoxon-Mann-Whitney rank sum test; chi-square, 
median test and the t-test for paired dataset. However, 
these tests are inadequate for addressing problems 
with small samples and categorized variables, as 
shown in their application to the data in Table 2.

Intuitively, it is difficult not to accept that there is 
no distinction between the two samples, as in six of 
the eleven classes there is a considerable difference 
between variables fj and gj.

In the sign test, as Respondent A surpasses B in six 
of the eleven requirements and is surpassed in three 
(there is a draw), a tail value equal to 0.254 is obtained, 
proving to be the true H0. The Wilcoxon test provides 
a tail value of ρ = 0.062, for T+ = 51 and n=11 and, 
through the Wilcoxon-Mann-Whitney test, for the 
variable of the test z=1.04 is obtained, which provides 
a two-tailed value equal to 0.298. When the median 
test is applied, for the respective contingency table, 
a chi-square value is obtained equal to 2

calχ  = 1.692, 
showing that there is no distinction between the 
respondents (tail value ρ = P[ 2

1χ  > 1.692]=0.193). 
If we apply the t-test for paired dataset a two-tailed 
value of ρ = 0.061 is obtained. Finally, if we apply 
the chi-square test, we will obtain a tail value of 
ρ = 0.675.

Therefore, all the tests led to the conclusion that 
they would be the opposite of what was expected. 
This happened because for a statistical test to 
function adequately for the problem in question, 
the respective test variable Xcal, calculated from the 
data of the two samples, to be used to determine 
ρ =P[X≥ Xcal], must have three properties. They are: 
a) considering the extent of the difference observed 
in each pair of values related to each class of random 
variable; b) accumulating the differences in opposite 
senses observed in different classes (stop one from 
annulling the other); and c) being adjusted to a known 
probability distribution X.

The only test among those applied with the first 
two properties is the chi-square. However, to meet 
the third requirement, it is necessary for at least 80% 
of the cells to have a frequency greater than 5 and no 
cell with a frequency less than 1 (Siegel & Castellan, 
2006), which does not occur in the data in Table 3.

The chi-square can often fail if the values contained 
in the cells are sparse or have strong imbalance 
(see example in Section 7).

As an alternative to the chi-square, when the 
previous conditions are not met, the exact tests 

emerge. Fisher’s test, proposed in 1925 (Fisher, 
1970), was the first of these and is applicable to two 
samples of variables with two categories (tables with 
l = 2 lines and c = 2 columns). This test was later 
extended to tables with l > 2 and c > 2 by Freeman 
& Halton (1951). However, its application requires 
great computational effort, principally if the number 
of classes is large (Sprent & Smeeton, 2000, p. 322). 
In these cases, appropriate software is required, such 
as the StatXact (2008).

The uncertainty of using the chi-square in problems 
with small samples and the difficulty involved in 
applying exact tests led the authors to propose a 
new non-parametric test to address problems with 
small samples of categorized variables and conduct 
comparative studies on the performance of these three 
tests, i.e., the capacity to decide the null hypothesis 
H0 correctly.

In the following section, the theory of the exact 
tests, especially that of Fisher, is presented, along 
with the procedure adopted by the StatXact software 
for this class of problem, with the main object being 
to show the difficulties involved in solving problems 
with small samples whose variables assume more 
than two categories.

4 Exact tests based on permutation 
theory
To exemplify the application of Fisher’s exact test 

to tables with a 2x2 dimension, consider Tables 3a-c, 
in which Group I refers to the male sex and Group II 
to the female sex.

In the upper line of each of these tables are the 
frequencies of people with a height of 1.80m or taller. 
In the lower line, there are the frequencies of people 
who are under 1.80m tall. These data were obtained 
from a sample of eight men and nine women. The idea 
is to gauge, based on this small sample, whether men 
are taller than women. Consider that the hypothesis 
H0 establishes equality of height and the alternative 
hypothesis H1 establishes that men are taller than 
women. To apply Fisher’s exact test to this problem, 
the value of ρ = 1

r
ii p

=∑ is determined, where pi is the 
probability of an equal or more extreme situation 
occurring (in the sense of Hypothesis H1) than that of 
Table 3a, maintaining the total fixed marginal values. 
Observe that the sample included six men who were 
taller than 1.80m and two who were shorter. As the 

Table 2. Data for the application of the tests available in the literature.
Sample j 1 2 3 4 5 6 7 8 9 10 11

A1 fj 5 4 5 4 5 4 4 4 4 4 5
A2 gj 2 1 2 1 2 1 5 5 4 5 5
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test is unilateral, (due to the alternative hypothesis H1), 
there are two other more extreme situations than that 
of Table 3a with fixed marginal values, which are 
represented in Tables 3b and 3c.

