Acessibilidade / Reportar erro

Minimizing the damage: a methodological proposal to remove the brains of anurans and squamates

ABSTRACT

The brain is one of the most important organs of vertebrates. Over the years, several studies have investigated brain features under different approaches, such as comparative morphology. Although many recent studies use non-invasive methods, such as micro-CT scan, some methods require access to the brain, such as histological analyses and cell count methods. In addition, several researchers do not have access to those expensive devices and rely on the traditional dissection to conduct their studies. Still, for most vertebrates, very few protocols are available for removing the brain, especially those committed to minimizing the damage to the specimen for further examinations. Here we describe in detail a method to dissect the brains of anurans and squamates maintaining the specimen’s external morphology as undamaged as possible. This simple method can be performed using few tools and can be achieved in the first trials, representing an incentive for more research on vertebrate’s brains. This method contributes to the maximum utilization of each animal collected, a positive practice from both ethical and practical perspectives.

KEYWORDS:
Comparative anatomy; herpetology; histology; neuroanatomy; soft anatomy

The brain has a vital role in understanding and shaping the perception of events in living organisms (Legendre et al., 1994Legendre, P.; Lapointe, F. J. & Casgrain, P. 1994. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487-1499. https://doi.org/10.1111/j.1558-5646.1994.tb02191.x
https://doi.org/10.1111/j.1558-5646.1994...
; Ito et al., 2007Ito, H.; Ishikawa, Y.; Yoshimoto, M. & Yamamoto, N. 2007. Diversity of brain morphology in teleosts: brain and ecological niche. Brain Behaviour and Evolution 69:76-86. https://doi.org/10.1159/000095196
https://doi.org/10.1159/000095196...
; Gonda et al., 2013Gonda, A.; Herczeg, G. & Merila, J. 2013. Evolutionary ecology of intraspecific brain size variation: a review. Ecology and Evolution 3:2751-2764. https://doi.org/10.1002/ece3.627
https://doi.org/10.1002/ece3.627...
). For this reason, it has always been the subject of interest in different fields in biology, such as evolution, developmental biology, ecology, and behaviour (e.g., Martin, 1981Martin, R. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57-60. https://doi.org/10.1038/293057a0
https://doi.org/10.1038/293057a0...
; Kiecker & Lumsden, 2005Kiecker, C. & Lumsden, A. 2005. Compartments and their boundaries in vertebrate brain development. Nature Reviews Neuroscience 6:553-564. https://doi.org/10.1038/nrn1702
https://doi.org/10.1038/nrn1702...
; Sugahara et al., 2017Sugahara, F.; Murakami, Y.; Pascual‐Anaya, J. & Kuratani, S. 2017. Reconstructing the ancestral vertebrate brain. Development, Growth & Differentiation 59:163-174. https://doi.org/10.1111/dgd.12347
https://doi.org/10.1111/dgd.12347...
).

Vertebrates have complex brains, which influence ecological and behavioural features of their lives (Amiel et al., 2011Amiel, J. J.; Tingley, R. & Shine, R. 2011. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS ONE 6(4):e18277. https://doi.org/10.1371/journal.pone.0018277
https://doi.org/10.1371/journal.pone.001...
; Powell et al., 2017Powell, L. E.; Isler, K. & Barton, R. A. 2017. Re-evaluating the link between brain size and behavioral ecology in primates. Proceedings of The Royal Society of London 284:20171765. https://doi.org/10.1098/rspb.2017.1765
https://doi.org/10.1098/rspb.2017.1765...
). Within vertebrates, amphibians exhibit a high diversity (8458 living species; Frost, 2022Frost, D. R. 2022. Amphibian Species of the World: an Online Reference. Version 6.1. New York, American Museum of Natural History. Available at https://amphibiansoftheworld.amnh.org/index.php . Accessed 11 April 2021.
https://amphibiansoftheworld.amnh.org/in...
) and several specializations that allowed them to pass from an aquatic to a terrestrial environment (Manzano et al., 2017Manzano, A. S.; Herrel, A.; Fabre, A. C. & Abdala, V. 2017. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. Journal of Anatomy 12613:1-20. https://doi.org/10.1111/joa.12613
https://doi.org/10.1111/joa.12613...
; Frost, 2022), such as tetrapod-limb movement (Manzano et al., 2017Manzano, A. S.; Herrel, A.; Fabre, A. C. & Abdala, V. 2017. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. Journal of Anatomy 12613:1-20. https://doi.org/10.1111/joa.12613
https://doi.org/10.1111/joa.12613...
). Additionally, anurans have high diversity of life histories and reproductive strategies, making it an interesting group to study the brain under a comparative approach (e.g., Taylor et al., 1995Taylor, G. M.; Nol, E. & Boire, D. 1995. Brain regions and encephalization in Anurans: Adaptation or Stability? Brain Behaviour and Evolution 45:96-109. https://doi.org/10.1159/000113543
https://doi.org/10.1159/000113543...
; Amiel et al., 2011Amiel, J. J.; Tingley, R. & Shine, R. 2011. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS ONE 6(4):e18277. https://doi.org/10.1371/journal.pone.0018277
https://doi.org/10.1371/journal.pone.001...
; Liao et al., 2015Liao, W. B.; Lou, S. L.; Zeng, Z. & Meril, J. 2015. Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. Journal of Evolutionary Biology 28:1986-1996. https://doi.org/10.1111/jeb.12714
https://doi.org/10.1111/jeb.12714...
).

