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Kinematic Analysis of the Deployable Truss Structures for Space
Applications
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Abstract: Deployable structure technology has been used in aerospace and civil engineering structures very popularly.
This paper reported on a recent development of numerical approaches for the kinematic analysis of the deployable truss
structures. The dynamic equations of the constrained system and the computational procedures were summarized. The
driving force vectors of the active cables considering the friction force were also formulated. Three types of macroele-
ments used in deployable structures were described, including linear scissor-link element, multiangular scissor element,
and rigid-plate element. The corresponding constraint equations and the Jacobian matrices of these macroelements were
formulated. The accuracy and efficiency of the proposed approach are illustrated with numerical examples, including a
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double-ring deployable truss and a deployable solar array.
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Half angle between the two active cable

“ element nearby the point;

A Direction cosine of the cable element;

u Dynamic friction coefficient;

0,0, Start and end angle according to contact region;
/li]. Direction cosine of the uniplets ij.
INTRODUCTION

Deployable truss structures have been applied in many
applications, such as solar arrays, masts and antennas
(Meguro et al., 2003) that have small-stowed volumes
during launch, and are deployed by certain means to assume
its predetermined shape accurately in orbit. Traditionally,
a deployable truss structure consists of a large number of
struts and kinematic pairs, which are simple, such as revolute
joints, sliding hinges (Takamatsu and Onodaf, 1991), gears
and pantograph struts (Cherniavsky et al., 2005). This type of
deployable structure has many advantages, including lighter
weight, higher precision, smaller launch volume, and higher
reliability for deployment.

There is a large amount of published literature on
constrained rigid- and flexible-body dynamics, which focused
on building the dynamic model, solving the differential
equations and kinematic simulation. Many studies have
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only addressed simple beams and rigid bodies, which are
not complicated deployable structures. Bayo and Ledesma
(1996) presented a new integration method for constrained
multibody dynamics. Fisette and Vaneghem (1996) used
the coordinate partitioning method of constrained Jacobian
matrix to analyze the multibody system. An orthonormal
tangent space method for constrained multibody systems
was proposed by Blajer (1995), in which the independence
basis vector of the tangent space of constrained surface
needs to be calculated. Orthogonal matrix triangularization
1986),
singular value decomposition (Singh and Likins, 1985), and

(QR decomposition) (Kim and Vanderploeg,

differentiable null space method (Liang and Lance, 1987)
were used to obtain such basis vectors. Some authors have
investigated the mechanism characteristics of deployable
truss and tensegrity structures in their literatures (Calladine
and Pellegrino, 1991; You, 2000). Bae ef al. (2000)
proposed an efficient implementation algorithm for real-
time simulation of the multibody vehicle dynamics models.
Newton chord method was employed to solve the equations
of motion and constraints. Using the finite particle method
(FPM), Yu and Luo (2009) presented a motion analysis
approach of deployable structures based on the straight- and
angulated-rod hinges. Kinematic and dynamic analysis, and
control methods of the hoop truss deployable antenna were
investigated by Li (2012).

This paper reports a recently-conducted effort that
systematically addressed a kinematic analysis method of
deployable truss structure based on macroelements, in which
the friction force was considered.

EQUATIONS OF MOTION CONSIDERING DRIVING
CONDITIONS

Dynamic equations for the constrained system

The dynamic equations for the constrained system and
the computational procedures are summarized in this section.
For the deployable spatial structure, the dependent Cartesian
coordinates are used as generalized ones for the dynamic
equation. The mass and velocity of the struts are reduced to
two revolute joints at the two ends, and the kinetic energy of
the system is defined as Eq. 1:

1

T= EXTMX )
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where
X: is the generalized coordinate vector, and
M: is the inertia or mass matrix.

The first Lagrange equation is presented as Eq. 2:

r(d AT _ T _ )\ _

(ax) (&3 -5 -0)=0 @)
where

Q: is the vector that includes the external and velocity
dependent inertia force,

X: is the first order time derivative of X.