The exact probability of observing a particular set 
of frequencies in a 2x2 table, when the marginal totals 
are considered fixed, is given by the hypergeometric 
distribution, resulting in ρ = 0.109, obtained from the 
sum of p(a), p(b) and p(c), given by Equations 2, 3 and 4, 
respectively:

( )
9! 8!  8! 9! 0.0968

17! 6! 3! 2! 6! ap = = 	 (2)

( )
9! 8! 8! 9! 0.0012

17! 7! 2! 1!  7! bp = = 	 (3)

( )
9! 8!  8! 9! 0.0004

17! 8! 1! 0! 8! cp = = 	 (4)

In this case, as ρ > 0.05, it is not possible to reject 
H0 with a level of certainty of 95%.

an example will now be presented to illustrate how 
the exact test is applied to tables with l > 2 and c > 2.

Consider the data in Table 4 as representing the 
number of executives that belong to four business 
units of a large corporation who have been given 
high, average and low evaluations in an executive 
promotion program. Based on this small sample, is 
it possible to conclude that Business Unit A has the 
most capable executives (alternative hypothesis H1)?

If the chi-square tests were applied, the constructed 
statistic would have (l–1)×(c–1) = 6 degrees of freedom 
and would supply χ2=11.555. As P( 2

6 11.555χ > )=0.0726, 
it would not be possible to reject the null hypothesis 
H0 with 95% certainty and affirm that Business Unit 
A has more capable executives.

To apply the exact test, all the possible tables 
are generated from the configuration of the sample 
data, maintaining fixed marginal values. The tables 
that originate values of χ2 ≥ 11.555 represent more 
extreme situations that of the original sample and 
thus contribute with their respective values of p to 
compose the value of ρ. For instance, Tables 5a and 5b 
are two possible arrangements obtained from Table 4. 
The first is χ2=14.676, and should be considered a 

more extreme situation that that of the original model. 
Thus, its respective value of p contributes to the 
determination of ρ. Meanwhile, Table 5b provides 
χ2=9.778, and its corresponding value of p does not 
contribute to the calculation of ρ.

The generalization of the calculation of probability 
p of a particular set of frequencies for a table with 
l lines and c columns, by Freeman & Halton (1951), 
is made using Equation 5, where ni,o is the marginal 
value of the line i, no,j is the marginal value of the 
column j, nij is the value contained in the cell (i, j) 
and n is the sum of the values of all the cells:

, ,

,

( )! ( )!

! ( )!

i o o j
i j

ij
i j

n n
p

n n
=
∏ ∏

∏
		  (5)

In the application of the exact test to tables of 
dimension l×c, all the possible tables from the 
originating data of the sample must be represented. 
It is the representation of these tables that generally 
requires considerable computational effort.

This type of problem can be solved by software such 
as the StatXact (2008). For this particular case, this 
software arrives at ρ = 0.0398, which, contradicting 
the result of the chi-square test, leads to the rejection 
of the null hypothesis H0 with 95% certainty.

5 Test based on the difference 
between two uniform distributions
In this section, a new non-parametric test is presented 

for the problem in question. The test statistic is given 
by the difference between two uniform distributions 
of probabilities.

Table 3. Data to exemplify Fisher’s exact test.

Groups Groups Groups
I II I II I II
6 3 9 7 2 9 8 1 9
2 6 8 1 7 8 0 8 8
8 9 17 8 9 17 8 9 17

(a) (b) (c)
Source: Prepared by the authors.

Table 4. Result of the evaluation of executives.