Squamates also have high diversity in the number of species (ca. 11,000 species; Uetz et al., 2021Uetz, P.; Freed, P.; Aguilar, R. & Hošek, J. 2021. The Reptile Database. Available at http://www.reptile-database.org >. Accessed on 10 June 2021.
http://www.reptile-database.org...
) and lifestyles, including a wide range of behaviours, niche occupation, and locomotion modes (Pianka & Vitt, 2003Pianka, E. R. & Vitt, L. J. 2003. Lizards, windows to the evolution of diversity. Berkeley, University of California Press. 348p.; De Meester et al., 2019De Meester, G.; Huyghe, K. & Van Damme, R. 2019. Brain size, ecology, and sociality: a reptilian perspective. Biological Journal of the Linnean Society 126:381-391. https://doi.org/10.1093/biolinnean/bly206
https://doi.org/10.1093/biolinnean/bly20...
). Therefore, the study of squamate brain morphology can shed light on their ecological and behavioral adaptations (e.g., De Meesteret al., 2019De Meester, G.; Huyghe, K. & Van Damme, R. 2019. Brain size, ecology, and sociality: a reptilian perspective. Biological Journal of the Linnean Society 126:381-391. https://doi.org/10.1093/biolinnean/bly206
https://doi.org/10.1093/biolinnean/bly20...
; Macrí et al., 2019Macrì, S.; Savriama, Y.; Khan, I. & Di-Poï, N. 2019. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nature Communications 10:1-16. https://doi.org/10.1038/s41467-019-13405-w
https://doi.org/10.1038/s41467-019-13405...
) and contributes to a better understanding of the evolution of the brain over the evolutionary history of amniotes (Naumann et al., 2015Naumann, R. K.; Ondracek, J. M.; Reiter, S.; Shein-Idelson, M.; Tosches, M. A.; Yamawaki, T. M. & Laurent, G. 2015. The reptilian brain. Current Biology 25:317-321. https://doi.org/10.1016/j.cub.2015.02.049
https://doi.org/10.1016/j.cub.2015.02.04...
).

Studies regarding anuran and squamates nervous system increased in the last years, and we can easily find the undergoing process of brain dissection illustrated in some of their pictures. However, most of these works do not provide a detailed description of the process, especially how to maintain the specimen in good shape for further examinations (e.g., Mancera et al., 1991Mancera, J. M.; López Avalos, M. D.; Pérez-Fígares, J. M. & Fernfindez-Llebrez, P. 1991. The distribution of corticotropin-releasing factor-immunoreactive neurons and nerve fibers in the brain of the snake, Natrix maura. Cell and Tissue Research 264:539-548. https://doi.org/10.1007/BF00319043
https://doi.org/10.1007/BF00319043...
; Crews et al., 1993Crews, D.; Robker, R. & Mendonça, M. 1993. Seasonal fluctuations in brain nuclei in the red-sided garter snake and their hormonal control. Journal of Neuroscience 13:5356-5364. https://doi.org/10.1523/JNEUROSCI.13-12-05356.1993
https://doi.org/10.1523/JNEUROSCI.13-12-...
; Northcutt, 2013Northcutt, R. G. 2013. Variation in reptilian brains and cognition. Brain Behaviour and Evolution 82:45-54. https://doi.org/10.1159/000351996
https://doi.org/10.1159/000351996...
; Mai et al., 2016Mai, C. L.; Liao, J.; Zhao, L.; Liu, S. M. & Liao, W. B. 2016. Brain size evolution in the frog Fejervarya limnocharis supports neither the cognitive buffer nor the expensive brain hypothesis. Journal of Zoology 12432:1-10. https://doi.org/10.1111/jzo.12432
https://doi.org/10.1111/jzo.12432...
; Zeng et al., 2016Zeng, Y.; Lou, S. L.; Liao, W. B.; Jehle, R. & Kotrschal, A. 2016. Sexual selection impacts brain anatomy in frogs. Ecology and Evolution 6:7070-7079. https://doi.org/10.1002/ece3.2459
https://doi.org/10.1002/ece3.2459...
). This is also true in general reference books to study vertebrate comparative neuroanatomy (e.g., ten Donkelaar & Nicholson, 1998ten Donkelaar, H. J. & Nicholson, C. 1998. Notes on techniques. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, Vol 1. Berlin, Springer-Verlag Press , p. 327-355.; ten Donkelaar 1998aten Donkelaar, H. J. 1998a. Anurans. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, vol 2. Berlin, Springer-Verlag Press, p. 1151-1314.,bten Donkelaar, H. J. 1998b. Reptiles. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, Vol 2. Berlin, Springer-Verlag Press , p. 1315-1524.). This lack of protocol availability might increase the anatomical damage inflicted by researchers while learning dissection through a “trial and error process”, delaying their research and using more individuals to dissect than needed.

Another relevant issue is the infliction of widespread destruction to the specimen during brain removal, which precludes further studies such as the elucidation of taxonomic questions after the dissection. Thus, a method committed to minimizing the damage to the specimen would contribute to the maximum utilization of each animal collected, an extremely positive practice both from an ethical and practical perspective, optimizing the material available in zoological collections (Winker, 2000Winker, K. 2000. Obtaining, preserving, and preparing bird specimens. Journal of Field Ornithology 71:250-297. https://doi.org/10.1648/0273-8570-71.2.250
https://doi.org/10.1648/0273-8570-71.2.2...
). Here we describe a method to dissect anuran and squamate brains, focusing on maintaining the specimens as preserved as possible for taxonomic purposes and/or any further studies.

