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   melogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that show both clinical and genetic
heterogeneity. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and
protein content. Enamel formation requires the expression of multiple genes that transcribes matrix proteins and proteinases
needed to control the complex process of crystal growth and mineralization. The AI phenotypes depend on the specific gene
involved, the location and type of mutation, and the corresponding putative change at the protein level. Different inheritance
patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported. Mutations in the amelogenin,
enamelin, and kallikrein-4 genes have been demonstrated to result in different types of AI and a number of other genes critical
to enamel formation have been identified and proposed as candidates for AI. The aim of this article was to present an
evaluation of the literature regarding role of proteins and proteinases important to enamel formation and mutation associated
with AI.
Uniterms: Amelogenesis imperfecta; Mutation; Enamel protease; Enamel proteinase.

  melogênese imperfeita é um grupo de doenças hereditárias que causa defeito na formação esmalte dental e mostra
heterogeneidade clínica e genética. O esmalte é afetado com alta variabilidade, desde deficiência na formação do esmalte até
defeitos no conteúdo mineral e protéico. A formação do esmalte requer a expressão de múltiplos genes que transcrevem
proteínas e proteinases importantes para controlar o complexo processo de crescimento dos cristais e mineralização. O fenótipo
da AI depende do gene envolvido, sua localização e tipo de mutação, e a conseqüente alteração na proteína. Diferentes
padrões hereditários com ligado ao X, autossômico dominante e autossômico recessivo já foram descritos. Mutações nos
genes correspondentes da amelogenina, enamelina, e calicreína-4 demonstraram resultar em diferentes tipos de AI. Outros
genes críticos para formação do esmalte estão sendo identificados como candidatos a causar AI. O objetivo desse artigo foi
investigar na literatura o papel de proteínas e proteinases importantes para formação do esmalte e mutações associadas a AI.
Unitermos: Amelogênese imperfeita; Mutações; Proteínas do esmalte.

INTRODUCTION

Dental enamel, the most highly mineralized structure in
the human body, is formed within a unique, extracellular
matrix derived through the synthesis and secretion of
proteins by the ameloblast cells. Dental enamel differs from
other mineralized tissues, such as bone, cartilage and dentine,
in that it is noncollagenous, originated from epithelium, and
does not undergo resorption and remodeling16.

Dental enamel formation is divided into secretory,
transition, and maturation stages56. During the secretory
stage, enamel crystals grow primarily in length. The
crystallites lengthen at a mineralization front formed near
the secretory surfaces of the ameloblast cell. During the
maturation stage, mineral is deposited exclusively on the
sides of the crystallites, which grow in width and thickness
to coalesce with adjacent crystals. The arrangement of ions
in dental enamel crystals closely approximates that of
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calcium hydroxyapatite. Sketched out in the protein matrix,
the hidroxyapatite crystal architecture continues to grow in
width and thickness due to a progressive protein
hydrolysis56.

The deposition of enamel crystals is encoded in the
genetic blueprint, whose instructions are mediated by the
activities of proteins56. The main structural proteins in
forming enamel are amelogenin, ameloblastin, and enamelin.
These proteins are proteolytically cleaved following their
secretion. Some of the cleavage products accumulate in the
enamel layer, while others are either degraded or reabsorbed
by ameloblasts56.

During the secretory stage, enamel proteins are being
secreted along with proteases, creating a complex mixture
of enamel matrix constituents. During the transition stage
there is an increase in proteolytic activity, and in maturation
stage the accumulated enamel proteins nearly disappear from
the matrix. The selective proteolysis of enamel proteins is a
major factor in determining the make-up/composition of the
enamel matrix56. It is not difficult to understand that changes
in enzymatic protein degradation by the genetic defects of
proteins or proteinases can result in the pathological
changes during the enamel formation39.

AMELOGENESIS IMPERFECTA

Amelogenesis imperfecta (AI) is a group of inherited
defects of dental enamel formation that show both clinical
and genetic heterogeneity49. In its mildest form, AI causes
discoloration, while in the most severe presentation the
enamel is hypomineralized causing it to be abraded from the
teeth shortly after their emergence into the mouth63. Both
the primary and permanent dentitions were affected. Enamel
findings in AI are highly variable, ranging from deficient
enamel formation to defects in the mineral and protein
content46. The four main types of AI were described as
follows: hipoplastic, hypomineralized, hypomaturation and
with taurodontism11.

The AI phenotypes vary widely depending on the
specific gene involved, the location and type of mutation,
and the corresponding putative change at the protein level27.
Different inheritance patterns such as X-linked, autosomal
dominant and autosomal recessive types have been reported
and 14 subtypes of AI were recognized39.