Evaluation 
Level

Business Units Total
A B C D

High 5 2 2 0 9
Average 0 1 0 1 2

Low 0 2 3 4 9
Totals 5 5 5 5 20
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Let j = 1, 2, ..., k, k ≥ m be the index of the alternatives 
that a categorized random variable C can assume, and 
let P = {pj, j= 1, 2, ..., k} and Q = {qj, j= 1, 2, ..., k} be 
the true distributions of probabilities of this variable 
in two different populations P1 and P2 (e.g., more 
competitive and less competitive companies). Consider 
the functions expressed by Equations 6 and 7:

'
1/ [( ) / 2] / { / [( ) / 2]}k

j j j j j j jjp p p q p p q
=

= + +∑ 	 (6)

'
1/ [( ) / 2] / { / [( ) / 2]}k

j j j j j j jjq q p q q p q
=

= + +∑ 	 (7)

Then, if pj=qj, for all j = 1, 2, ..., k, it can easily be 
seen that ' ' 1/j jp q k= = , for all j, i.e., if P and Q have 
the same distribution of probabilities, then functions 
pj and qj convert the distribution of strategies j for both 
populations of companies into a uniform distribution 
with probability equal to 1/k for all j. This shows 
that the proposed test, which is in essence based on 
determining the difference for ' '

j jp q− , is convergent.
Now let fj and gj, j = 1, 2, ..., m, be the frequencies 

that the random variable C assumes in two samples A1 
and A2 of sizes n1 and n2 extracted from populations 
P1 and P2, respectively. As fj / n1 and gj / n2 are fair 
estimates for pj and qj, respectively, if A1 and A2 
are samples from the same population, then the 
Equations 8 and 9 must have values close to 1/m, for 
all j = 1, 2, ..., m, for any values of n1 and n2. This fact 
motivated the proposition of this test for the case 
of small samples, despite being an asymptotic test.
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Now, consider the statistic D = 1
m

j jj u v
=

−∑ , 
where uj and vj are relative frequencies of the variable 
j = 1, 2, ..., m, so that Pr(j) = 1/m, for all j. This variable 
is only a little sensitive to the variation of the 
number of elements in the sample (at least for small 
variations, which always occurs when dealing with 
small samples, as is the case in question). However, 
it depends on the value of m, as it stems from the 

sum of m samples, each one given by the difference 
between two uniform variables. The distribution of 
probabilities of this statistic is not known. Nevertheless, 
it is possible, through simulation, to construct its 
histogram for diverse values of m and, from each 
of these histograms, determine Dα, where Dα is the 
value of D that leaves α% of the data to its right.

With the aid of this information, it is possible to 
determine whether the lists of strategies A1 and A2 
stem from the same population (Hypothesis H0). It is 
sufficient to calculate the statistic Dcal = 1  m

j jj r s
=

−∑  
from the values of fj and gj originating from A1 and 
A2, respectively, and compare with the value of Dα. 
If Dcal > Dα, Hypothesis H0 can be rejected with a 
level of certainty (1-α).

Observe that the variable Dcal (like D) is defined in the 
interval [0, 2]. When fj = gj, for all j = 1, 2, ..., m, then 
Dcal = 0, which provides the maximum certainty that 
both sets A1 and A2 originate from the same population. 
Now, when, for each j = 1, 2, ..., m, (fj = 0, gj>0) 
or (fj > 0, gj = 0), which means that each group of 
companies declared different sets of strategies and 
therefore the intersection of sets A1 and A2 is empty, 
then Dcal = 2, which provides the maximum certainty 
of rejection for the null hypothesis H0.

5.1 Determining the value of Dα

The value of Dα was determined from the histogram 
of the variable D, constructed through a computer 
simulation process. This procedure is illustrated 
below for the case of m = 6, n1 = n2 = 12.

Step 1. Establish the following correlation according 
Table 6, where RN is a uniform random number in 
the interval [0, 1].

Step 2. Generate n1 uniform random numbers (RN) 
in the interval [0, 1] for the first sample and other 
n2 numbers for the second sample, and obtain sets 
A1 and A2, i.e., values of fj and gj. For n1 = n2 = 12, a 
possible result is shown in columns fj and gj of Table 7, 
where, among the twelve values randomly selected 
for sample A1, two fell in the interval [0, 1/6), and 
for sample A2, three values fell in the same interval, 
thus originating f1 = 2 and g1 = 3.

Step 3. Determine, for each generated sample A1 and 
A2, D = 1

m
j jj u v

=
−∑ , where 1( / )j ju f n= , 2( / )j jv g n= , 

as shown in Table 7, which arrives at D = 0.333 for 
this example.