MATERIAL AND METHODS

We dissected 25 specimens from two Brazilian zoological collections (Appendix I Appendix I. Specimens examined Anurans. Aplastodiscus leucopygius (ZUFRJ 2106); Crossodacthylodes izecksohni (ZUFRJ 14331); Chiasmocleis carvalhoi (ZUFRJ 4435); Dendropsophus anceps (ZUFRJ 14269); Dendropsophus elegans (ZUFRJ 3809); Fritziana goeldii (ZUFRJ 16797); Haddadus binotatus (ZUFRJ 1081); Hylodes nasus (ZUFRJ 6252); Itapothyla langsdorfii (ZUFRJ 6801); Leptodactylus fuscus (ZUFRJ 11945); Proceratophrys boiei (ZUFRJ 14106); Phyllodytes luteolus (ZUFRJ 4656); Phyllomedusa burmeisteri (ZUFRJ 13564); Physalaemus signifer (ZUFRJ 997); Rhinella pygmea (ZUFRJ 2150); Stereocyclops parkeri (ZUFRJ 13277); Thoropa miliaris (ZUFRJ 181). Squamates. Bothrops moojeni (LACV 3834); Bothrops moojeni (LACV 3835); Epicrates crassus (LACV 3836); Philodryas olfersii (LACV 3837). ), Coleção de Anfíbios do Laboratório de Anfíbios e Répteis da Universidade Federal do Rio de Janeiro (ZUFRJ) and Coleção Didática do Laboratório de Anatomia Comparada de Vertebrados da Universidade de Brasília (UnB). We identified the snakes following Peters & Orejas-Miranda (1970Peters, J. A. & Orejas-Miranda, B. 1970. Catalogue of Neotropical Squamata Part I. Snakes. United States National Museum Bulletin 297:1-347.), Campbell & Lamar (2004Campbell, J. A. & Lamar, W. W. 2004. The venomous reptiles of the western hemisphere (Vol. 2). Ithaca, Comstock Pub Associates. 504 p.), and Passos & Fernandes (2008Passos, P. & Fernandes, R. 2008. Revision of the Epicrates cenchria complex (Serpentes: Boidae). Herpetological Monographs 22:1-30. https://doi.org/10.1655/06-003.1
https://doi.org/10.1655/06-003.1...
), whereas Harvey & Gutberlet (1998Harvey, M. B. & Gutberlet Jr, R. L. 1998. Lizards of the genus Tropidurus (Iguania: Tropiduridae) from the Serranía de Huanchaca, Bolivia: new species, natural history, and a key to the genus. Herpetologica:493-520.) and Harvey et al. (2012Harvey, M. B.; Ugueto, G. N. & Gutberlet Jr, R. L. 2012. Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa 3459:1-156. https://doi.org/10.11646/zootaxa.3459.1.1
https://doi.org/10.11646/zootaxa.3459.1....
) were used to identifying the lizards. The amphibians were identified following the recent literature on each group, according to Frost (2022Frost, D. R. 2022. Amphibian Species of the World: an Online Reference. Version 6.1. New York, American Museum of Natural History. Available at https://amphibiansoftheworld.amnh.org/index.php . Accessed 11 April 2021.
https://amphibiansoftheworld.amnh.org/in...
). We measured the snout-vent length (SVL) of all specimens of anurans and lizards with a digital caliper to the nearest 0.01 mm, while snakes were measured with a flexible ruler to the nearest 1.0 mm.

We dissected 18 anurans representatives of the families Bufonidae, Craugastoridae, Cycloramphidae, Hemiphractidae, Hylidae, Hylodidae, Leptodactylidae, Microhylidae, and Odontophrynidae (Appendix I Appendix I. Specimens examined Anurans. Aplastodiscus leucopygius (ZUFRJ 2106); Crossodacthylodes izecksohni (ZUFRJ 14331); Chiasmocleis carvalhoi (ZUFRJ 4435); Dendropsophus anceps (ZUFRJ 14269); Dendropsophus elegans (ZUFRJ 3809); Fritziana goeldii (ZUFRJ 16797); Haddadus binotatus (ZUFRJ 1081); Hylodes nasus (ZUFRJ 6252); Itapothyla langsdorfii (ZUFRJ 6801); Leptodactylus fuscus (ZUFRJ 11945); Proceratophrys boiei (ZUFRJ 14106); Phyllodytes luteolus (ZUFRJ 4656); Phyllomedusa burmeisteri (ZUFRJ 13564); Physalaemus signifer (ZUFRJ 997); Rhinella pygmea (ZUFRJ 2150); Stereocyclops parkeri (ZUFRJ 13277); Thoropa miliaris (ZUFRJ 181). Squamates. Bothrops moojeni (LACV 3834); Bothrops moojeni (LACV 3835); Epicrates crassus (LACV 3836); Philodryas olfersii (LACV 3837). ). The anurans’ snout-vent length (SVL) varied from 13.5 mm to 67.2 mm. We also dissected four species of snakes: Bothrops moojeni Hoge, 1966 (Viperidae), Epicrates crassus Cope, 1862 (Boidae), Philodryas patagoniensis (Girard, 1858), and Philodryas olfersii (Lichtenstein, 1823) (Dipsadidae), which varied from 500 mm to 1,070 mm SVL; and two lizards, one Ameiva ameiva (Linnaeus, 1758) (Teiidae), SVL = 129.88 mm, and one Tropidrurus aff. torquatus (Wied-Neuwied, 1820) (Tropiduridae), SVL = 103.5 mm (Appendix I Appendix I. Specimens examined Anurans. Aplastodiscus leucopygius (ZUFRJ 2106); Crossodacthylodes izecksohni (ZUFRJ 14331); Chiasmocleis carvalhoi (ZUFRJ 4435); Dendropsophus anceps (ZUFRJ 14269); Dendropsophus elegans (ZUFRJ 3809); Fritziana goeldii (ZUFRJ 16797); Haddadus binotatus (ZUFRJ 1081); Hylodes nasus (ZUFRJ 6252); Itapothyla langsdorfii (ZUFRJ 6801); Leptodactylus fuscus (ZUFRJ 11945); Proceratophrys boiei (ZUFRJ 14106); Phyllodytes luteolus (ZUFRJ 4656); Phyllomedusa burmeisteri (ZUFRJ 13564); Physalaemus signifer (ZUFRJ 997); Rhinella pygmea (ZUFRJ 2150); Stereocyclops parkeri (ZUFRJ 13277); Thoropa miliaris (ZUFRJ 181). Squamates. Bothrops moojeni (LACV 3834); Bothrops moojeni (LACV 3835); Epicrates crassus (LACV 3836); Philodryas olfersii (LACV 3837). ).