The distribution of AI types is known to vary in different
populations46, suggesting allele frequency differences
between ethnics9. The combined prevalence of all forms of
AI has been reported as 1:14000 in the U.S.62, 1:8000 in Israel9

and 1:4000 in Sweden58. The autosomal dominant AI is most
prevalent in the United States and Europe, as is the
autosomal recessive AI in the Middle East9, 62. Different
mutations in genes that transcribe principal matrix proteins
and proteinases of enamel have been associated with
different phenotype of AI.

AMELOGENIN

Amelogenin, the protein product of the AMELX Xq22

and AMELY Yp11 genes, is considered to be critical for
normal enamel thickness and structure15. Amelogenin is the
most abundant, accounting for more than 90% of total
enamel protein16, while ameloblastin and enamelin account
for about 5% and 2% of total protein, respectively56. It is
initially secreted by ameloblasts, as a 25-kDa nascent protein,
which has a high degree of polarity determined by its highly
hydrophilic C terminal teleopeptide. The teleopeptide seems
to be processed rapidly by specific endoproteinases and/or
carboxy-proteinases to form a 23-kDa amelogenin molecule
intermediate17. A 20-kDa amelogenin stable form results from
either transient 23-kDa intermediates or a single cleavage of
25-kDa parent amelogenins15. The accumulation of 20-kDa
amelogenin in enamel indicates a relative slowdown in further
protein hydrolysis51. This fragment is cleaved to produce
both an insoluble tyrosine rich amelogenin peptide (TRAP)
and a soluble 13-kDa fragment51. Therefore, amelogenin is
degraded extracellularly and enzimatically, resulting in a
number of smaller peptides which produce a skeleton for
mineralization and crystal formation of the enamel.
Amelogenin protein aggregates referred to as nanospheres
support and protect growing crystals, inhibit intercrystallyte
fusions, and create channels for ion transport51.

Amelogenin is thought to form a scaffold for enamel
crystallites and to controll their growth15, but its exact
functions are not fully known25.

At least 14 mutations — 5 nucleotide substitutions; 7
small deletions; and 2 gross deletions — have been
described in amelogenin gene. A 5kb deletion removes 5 of
the 7 exons of the amelogenin gene. The remaining coding
sequence is limited to 18 codons; 16 of these encode the
signal peptide. This mutation destroys the function of the
amelogenina protein completely, producing enamel of normal
thickness but poorly mineralized and severe discoloration36.

The 9bp deletion in exon 2 coding for the signal sequence
resulted in hypoplastic enamel that is normally mineralized,
but of reduced thickness37. This phenotype is compatible
with a mutation affecting the transport of a protein, required
of the formation of enamel37.  Deletions of a C-nucleotide in
different codons cause a premature stop codon and loss of
the C-terminus of the protein, leading to the production of
hypoplastic and/or hypomineralization AI, and the
symptoms can vary among affected members of same family1,

2, 24, 25, 33, 38. Several substitution mutations have also been
reported at different locations; two substitutions, C to A
and A to T, were described in exon 610, 25, 50, and produce
hypomaturation AI. Both might have a similar effect on the
function of the amelogenin protein25. Other three
substitutions, C to T in exon 5, G to T in exon 638 and G to A25

has also been described in families with AI.
Although the transcriptionally active amelogenin gene

is found on both human X and Y chromosomes. There are
no reports of amelogenesis imperfecta with mutations in the
Y amelogenin. This may be explained by the fact that the Y
chromosome accounts for only approximately 10% of
amelogenin transcripts55.
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AMELOBLASTIN

Ameblastin, also known as amelin, is expressed by the
enamel-producing ameloblast cells19. It is a tooth-specific
glycoprotein, which represents the most abundant
nonamelogenin enamel matrix protein19. Low levels of this
protein are also expressed by Hertwing’s epithelial root
sheath20 and preodontoblast18, but its role in dentin and
cementum formation has not been established. The protein
is found inside rounded structures at the distal end of the
cell body and near the secretion pole of ameloblasts. It was
also present near the dentin-enamel junction42.