By substituting Eq. 1 into 2, the dynamic equation can be
determined as Eq. 3:

dX"(MX—0Q0)=0 3

Because there are many complicated constrains in the
deployable truss structures, the vector dX, according to the
generalized coordinate vector, is dependent. Considering all
types of constrains of the entire structures, the geometrical
constrain equations are formulated as Eq. 4:

D(X)=0;i=1,2,+,s “)

Since all constrains of the deployable structure are constant
with time ¢ during the deployment process, the derivative of
the constraint equations provide the Jacobian matrix (Eq. 5):

AX =0 (5)
where
A: is the corresponding Jacobian matrix of constraint

equations.

The velocity equation (Eq. 5) is solved by the generalized
inverse matrix method (Eq. 6):

X =dh+ drh,+ ---d,h, = Hd 6)
where
hyhy, ..., h,: are p independent displacement modes of the

rigid-body movement,
a: is a row vector that consists of these combined
coefficients (Eq. 7).
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X = Hia — A" AX 7

By replacing Eqgs. 6 and 7 into the dynamic equation
(Eq. 3), the following final dynamic equations are obtained
(Egs. 8 and 9):

X = Ha
H'MH& — H'MA*AHa — H'Q = 0 ®)

With the initial condition:
Xi—o = XO,X[:() = Xo (9)

When the initial displacement and velocity vectors are
known, the vector &_ in Eq. 6 can be obtained. By these initial
values, Newmark’s method is employed to solve the final
dynamic equations (Eq. 8), therefore displacement, velocity,
and acceleration of the deployable process in each time step
can also be determined.

The numerical approach computational procedure is very
simple and can be summarized as follows:

 all initial input dates of the entire structure and numerical
simulation, such as the coordinates of the joints, structural
topology, constraint conditions, driving mechanisms,
boundary conditions and the length of time step, and so
on, are provided;

e at any time step n, the mass matrix and driving force
vectors are formed;

+ the Jacobian matrix A and the first order derivative of the
Jacobian matrix A are formulated;

* the generalized inverse matrix and basis vector of null
space of A are determined;

» if matrix A has full column, the rank will be estimated, if
so go to the ninth step;

+ the differential dynamic equations are calculated, and the
displacement, velocity, and acceleration of all joints are
obtained;

» update the positions of all joints and check whether the
locked conditions of the structure is satisfied, if they are
not, go to the second step; otherwise, go to the ninth step;

+ if the period is less than the ending time, go to the second
step, otherwise, the analysis should be stopped;

+ the analysis is stopped and the output dates are ready for
post process.
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Active cable driving and friction

The purpose of this section is to formulate the driving
force vectors of the active cables, which forms the term Q in
the dynamic equations. Drive energy of the deployable truss
structure comes from the electrical motor. When the active
cables are driven by the motor, the cable length becomes
shorter, and the structure is deployed. The driving forces in
the active cables will become smaller after it loops over the
pulley, so the Coulomb friction law is employed to consider
the friction between the active cables and the pulley (Fig. 1).

The pretension force of the active cable in the free end
is assumed as 7. Considering the friction forces between the
active cable and the pulley in the joints, driving forces of the
cables in each deployable elementare 7, ..., T, ..., T in turn.
Therefore, there are: 7, > ... > T, > ...> T,

The elastic deformations of the active cables are ignored,
and a microarc element ds in the contact point between the
cable and the pulley is analyzed, as shown in Fig. 1. The
length density of the active cable is p and the internal force
vector is denoted as 7(6). The friction and pressure force
vectors in the contact point are denoted as f(6) and N (6),
respectively. The equilibrium equations of the microarc

Tk Tk

active cable
the pully

(a) contact domain

T(6+d6)

/X

(b) microarc element

Figure 1. Active cable runs over a pulley.
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element are obtained as in Eq. 10:

7(0 + df)cosd — T(0) — f(0) = pdsi

T(6 + df)sindf = N(6)+pds$ (10)
where

[ and: are the velocity and acceleration of cable length variety,
r: is the radius of the pulley,

a: is the half angle between the two active cable elements
nearby the point, as shown in Fig. 2.

i

. -—
i —— ]

m

Figure 2. Active cables in two adjacent deployable elements.