Step 4. Repeat Steps 1 to 3 10000 times, generating 
10000 ordered values for D, and identify the value 
of Dα, for significance levels α = 0.01 and α = 0.05 
(D0.05 is given by the value of D, which leaves 
500 values to its right, and D0.01 is given by the value 
of D that leaves 100 values to its right). Table 8 shows 

Table 5. Two permutations of the results of the evaluation 
of the executives.

5 2 2 0 9 4 3 2 0 9
0 0 0 2 2 1 0 0 1 2
0 3 3 3 9 0 2 3 4 9
5 5 5 5 20 5 5 5 5 20

(a) (b)
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the critical values of Dα, for different values of m and 
α = 0.05 and α = 0.01.

Applying the test to the data in Table 2, Dcal = 0.493 
is obtained. As in this example m = 6, it can be 
concluded that the null hypothesis H0 cannot be 
rejected and it must be accepted that the two groups 
of companies adopt similar sets of strategy.

6 Study of the power of the tests
The effectiveness of the exact tests, the chi-square 

and the proposed test, was evaluated by analyzing 
the power curve, supplying the probability of the 
acceptance (Pa) of the null hypothesis (H0) due to 
the level of similarity of the two samples.

The power curve was raised using computer 
simulation for the level of similarity between the 
samples, defined by the parameter referred to as the 
degree of symmetry (DS) of the distributions of samples 
A1 and A2, varying in the interval [0, 1] and given by 
Equation 10, where pj and qj are the probabilities of 
the categorized variable originating from samples 
A1 and A2 for all j= {1, 2, ..., m}.

	
1(  ) / 2m

j jjGS p q
=

= −∑ 	 (10)

Defining appropriate values for pj and qj, through 
simulations, samples from populations with the 
following degrees of symmetry were obtained DS={0.0; 
0.2; 0.4; 0.6 and 0.8}. Observe that if pj = qj for all j, 
Equation 2 provides DS = 0, and the samples obtained 
by simulation for this case will be from the same 
population. On the other hand, if pj = 0 when qj ≠ 0, 
for all j, then DS = 1, creating configurations with 
samples from totally different populations.

Computer tests were conducted for the following 
six configurations of problems identified by the sets 
of values of (m, n1, n2): (3, 7, 7), (4, 8, 8), (5, 10, 10), 
(6, 12, 12), (7, 14, 14) and (8, 16, 16). For each of 
these six cases and for each of the five values of 
DS mentioned above, the probability of acceptance 
Pa was determined according to the exact test, the 
chi-square and the proposed test.

For this purpose, 100 problems were generated 
for each of the six sets of values (m, n1, n2) and the 
five degrees of symmetry (DS). The value of Pa for a 
determined test and for a given set of values (m, n1, n2) 
and a given value of DS could then be identified by 
directly counting the number of problems in which 
there would be acceptance of the H0.

For all the tests, a significance level α=0.05 was 
adopted. Thus, the acceptance of H0 occurred whenever 
ρ= P[X> Xcal]> α, where X is the test variable and Xcal 
is the value of the statistic of the test, or whenever 
Xcal< Xcrit, where Xcrit is such that P[X> Xcrit]= α, which 
is the same thing viewed in two ways.

In all, 3000 problems were tested, 100 for each 
combination [(m, n1, n2); GS], and each was solved 
using the three tests.

The configuration of each problem, i.e., values of 
fj and gj for both samples was obtained as described 
in Steps 1 and 2 of the procedure to determine Dα, 
presented in Section 5.

From this curve, raised by computer simulation, 
the following indicators could be extracted for a 
comparative analysis of the tests:

a)	 Risk α, which is the probability of committing 
a Type I error (rejecting the null hypothesis 
when it is true), given by α= (1-Pa), for DS=0;

b)	 Average of risks β given by the average of 
Pa for the four values of DS>0, where β is 
the probability of committing a Type II error 
(accepting a false null hypothesis); and

c) 	Characteristic indicator of the power curve (CI), 
determined by the relationship (Slope)0.50/(DS)0.50, 
where (Slope)0.50 is the slope of the curve at 
point (DS)0.50, with (DS)0.50 being the value of 

Table 6. Correlation between uniform random number and 
the classes of variables.

RN in the interval Variable C
[0, 1/6) A

[1/6, 2/6) B
[2/6, 3/6) C
[3/6, 4/6) D
[4/6, 5/6) E
[5/6, 1] F

Table 7. Application of the test of the difference of two 
uniform distributions.