All specimens were ultimately preserved in ethanol 70%. However, since we could not access the steps before being soaked in 70% ethanol, all individuals were fully immersed in 10% formaldehyde solution for 24 hours before the dissection, ensuring that the brain would be appropriately fixed, i.e., harder to damage and consistent enough to manipulate. For applying the proposed method, the following items and solutions are required: 10% formaldehyde, 4% formaldehyde, scalpel, microsurgery scissors, and a small clamp.

The anatomical nomenclature of brain parts follows Butler & Hodos (2005Butler, A. B. & Hodos, W. 2005. Comparative vertebrate neuroanatomy: evolution and adaptation. New Jersey, John Wiley & Sons. 744p.) for anurans and Platel (1976Platel, R. 1976. Analyse volumetrique comparée des principales subdivisions encéphaliques chez les reptiles sauriens. Journal für Hirnforschung 17:513-517.) for squamates. The anatomical terminology of bone structures follows Trueb et al. (1993Trueb, L.; Hanken, J. & Hall, B. K. 1993. Patterns of cranial diversity among the Lissamphibia. The Skull 2:255-343.) for anurans and Rieppel & Zaher (2001Rieppel, O. & Zaher, H. 2001. The development of the skull in Acrochordus granulatus (Schneider) (Reptilia: Serpentes), with special consideration of the otico-occipital complex. Journal of Morphology 249(3):252-266. https://doi.org/10.1002/jmor.1053
https://doi.org/10.1002/jmor.1053...
) and Evans (2008Evans, S. E. 2008. The Skull of Lizards and Tuatara. In: Gans, C.; Gaunt, A. S. & Adler, K. eds. Biology of the Reptilia, 20ed. New York, Society for the Study of Amphibians and Reptiles, p. 1-347. ) for squamates.

RESULTS

Dissection protocol for anurans

1) Immerge the individual in 10% formaldehyde solution for 24 hours before the dissection.

2) After 24 hours immersed in the solution, put the frog in dorsal view, and cut its skin using a scalpel in cross orientation. The sagittal cut of the cross should start at the level of the arms toward the tip of the nostrils. The transversal cut must be done from the posterior border of one tympanum toward the other tympanum (Figs 1, 2). If the specimen has no external tympanum, the transversal cut must be done in the medial region between the eyes and the arms.

Figs 1-6,
Step-by-step dissection of an anuran brain: 1, specimen condition before the dissection; 2, cross-section cuts; 3, lifting the skin; 4, bones cut off surrounding the brain; 5, bones cut off straightly toward the nostrils; 6, exposed brain. The red dots represent the points of insertion of the scissors. The arrows in figures 3 and 4 represent the direction of the movement. The arrow in figure 6 represents the medulla oblongata.

3) Carefully lift the two anterior portions, i.e., those closest to the nostrils, almost completely detaching the skin from the muscles but leaving it attached to the region close to the maxilla (Fig. 3). With the same purpose, slightly separate the skin from the muscles of the posterior portion of the sagittal section. The released skin can be folded laterally between the muscles and the skin itself (Fig. 3). In most species, when this step is completed, it is possible to see the brain through the bones of the top of the head (Fig. 3).

4) Using microsurgery scissors, make an incision in the posterior portion of the medulla oblongata, piercing the bones (Fig. 4). If one cannot precisely determine its position, make the incision in the posterior region of the head, at the most posterior level of arms insertion.

5) Cut the bones surrounding the brain from the incision made at the previous step following the sagittal/medial plane (Fig. 4). Since the anterior portion of the brain, i.e., the olfactory bulb, is more difficult to visualize through the bones, continue to cut until the tip of the nostrils. If one cannot precisely determine the brain contours, cut the bones from the incision made in the previous step in a straight line toward the nostrils (Fig. 5). In both cases, the scissors must be constantly pointed up, i.e., to the outside, to prevent damage to the brain. After that, gently remove the loose bones, exposing the brain (Fig. 6).

6) Cut the spinal cord at the posterior portion of the medulla oblongata (Fig. 6), separating the brain from the rest of the medulla. After that, finish the release by gently passing a tweezer between the brain and the bones of the bottom of the braincase, cutting the brain nerves attached to it. This step requires special attention when releasing the olfactory bulb due to its fragility. Finally, smoothly remove the brain with the tweezer.