Then, the velocity and acceleration of cable length variety
[ and [ were formulated. For the active cable element i/ in a
deployable element, the length can be expressed as Eq. 11:

[(x—X) (X -x)FF =1 (1
Differentiating Eq. 11 for the first and second times,
Egs. 12 and 13 were determined:
: . X
[=AX,—X)=[-42 A]{X} (12)
=[=" AT = T
i=[-2" 2 ]{X,} =47 4 ]{Xj} (13)

where
A= % (Xj — X" is the direction cosine of the cable element.

The Viscous and Coulomb friction laws can be combined
into equations of motion, being the second one employed:

A6) = uN (@) (14)

where
L is the dynamic friction coefficient.
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By utilizing the first equation of Eqs. 10 and 14, Eq. 15 is
the result:

T(6+df)cosdf—T(6) —u[T(@-i— df)sin ﬁ—pdsé =pdsi  (15)

Then, there is Eq. 16:

. . (sindf
lim cos(df) =1, £§%(%> =1, ds = Rd0

(16)
Eq. 15 is divided by d@ and the limit is gotten by d6 — 0.

By using Eq. 16, it yields Eq. 17:

dr _ - "

46 = LT+ (prl = ppl’) (17)

The start and end angles according to contact region are

provided as §_and 6, . The definite integral result of Eq. 17 is
written as Eq. 18:

fﬂq dT _ O
v uT+ (prl — ppl®) 0,

do (18)

Solving such equations, it will yield Eq. 19:

Uiy + (pri — upl®) _
uT+ Cprl — ppl?)

101 = Ok)

(19)

There is 0,
force of cable in two adjacent deployable elements can be
obtained (Eq. 20):

— 0, = m—2f, and the relation of the internal

uhi + (pl:l" - ugiz)
uT+ (prl = ppl)

= eu(rf 28)

(20)

By utilizing Eq. 20, the friction force between the active
cable and the pulley in the jointj is obtained (Eq. 21):

fioir =T — T 21

The generalized driving force of a driving cable element is
as Eq. 22:
0:={0f 03} (22)

Such force of the vector O of the entire structure is obtained
by assembling the Eq. 22 for each element.
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JACOBIAN MATRICES OF THE MACROELEMENTS

In this section, some deployable macroelements are
investigated, and the corresponding Jacobian matrices are
formulated. The equations of the constraints and the Jacobian
matrices for a constant distance constraint on the members,
the position constraint of the sleeve element, the angle
constraint of the revolute joints and of synchronize gears have
been presented in many references. For the sake of brevity,
the formulations are not fully developed here, therefore see
Nagaraj et al. (2009; 2010), Zhao and Guan (2005) for details.

Linear scissor-link element

Linear scissor-link element (SLE) is a type of fundamental
macroelement in the deployable truss structures, where two pairs
of struts are connected to each other at a pivot point O through
a revolute joint, shown in Fig. 3. It allows two pairs of struts
to rotate freely around the axis perpendicular to their common
plane, but restrains all other degrees of freedom. At the same
time, their endpoints are hinged to the ones of other elements.

As can be seen in Fig. 3, the angle between links i/ and oi is
defined as the deploy angle o of SLE. When the macroelement
is deployed, this deploy angle becomes larger.