Strategy 
(j) fj gj uj vj |ul – vj|

A 2 3 0.167 0.250 0.083
B 1 0 0.083 0.000 0.083
C 3 3 0.250 0.250 0.000
D 2 1 0.167 0.083 0.083
E 2 2 0.167 0.167 0.000
F 2 3 0.167 0.250 0.083

Sum 12 12 1.000 1.000 0.333

Table 8. Critical values of Dα.

α m
3 4 5 6 7 8

0.05 1.143 1.250 1.200 1.167 1.143 1.125
0.01 1.429 1.500 1.400 1.333 1.286 1.250
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DS that originates a probability of acceptance 
of 50%.

The value of (Slope)0.50 was determined by 
Equation 11.

	 0.6
0.5

0 4
0

.( ) ( )( )
100.(0.6 0.4)

Slope DS DS−
= −

−
	 (11)

As it is a downward curve, the negative sign is 
introduced to make the result of the slope positive. 
The denominator was multiplied by 100 to represent 
it on a more adequate scale (interval [1 to 10]). 
The values of (DS)0.40 and (DS)0.60 were obtained by 
visual inspection of the graph of the power curve 
generated by the five points (GS, Pa).

The two parameters (Slope)0.50 and (DS)0.50 are 
frequently used to evaluate the discriminant power 
of quality inspection plans. The higher the value of 
(Slope)0.50 and the lower the value of (DS)0.50, the 
greater the power of the plan, or the power of the 

statistical test, in the present study. Thus, the CI 
expresses in a single indicator the properties of both 
(the higher their value, the greater the power of the 
test) and can dispel doubts that may remain from the 
application of the α and β risk indicators.

Studies on the performance of statistical tests 
adopts only the risk indicators, a point in question 
being the case of Tanizaki (1997). Thus, the use of a 
new indicator (CI) with the property outlined above 
makes a contribution to this type of study.

Tables 9a  to 9f show the results obtained from 
the trials with the exact tests (solution obtained by 
the StatXact), chi-square (Chi-Squ) and presented 
test (Uniform). The values of Pa are expressed in 
percentage form, as they correspond directly to the 
number of problems in which there was acceptance 
of H0, out of 100 problems tested for each value of 
DS. The meaning and form of obtaining the values 
of CI, α, and β Average, shown in in Tables 9a-f will 
be explained in the following section.

Table 9a. Results for m = 3, n1 = n2 = 7.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 98 94 80 24 0 5.6 2 50
Chi-Squ 95 89 73 16 0 5.9 5 45
Uniform 97 92 77 20 0 6.6 3 47

Source: Prepared by the authors.

Table 9b. Results for m = 4, n1 = n2 = 8.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 97 94 78 51 12 2.3 3 59
Chi-Squ 96 93 78 50 11 2.3 4 58
Uniform 96 93 82 58 17 1.3 4 63

Source: Prepared by the authors.

Table 9c. Results for m = 5, n1 = n2 = 10.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 96 92 78 34 3 4.2 4 52
Chi-Squ 97 94 83 38 5 4.1 3 55
Uniform 95 92 84 39 4 3.4 5 55

Source: Prepared by the authors.

Table 9d. Results for m = 6, n1 = n2 = 12.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 90 94 71 28 6 4.3 10 50
Chi-Squ 92 96 77 38 7 3.5 8 55
Uniform 91 85 74 39 9 3.9 9 52

Source: Prepared by the authors.
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7 Analysis of the results and 
conclusions
The effectiveness of the tests was evaluated by 

risks α and β and the characteristic indicator of the 
power curve (CI).

Risk α for each configuration of problem (m, n1, n2) 
is given in percentage form in the respective Table 9 by 
the value (100- Pa) for the column DS=0, as the value 
of Pa corresponds, among the 100 trials conducted, to 
the number in which the test led to the right decision, 
i.e., accepting the H0 when it is true. Meanwhile, risk 
β, also in percentages, is given by the average of the 
values of Pa for all DS={0.2, 0.4 0.6, 0.8}, i.e., the 
probability of accepting H0 when it is not true (sample 
with a degree of symmetry other than zero).

The values of (Slope)0.50, for each configuration 
(m, n1, n2), were calculated using Equation 3. These 
three analysis parameters are shown in Table 10.