7) When the dissection is completed, return the skin to its original position, covering the empty braincase.

Dissection protocol for Squamata (Lizards and Snakes)

1) Immerge the individual in 10% formaldehyde solution for 24 hours before the dissection.

2) After 24 hours immersed in the solution, put the specimen in dorsal view and cut its skin using a scalpel in cross-orientation. Start by making a sagittal section from the upper edge of the rostral scale toward the occipital scales (Fig. 7). The cut should extend to the back of the head, at the level of the quadrate pivot point. The transversal cut must be done at the level of the posterior edge of the orbits, extending throughout the dorsum of the head (Fig. 8).

Figs 7-11,
Step-by-step dissection of a snake brain: 7, sagittal cut from the upper edge of the rostral scale toward the occipital scales; 8, transversal cut from the posterior edge of the supraocular scale toward the other supraocular scale; 9, lifting the skin. The junction of the frontal bone with the parietal is highlighted, and the red dot represents the point of the insertion of the scissors; 10, bones cut off straightly toward following the sagittal/medial plane; 11, exposed brain. The arrow in figure 7 is pointing to the square bone. The arrow in figure 10 represents the direction of the movement. The arrow in figure 11 represents the medulla oblongata.

3) With the aid of a surgical spatula, carefully release the skin from the musculature, avoiding damaging the scales. Then, loosen all visible muscles with the assistance of a tweezer, exposing the bones (Fig. 9). One can now visualize the nasal, prefrontal, frontal, parietal, and supratemporal bones. In specimens with no very dense ossification, one can notice the brain through the bones (e.g., snake genera Bothrops and Philodryas).

4) Using the microsurgery scissors, make an incision starting on the superior part of the orbit, at the junction of the frontal bone with the parietal (Fig. 9).

5) With scissors facing upwards, cut the bones mentioned in the second step by the previously done incision, following the sagittal/medial plane (Fig. 10). In species with dense ossification (e.g., Boidae), pliers can be used, except to cut the nasal bone, which should be done using scissors because of its proximity to the fragile olfactory bulbs. When the brain is finally exposed, remove the loose bone portions.

6) Cut the spinal cord at the posterior portion of the medulla oblongata, separating the brain from the rest of the medulla (Fig. 10). Then, finish the release by gently passing a tweezer between the brain and the bones of the bottom of the braincase, cutting the brain nerves attached to it. This step also requires special attention when releasing the olfactory bulb due to its fragility. Finally, smoothly remove the brain (Fig. 11) with the tweezer.

7) When the dissection is completed, return the skin to its original position, covering the empty braincase.

DISCUSSION

Special cases. Many anuran species have co-ossified bones (sensuTrueb, 1973Trueb, L. 1973. Bones, frogs, and evolution. In: Vial, J. L. ed. Evolutionary biology of the anurans: contemporary research on major problems. Columbia, University of Missouri Press, p. 65-132.), with the skin fused to the bones of the head, such as Brachycephalus ephippium (Spix, 1824), Itapotihyla langsdorffii (Duméril & Bibron, 1841), and Nyctimantis brunoi (Miranda-Ribeiro, 1920). For these species, this method has a limitation caused by the impossibility of detaching the skin from the bones, preventing the visualization of the brain as described in the third and fourth steps. The impossibility of seeing the brain through the bones muddles the precise incision of the scissors posteriorly to the medulla oblongata. Therefore, dissecting these species’ brains requires a more invasive approach, starting the cutting directly from the back of their head toward the nostrils. Besides, since they have thicker bones, dissection demands more robust scissors, like those used to cut nails or pliers. In these specimens, it is also not possible to keep the skin covering the empty braincase at the end of the process, leaving a small hole at the top of their head.

For squamates, the disposition of the head scales can be used for identification at the level of family and genus (e.g., Campbell & Lamar, 2004Campbell, J. A. & Lamar, W. W. 2004. The venomous reptiles of the western hemisphere (Vol. 2). Ithaca, Comstock Pub Associates. 504 p.; Giri et al., 2019Giri, V. B.; Gower, D. J.; Das, A.; Lalremsanga, H. T.; Lalronunga, S.; Captain, A.; Deepak, V. 2019. A new genus and species of natricine snake from northeast India. Zootaxa 4603:241-264. https://doi.org/10.11646/zootaxa.4603.2.2
https://doi.org/10.11646/zootaxa.4603.2....
; Peter & Orejas-Miranda, 1970), while the head shape may provide morphometric data to detect sexual dimorphism, ontogenetic and static allometry (e.g.,Abegg et al. 2020Abegg, A. D.; Passos, P.; Mario-da-Rosa, C.; dos Santos Azevedo, W.; Malta-Borges, L. & de Moura Bubadué, J. 2020. Sexual dimorphism, ontogeny and static allometry of a semi-fossorial snake (genus Atractus). Zoologischer Anzeiger 287:95-104. https://doi.org/10.1016/j.jcz.2020.05.008
https://doi.org/10.1016/j.jcz.2020.05.00...
; Murta-Fonseca & Fernandes 2016Murta-Fonseca, R. A. & Fernandes, D. S. 2016. The skull of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854) (Serpentes: Dipsadidae) as a model of snake ontogenetic allometry inferred by geometric morphometrics. Zoomorphology 135:233-241.). Although our method maintains the external morphology well preserved, we suggest researchers evaluate each case before the dissection. Some lizards also have their head skin close or fused to the bones, such as Ameiva ameiva (Linnaeus, 1758), or scales underlain by bony plates (osteoderms), such as the families Anguidae, Diploglossidae, Scincidae, and others (Williams et al., 2022Williams, C.; Kirby, A.; Marghoub, A.; Kéver, L.; Ostashevskaya‐Gohstand, S.; Bertazzo, S.; Arkhat, A. M.; Herrel, A.; Evans, S. E. & Vickaryous, M. 2022. A review of the osteoderms of lizards (Reptilia: Squamata). Biological Reviews 97:1-19. ). In those cases, the squamate protocol shows the same limitations and solutions as those aforementioned for anurans with co-ossified skulls.