The ameloblastin gene is located in chromosome 4,
within the critical region for local hypoplastic AI41. Recently
it was reported that transgenic mice overexpressing
ameloblastin in ameloblasts resemble amelogenesis
imperfecta, suggesting the importance of ameloblastin in
enamel formation47. In ameloblastin-null mice, the dental
epithelium differentiates into enamel-secreting ameloblasts,
but the cells detach from the matrix surface at the secretory
stage and lose cell polarity. Mutant ameloblasts resume
proliferation and accumulate to form multiple cell layers,
producing abnormal, unstructured, calcified matrix.
Ameloblastin binds specifically to ameloblasts and inhibits
cell proliferation of mutant ameloblasts. In mutant teeth,
ameloblasts regain some early phenotypes of
undifferentiated dental epithelial cells, and the abnormalities
occur when the cells detach. This results indicate that
ameloblastin is a key adhesion molecule for enamel formation
and suggest that ameloblastin plays an important role by
binding to, and maintaining the differentiated phenotype of
secretory ameloblasts23.

ENAMELIN

Enamelin, the largest enamel extracellular matrix protein,
was initially identified by Fukae, et al.22 (1993). It is produced
by ameloblasts, initially during the secretory stage
concentrating near the Tomes processes. Much lower levels
of enamelin expression have been observed in dental pulp,
presumably secreted by odontoblasts, and along the forming
root31. Immunohistochemistry combined with Western blot
analyses shows that intact enamelin (186 kDa) and the large
enamelin cleavage products (155 kDa, 142 kDa, 89 kDa) are
present only near the enamel surface and do not accumulate
in the matrix28. All of these proteins contain the original
enamelin N-terminus, since enamelin, like amelogenin, is
processed by successive cleavages from its C-terminus. The
smaller polypeptides from the enamelin C-terminal half appear
to undergo successive cleavages or are re-absorbed into
ameloblasts, which prevents their accumulation in the deeper
enamel layers. The 32-kDa enamelin is resistant to further
proteolytic digestion and accumulates in the rod and interrod
enamel probably bound to the mineral, while the extreme N-
terminus does not bind mineral and concentrates in the
sheath space, along with N-terminal polypeptides from
ameloblastina. Proteolysis allows enamelin cleavage
products to accumulate in different parts of the enamel matrix,

and determines their relative abundance. Some enamelin
cleavage products appear to be insoluble. The 32-kDa
enamelin may be released from the mass of insoluble enamel
protein by proteolytic cleavage, freeing it to bind enamel
crystallites, potentially regulating their shape or habit6.
Enamelysin (MMP-20) is the predominant proteolytic
activity in the secretory-stage enamel matrix54, and is
assumed to catalyze the processing of enamelin. Enamelysin
is inactive against the 32-kDa enamelin, but the 32-kDa
enamelin can be degraded by KLK-4, the main degradative
matrix enzyme that is expressed throughout the maturation
stage.

Enamelin is present in small amounts and undergoes a
series of proteolytic cleavages to generate several
polypeptides that are thought to participate in enamel crystal
nucleation and extension, and the regulation of crystal
habit22, 30.

The enamelin gene has been mapped on chromosome 4
as ameloblastin gene (only 15 kb separate these genes),
suggesting that this region could contain a cluster of genes
encoding enamel proteins. Recently, enamelin gene
mutations have been identified in autosomal dominant forms
of hypoplastic AI27, 32, 43, 49. The first reported human enamelin
mutation was a splice donor site of intron 7 single base
substitution, which resulted in a severe form of thin and
smooth hypoplastic AI49. Observed in United Kingdom
families with autossomal dominant AI and, because occurs
at the beginning of the intron following the sixth coding
exon, it is difficult to predict the effect of this mutation on
the enamelin protein structure.

A substitution in exon 4, introduced a premature stop
codon, was described in Swedish families44. This milder form
of AI, known clinically as autosomal-dominant local
hypoplastic AI, accounts for 27% of the autosomally
inherited cases in Northern Sweden31. Most recently, a splice
donor site mutation after enamelin codon 196 was shown to
cause autosomal-dominant hypoplastic AI (Kida, et al.32,
2002). There are normally 6 Gs at the end of coding exon 7,
which are followed by a 7th G at the beginning of the
adjacent intron. One of these Gs was deleted in a Japanese
family with AI. If the splice donor site function were preserved
in the mutant condition, the deletion would shift the reading
frame at the start of the last coding exon. The affected
members of the family showed hypoplastic enamel in both
their deciduous and permanent teeth that resulted in a
yellowish appearance and hypersensitivity to cold stimuli.
This same mutation has recently been characterized in a
family from Australia27.