Analyzing risks α and β in Table 10, the chi-square 
tests has the lowest risk α of the three and risk β between 
the other two. However, regarding the CI indicator, it 
had the worst performance of the three.

The proposed test shows risks α and β, and the 
characteristic indicator (IC), similar to those of the 
exact test. This shows that both have a very similar 
performance.

Table 11 shows the number of problems that each 
test decided on correctly for the 3000 trials that took 
place. The exact test made the most right decisions 
(1753 times) while the proposed test had a slightly 
inferior performance to the other two.

This analysis allows us to conclude that the exact 
and proposed tests had very similar performances, 
and that the chi-square surpasses both, at least as an 
instrument for decision, when the null hypothesis 
is true. To a certain extent, this is an unexpected 
conclusion, when it comes to problems with small 
samples. In view of this, would the chi-square a valid 
alternative to the exact test?

Considering the example of the data in Table 12, 
this is not always the case. Applying the exact test to 
the data in this table, by the StatXact, ρ = 0.0013 is 
obtained, showing that the three samples do not belong 
to the same population. In turn, the chi-square gives 
a value of ρ= 0.1342, clearly showing that for small 

Table 9f. Results for m =8, n1 = n2 = 16.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 95 88 68 21 1 4.9 5 45
Chi-Squ 97 94 79 26 2 5.8 3 50
Uniform 91 91 72 32 5 3.9 9 50

Source: Prepared by the authors.

Table 9e. Results for m = 7, n1 = n2 = 14.

Teste Probability of acceptance (Pa) - Percentage CI and Risks (%)
DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 CI α β Average

Exact 90 94 67 32 3 3.5 10 49
Chi-Squ 95 95 73 42 3 2.7 5 53
Uniform 94 96 70 46 3 2.3 6 54

Source: Prepared by the authors.

Table 10. Summary of the parameters of evaluation of the 
effectiveness of the tests.

Parameter m
Test

Exact Chi-
square Uniform

Risk α (%)

3 2.0 5.0 3.0
4 3.0 4.0 4.0
5 4.0 3.0 5.0
6 10.0 8.0 9.0
7 10.0 5.0 6.0
8 5.0 3.0 9.0

Average 
value 5.7 4.7 6.0

Risk β 
average 

(%)

3 49.5 44.5 47.3
4 58.8 58.0 62.5
5 51.8 55.0 54.8
6 49.8 54.5 51.8
7 49.0 53.3 53.8
8 44.5 50.3 50.0

Average 
value 50.5 52.6 53.3

CI

3 5.9 6.6 5.6
4 2.3 1.3 2.3
5 4.1 3.4 4.2
6 3.5 2.9 4.3
7 2.7 2.3 3.5
8 5.8 3.9 4.9

Average 
value 3.9 3.1 4.1

Source: Prepared by the authors.
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samples with a strong imbalance, as in this example, 
this test does not work well. Table 5 provides another 
example of this phenomenon. Thus, its generalized use 
leads to unreliable decisions, explaining the need to 
seek alternative tests.

How does the proposed test behave with this type 
of sample?

To answer this question, it is initially necessary to 
observe that although the proposed test is intended for 
problems with two samples, it is also possible to solve 
problems with more samples. All that is required is to 
apply it to the different combinations of samples two by 
two. Applying the uniform test to the data in Table 12 
considering two samples at a time (observe that it is 
necessary to eliminate the columns that contain zeros 
in both samples), values are obtained for Dcal equal to 
1.959, 1.622 and 1.964 for the combinations A/B, A/C 
and B/C of samples, respectively. As the maximum 
value of Dcal is 2.0, the test indicates with a high 
degree of certainty that sample B is from a different 
population from the others, which the chi-square 
failed to identify.

If we now apply the proposed test to the data in 
Table 5, the values obtained for Dcal are equal to 
1.750, 1.556 and 2.000 for samples A/B, A/C and 
A/D, respectively. As Dα=0.01 =1.429, for m=3 (case 
of Table 4), it can be concluded, with a high degree 
of certainty, that Business Unit A has the most capable 
executives.

These two examples show that the best alternative 
to the exact test, which is very difficult to apply, is the 
proposed test rather than the chi-square. The latter, 
despite having shown a good performance in the set 
of tests, can fail in accordance with the instance of 
the problem.
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