Conclusions. We describe a dissection protocol of brain extraction in anurans and squamates for the first time, preserving the specimen as undamaged as possible. This protocol has been successfully performed for comparative studies and can be conducted using simple tools, usually available in zoological museums and scientific collections. Our method is a suitable alternative for institutions that do not have access to image processing equipment, such as computed tomography (CT and micro-CT scan), and to approaches that depend on direct access to the organ and cannot be replaced by digital endocasts, such as histological information (e.g., Palci et al., 2019Palci, A.; Seymour, R. S.; Van Nguyen, C.; Hutchinson, M. N.; Lee, M. S. & Sanders, K. L. 2019. Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology. Royal Society Open Science:191099. https://doi.org/10.1098/rsos.191099
https://doi.org/10.1098/rsos.191099...
), cell counting methods (Herculano-(Houzel & Lent, 2007Herculano-Houzel, S. & Lent, R. 2005. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. The Journal of Neuroscience 25:2518-2521. https://doi.org/10.1523/JNEUROSCI.4526-04.2005
https://doi.org/10.1523/JNEUROSCI.4526-0...
), and other researches involving specific internal morphological features of the brain (de Schotten et al., 2019de Schotten, M. T.; Croxson, P. L. & Mars, R. B. 2019. Large-scale comparative neuroimaging: where are we and what do we need? Cortex 118:188-202. https://doi.org/10.1016/j.cortex.2018.11.028
https://doi.org/10.1016/j.cortex.2018.11...
).

By following our method, the brain can be removed in good shape, and the overall condition of the specimen will still be useful for most studies based on external morphology. This new protocol allows reconciling invasive studies with the maximum preservation of the specimen, maximizing the usefulness of each animal collected. Such a perspective can make material already deposited in the herpetological collections more accessible, significantly increasing the diversity of species available for future studies of the brain of amphibians and reptiles.

Acknowledgements

We thank Fábio Hepp for comments to the improvement of the manuscript. We also thank M.R. Gomes for providing access to the ZUFRJ collection. AMB thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) #200.398/2020 for scholarships. NC thanks AR Martins for access to the LACV-UnB collection and CAPES #88882.384453/2019-01 for scholarship.