PROTEINASES

Different proteinases, serving different functions, are
expressed during stages of amelogenesis56. These
proteinases are believed to regulate the enamel matrix protein
processing that ultimately defines the structure and
composition of enamel5. The predominant proteinases are
matrix metalloproteinase-20 in secretory enamel matrix and
kallikrein-4 in the mature stage39, 21.
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ENAMELYSIN (MMP-20)

MMP-20, also known as enamelysin, was originally
identified by Bartlett, et al.4 (1996). This enzyme is expressed
by ameloblasts and the odontoblasts of the dental papilla7.
Low levels of MMP-20 expression were observed in the
pulpar organ3. No other intact physiologically normal tissue
is known to express MMP-208. Therefore, MMP-20 is
considered a tooth-specific metalloproteinase. MMP-20
expression was observed in pathologic tissues such as in
calcifying odontogenic cysts59, odontogenic tumors60 and
tongue carcinoma61.

MMP-20 primary structure includes a signal peptide,
propeptide domain, catalytic domain, and hemopexin-like
domain56. This enzyme can be detected on zymography with
41 and 45 kDa5. Catalytic domain fragments were observed
with 21 and 25 kDa12.

Enamelysin is secreted into the enamel matrix in its
developmental stages —secretory and transition 4, 5, 21. This
enzymes accounts for most of the proteolytic activity of the
enamel matrix. Because enamelysin is present in the
mineralizing front, it is thought to initiate the hydrolysis of
the enamel matrix proteins allowing the crystals to grow in
length but not in width or thickness5. During this process
much of the enamel matrix is removed and the enamel
crystallites grow to achieve approximately 40-60% mineral
per volume52.

This proteinase is thought to be responsible for the
processing of the amelogenin protein at the N-terminus,
causing the TRAP to form48, 54. In addition, MMP-20 degrades
gelatin, casein, aggrecan, cartilage oligomeric matrix
protein54, fibronectin, type IV collagen, laminin 1 and 5, and
tenascin-C61.

A solitary point mutation in exon 6 of the amelogenin
gene has been reported to cause hypomineralized AI. This
mutation is related to the MMP-20 cleavage site and is known
to impair the efficiency of its hydrolysis, reducing the
formation of TRAP40. Mice with null mutation that eliminates
MMP-20 activity have a severe phenotype that includes
altered amelogenin processing, hypoplastic enamel that
delaminates from the dentin, a disorganized prism patter,
and a deteriorating enamel organ morphology as
development progresses. This demonstrates that MMP-20
plays a critical protein-processing role during enamel
development8. The human MMP-20 gene locates to
chromosome 11, which has not yet been identified as an AI
locus; however, the enamelysin defect would likely be
autosomal-recessive and, therefore, less prevalent within
the population8.

KALLIKREIN-4 (KLK-4)

Kallikrein-4, initially called enamel matrix serine
proteinase, is expressed in teeth, testis, breast, colon, thyroid,
uterus, central nervous system and skin57, 64. The specific
function of the KLK-4 in these different tissues is not known.
While only KLK-4 has been found in enamel, all other tissues
studied have been shown to express multiple kallikrein

genes57.
During tooth formation, KLK-4 is secreted by both the

dentin-forming odontoblasts and the enamel-forming
ameloblasts45. Its expressions in enamel start abruptly in
the transition stage of amelogenesis29. Kallikrein-4 is thought
to be the major enzyme responsible for the degradation of
enamel proteins during maturation stage, and has been
shown to cleave amelogenin53.

Kallikrein-4 is secreted as an inactive zymogen of 230
amino acids that can be activated by MMP-20 through the
removal of a 6-amino-acid propeptide53. It has six disulfide
bridges and three potential N-linked glycosylation sites56.
The characteristic triad of the catalytic amino acids is
conserved between species and believed to be critical to its
proteolytic function34.

KLK-4 is expressed from a gene on chromosome 1914.
Recent studies have shown that kallikrein mutation in
association with autosomal recessive hypomaturation AI26,
indicating that the normal KLK-4 function is critical for enamel
mineralization. The loss of KLK-4 function primarily affects
the maturation stage of enamel development inhibiting the
growth of enamel crystallites affecting the final deposition
of an additional 15-20% mineral26.

CONCLUSION

Enamel formation requires the expression of multiple
genes that transcribes matrix proteins and proteinases
needed to control the complex process of crystal growth
and mineralization. Mutations in the amelogenin, enamelin,
and kallikrein-4 genes have been demonstrated to result in
different types of AI. A number of other genes critical to
enamel formation have been identified and proposed as
candidates for AI, including ameloblastin35, tuftelin13 and
enamelysin4. AI can also be caused by an alteration in a
gene that is neither known nor considered to be a major
contributor to enamel formation. Continued mutational
analysis of families with AI will allow a comprehensive
standardized nomenclature system to be developed for this
group of disorders that will include molecular delineation as
well as a mode of inheritance and phenotype.
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