REFERENCES

  • Abegg, A. D.; Passos, P.; Mario-da-Rosa, C.; dos Santos Azevedo, W.; Malta-Borges, L. & de Moura Bubadué, J. 2020. Sexual dimorphism, ontogeny and static allometry of a semi-fossorial snake (genus Atractus). Zoologischer Anzeiger 287:95-104. https://doi.org/10.1016/j.jcz.2020.05.008
    » https://doi.org/10.1016/j.jcz.2020.05.008
  • Amiel, J. J.; Tingley, R. & Shine, R. 2011. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS ONE 6(4):e18277. https://doi.org/10.1371/journal.pone.0018277
    » https://doi.org/10.1371/journal.pone.0018277
  • Butler, A. B. & Hodos, W. 2005. Comparative vertebrate neuroanatomy: evolution and adaptation. New Jersey, John Wiley & Sons. 744p.
  • Campbell, J. A. & Lamar, W. W. 2004. The venomous reptiles of the western hemisphere (Vol. 2). Ithaca, Comstock Pub Associates. 504 p.
  • Crews, D.; Robker, R. & Mendonça, M. 1993. Seasonal fluctuations in brain nuclei in the red-sided garter snake and their hormonal control. Journal of Neuroscience 13:5356-5364. https://doi.org/10.1523/JNEUROSCI.13-12-05356.1993
    » https://doi.org/10.1523/JNEUROSCI.13-12-05356.1993
  • De Meester, G.; Huyghe, K. & Van Damme, R. 2019. Brain size, ecology, and sociality: a reptilian perspective. Biological Journal of the Linnean Society 126:381-391. https://doi.org/10.1093/biolinnean/bly206
    » https://doi.org/10.1093/biolinnean/bly206
  • Evans, S. E. 2008. The Skull of Lizards and Tuatara. In: Gans, C.; Gaunt, A. S. & Adler, K. eds. Biology of the Reptilia, 20ed. New York, Society for the Study of Amphibians and Reptiles, p. 1-347.
  • Frost, D. R. 2022. Amphibian Species of the World: an Online Reference. Version 6.1. New York, American Museum of Natural History. Available at https://amphibiansoftheworld.amnh.org/index.php Accessed 11 April 2021.
    » https://amphibiansoftheworld.amnh.org/index.php
  • Giri, V. B.; Gower, D. J.; Das, A.; Lalremsanga, H. T.; Lalronunga, S.; Captain, A.; Deepak, V. 2019. A new genus and species of natricine snake from northeast India. Zootaxa 4603:241-264. https://doi.org/10.11646/zootaxa.4603.2.2
    » https://doi.org/10.11646/zootaxa.4603.2.2
  • Gonda, A.; Herczeg, G. & Merila, J. 2013. Evolutionary ecology of intraspecific brain size variation: a review. Ecology and Evolution 3:2751-2764. https://doi.org/10.1002/ece3.627
    » https://doi.org/10.1002/ece3.627
  • Harvey, M. B. & Gutberlet Jr, R. L. 1998. Lizards of the genus Tropidurus (Iguania: Tropiduridae) from the Serranía de Huanchaca, Bolivia: new species, natural history, and a key to the genus. Herpetologica:493-520.
  • Harvey, M. B.; Ugueto, G. N. & Gutberlet Jr, R. L. 2012. Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa 3459:1-156. https://doi.org/10.11646/zootaxa.3459.1.1
    » https://doi.org/10.11646/zootaxa.3459.1.1
  • Herculano-Houzel, S. & Lent, R. 2005. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. The Journal of Neuroscience 25:2518-2521. https://doi.org/10.1523/JNEUROSCI.4526-04.2005
    » https://doi.org/10.1523/JNEUROSCI.4526-04.2005
  • Ito, H.; Ishikawa, Y.; Yoshimoto, M. & Yamamoto, N. 2007. Diversity of brain morphology in teleosts: brain and ecological niche. Brain Behaviour and Evolution 69:76-86. https://doi.org/10.1159/000095196
    » https://doi.org/10.1159/000095196
  • Kiecker, C. & Lumsden, A. 2005. Compartments and their boundaries in vertebrate brain development. Nature Reviews Neuroscience 6:553-564. https://doi.org/10.1038/nrn1702
    » https://doi.org/10.1038/nrn1702
  • Legendre, P.; Lapointe, F. J. & Casgrain, P. 1994. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487-1499. https://doi.org/10.1111/j.1558-5646.1994.tb02191.x
    » https://doi.org/10.1111/j.1558-5646.1994.tb02191.x
  • Liao, W. B.; Lou, S. L.; Zeng, Z. & Meril, J. 2015. Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. Journal of Evolutionary Biology 28:1986-1996. https://doi.org/10.1111/jeb.12714
    » https://doi.org/10.1111/jeb.12714
  • Macrì, S.; Savriama, Y.; Khan, I. & Di-Poï, N. 2019. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nature Communications 10:1-16. https://doi.org/10.1038/s41467-019-13405-w
    » https://doi.org/10.1038/s41467-019-13405-w
  • Mai, C. L.; Liao, J.; Zhao, L.; Liu, S. M. & Liao, W. B. 2016. Brain size evolution in the frog Fejervarya limnocharis supports neither the cognitive buffer nor the expensive brain hypothesis. Journal of Zoology 12432:1-10. https://doi.org/10.1111/jzo.12432
    » https://doi.org/10.1111/jzo.12432
  • Mancera, J. M.; López Avalos, M. D.; Pérez-Fígares, J. M. & Fernfindez-Llebrez, P. 1991. The distribution of corticotropin-releasing factor-immunoreactive neurons and nerve fibers in the brain of the snake, Natrix maura Cell and Tissue Research 264:539-548. https://doi.org/10.1007/BF00319043
    » https://doi.org/10.1007/BF00319043
  • Manzano, A. S.; Herrel, A.; Fabre, A. C. & Abdala, V. 2017. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. Journal of Anatomy 12613:1-20. https://doi.org/10.1111/joa.12613
    » https://doi.org/10.1111/joa.12613
  • Martin, R. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57-60. https://doi.org/10.1038/293057a0
    » https://doi.org/10.1038/293057a0
  • Murta-Fonseca, R. A. & Fernandes, D. S. 2016. The skull of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854) (Serpentes: Dipsadidae) as a model of snake ontogenetic allometry inferred by geometric morphometrics. Zoomorphology 135:233-241.
  • Naumann, R. K.; Ondracek, J. M.; Reiter, S.; Shein-Idelson, M.; Tosches, M. A.; Yamawaki, T. M. & Laurent, G. 2015. The reptilian brain. Current Biology 25:317-321. https://doi.org/10.1016/j.cub.2015.02.049
    » https://doi.org/10.1016/j.cub.2015.02.049
  • Northcutt, R. G. 2013. Variation in reptilian brains and cognition. Brain Behaviour and Evolution 82:45-54. https://doi.org/10.1159/000351996
    » https://doi.org/10.1159/000351996
  • Palci, A.; Seymour, R. S.; Van Nguyen, C.; Hutchinson, M. N.; Lee, M. S. & Sanders, K. L. 2019. Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology. Royal Society Open Science:191099. https://doi.org/10.1098/rsos.191099
    » https://doi.org/10.1098/rsos.191099
  • Passos, P. & Fernandes, R. 2008. Revision of the Epicrates cenchria complex (Serpentes: Boidae). Herpetological Monographs 22:1-30. https://doi.org/10.1655/06-003.1
    » https://doi.org/10.1655/06-003.1
  • Peters, J. A. & Orejas-Miranda, B. 1970. Catalogue of Neotropical Squamata Part I. Snakes. United States National Museum Bulletin 297:1-347.
  • Pianka, E. R. & Vitt, L. J. 2003. Lizards, windows to the evolution of diversity. Berkeley, University of California Press. 348p.
  • Platel, R. 1976. Analyse volumetrique comparée des principales subdivisions encéphaliques chez les reptiles sauriens. Journal für Hirnforschung 17:513-517.
  • Powell, L. E.; Isler, K. & Barton, R. A. 2017. Re-evaluating the link between brain size and behavioral ecology in primates. Proceedings of The Royal Society of London 284:20171765. https://doi.org/10.1098/rspb.2017.1765
    » https://doi.org/10.1098/rspb.2017.1765
  • Rieppel, O. & Zaher, H. 2001. The development of the skull in Acrochordus granulatus (Schneider) (Reptilia: Serpentes), with special consideration of the otico-occipital complex. Journal of Morphology 249(3):252-266. https://doi.org/10.1002/jmor.1053
    » https://doi.org/10.1002/jmor.1053
  • de Schotten, M. T.; Croxson, P. L. & Mars, R. B. 2019. Large-scale comparative neuroimaging: where are we and what do we need? Cortex 118:188-202. https://doi.org/10.1016/j.cortex.2018.11.028
    » https://doi.org/10.1016/j.cortex.2018.11.028
  • Sugahara, F.; Murakami, Y.; Pascual‐Anaya, J. & Kuratani, S. 2017. Reconstructing the ancestral vertebrate brain. Development, Growth & Differentiation 59:163-174. https://doi.org/10.1111/dgd.12347
    » https://doi.org/10.1111/dgd.12347
  • Taylor, G. M.; Nol, E. & Boire, D. 1995. Brain regions and encephalization in Anurans: Adaptation or Stability? Brain Behaviour and Evolution 45:96-109. https://doi.org/10.1159/000113543
    » https://doi.org/10.1159/000113543
  • ten Donkelaar, H. J. 1998a. Anurans. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, vol 2. Berlin, Springer-Verlag Press, p. 1151-1314.
  • ten Donkelaar, H. J. 1998b. Reptiles. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, Vol 2. Berlin, Springer-Verlag Press , p. 1315-1524.
  • ten Donkelaar, H. J. & Nicholson, C. 1998. Notes on techniques. In: Nieuwenhuys, R.; ten Donkelaar, H. J. & Nicholson, C. eds. The Central Nervous System of Vertebrates, Vol 1. Berlin, Springer-Verlag Press , p. 327-355.
  • Trueb, L. 1973. Bones, frogs, and evolution. In: Vial, J. L. ed. Evolutionary biology of the anurans: contemporary research on major problems. Columbia, University of Missouri Press, p. 65-132.
  • Trueb, L.; Hanken, J. & Hall, B. K. 1993. Patterns of cranial diversity among the Lissamphibia. The Skull 2:255-343.
  • Uetz, P.; Freed, P.; Aguilar, R. & Hošek, J. 2021. The Reptile Database. Available at http://www.reptile-database.org >. Accessed on 10 June 2021.
    » http://www.reptile-database.org
  • Williams, C.; Kirby, A.; Marghoub, A.; Kéver, L.; Ostashevskaya‐Gohstand, S.; Bertazzo, S.; Arkhat, A. M.; Herrel, A.; Evans, S. E. & Vickaryous, M. 2022. A review of the osteoderms of lizards (Reptilia: Squamata). Biological Reviews 97:1-19.
  • Winker, K. 2000. Obtaining, preserving, and preparing bird specimens. Journal of Field Ornithology 71:250-297. https://doi.org/10.1648/0273-8570-71.2.250
    » https://doi.org/10.1648/0273-8570-71.2.250
  • Zeng, Y.; Lou, S. L.; Liao, W. B.; Jehle, R. & Kotrschal, A. 2016. Sexual selection impacts brain anatomy in frogs. Ecology and Evolution 6:7070-7079. https://doi.org/10.1002/ece3.2459
    » https://doi.org/10.1002/ece3.2459

Appendix I.

Specimens examined

Anurans. Aplastodiscus leucopygius (ZUFRJ 2106); Crossodacthylodes izecksohni (ZUFRJ 14331); Chiasmocleis carvalhoi (ZUFRJ 4435); Dendropsophus anceps (ZUFRJ 14269); Dendropsophus elegans (ZUFRJ 3809); Fritziana goeldii (ZUFRJ 16797); Haddadus binotatus (ZUFRJ 1081); Hylodes nasus (ZUFRJ 6252); Itapothyla langsdorfii (ZUFRJ 6801); Leptodactylus fuscus (ZUFRJ 11945); Proceratophrys boiei (ZUFRJ 14106); Phyllodytes luteolus (ZUFRJ 4656); Phyllomedusa burmeisteri (ZUFRJ 13564); Physalaemus signifer (ZUFRJ 997); Rhinella pygmea (ZUFRJ 2150); Stereocyclops parkeri (ZUFRJ 13277); Thoropa miliaris (ZUFRJ 181).

Squamates. Bothrops moojeni (LACV 3834); Bothrops moojeni (LACV 3835); Epicrates crassus (LACV 3836); Philodryas olfersii (LACV 3837).

Publication Dates

  • Publication in this collection
    01 July 2022
  • Date of issue
    2022

History

  • Received
    19 Aug 2021
  • Accepted
    13 Apr 2022
Museu de Ciências Naturais Museu de Ciências Naturais, Secretária do Meio Ambiente e Infraestrutura, Rua Dr. Salvador França, 1427, Jardim Botânico, 90690-000 - Porto Alegre - RS - Brasil, Tel.: + 55 51- 3320-2039 - Porto Alegre - RS - Brazil
E-mail: iheringia-zoo@fzb.rs.gov.br