There are two constant distance constraint equations of the
uniplets #j and /k, and the Jacobian matrix is formulated as
Eq. 23:

Af_l_ﬂi/ Ai/’ 0 0 (23)

o0 =AL AL

where the direction cosine of the uniplets ij is

v

3, =1 (X~ X)), like the kl uniplets.
ij -

It is assumed that the length of oi, ok are a and the length
of 0j, ol are k*a. Two pairs of uniplets are connected to each
other at the point o. During the deployment process, the
relative position of the connection point o is invariable. The

Figure 3. Linear scissor-link element.
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constraint equation is as Eq. 24:

(Xi _Xj) +Xi = (Xk_Xl)ﬁ'i'Xl (24)

a
a(l + k)
The upper equation is simplified to the following form
(Eq. 25):
KX+ X, —kXi— X, =0 (25)
Differentiating it with respect to X, therefore the Jacobian
matrix is obtained:
A3 :{k[3x3 Lixs —klsxs _[3><3} (26)
Because five revolute joints are coplanar during the
deployment process, the planar equation is the constraint
equations of the macroelement (Eq. 27).
(X n)er =0 (27)
When differences are compared with respect to X, the
Jacobian matrix is obtained (Eq. 28):

As ={(n X=X nus (X (Xn) (X ns)  (28)

For the planar SLE, the row number of the Jacobian matrix

Aj
Ae =1 Asris 6.
Aj

Planar multiangular scissor element

Planar multiangular scissor element, as illustrated in
Fig. 4, is another type of macroelement used in the deployable
truss structures, in which the uniplets ij and /k are not aligned
at an intermediate point O.

Based on the condition of two congruent triangles, the
constraint equations of the planar multiangular scissor

Figure 4. Planar multiangular scissor element.
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element include:

o four truss members io, jo, ko and lo of the macroelement are
considered and there are four constant distance constraint
equations;

e two dummy truss members ij and /k are added to the
macroelement; thus, there are two constant distance
constraint equations;

» five points are coplanar, and the planar equation is
constraint, which can be formulated by the same method
as already mentioned.

For the planar multiangular scissor element, the row
number of the Jacobian matrix 4¢ is eight.

Rigid-plate element

Planar rigid-plate element is a type of macroelement used
in solar arrays. A four-node rigid plate element ijk/ is shown in
Fig. 5, which is connected to other members at corner points
through a revolute joint.

The mass property of the macroelement is reduced to a
finite number of points. The rigid-plate element is substituted
with an equivalent grid of virtual rigid struts. The freedom
degree of the element is analyzed: the degree of freedom of
four spatial points 4, j, k, / is 12. After the length constraints of
six struts are appended, the total degree of freedom becomes
six, which is equal to that of the rigid-plate element.

Six struts ij, jk, ki, li, ik and jI of the element are considered,
and there are six constant distance constraint equations. For
the planar-plate element, the row number of the Jacobian
matrix A4° is six.

| ==k

. .
1 -J
Figure 5. Rigid-plate element.
NUMERICAL EXAMPLES
Double-ring deployable truss

A type of double-ring deployable truss based on
quadrilateral elements is investigated for large-size mesh
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antennas, the full deployed/folded configuration of which are
shown in Fig. 6.

Two adjacent deployable elements of the outer and
inner ring are shown in Fig. 7, which are quadrilateral
elements with a diagonal sleeve element. The active cables
pass through the diagonal sleeves. When the active cable
is deployed by a motor and becomes shorter, the diagonal
sleeves AE and CE contract. Then, the deployable elements
are deployed. When the lengths of the diagonal sleeves AE
and CE are equal to a designed value, the deployment of the
elements is stopped.

Several planar truss elements can make a closed loop by
arranging them side by side. The planar truss elements are also
used in connecting the inner and outer loops. The structure
topology is determined and the major design parameters of the
truss are included: the side number of the ring is 18; the truss
aperture is 5.0 m; the truss height is 0.5 m; the length of the
chord struts in the outer ring is 0.8757 m; and the length of the
chord struts in the inner ring is 0.6167 mm.

(a) deployed configuration (b) folded configuration

Figure 6. Double-ring deployable truss.

IS
| o
a

Figure 7. Deployment process of deployable truss elements.

The numbering of the truss joints is shown in Fig. 8.
The motion process of the double-ring deployable truss was
simulated by the program developed based on numerical
approaches. The mass of each revolute joint is 0.25 kg.
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joint 49

Figure 8. Numbering of the truss joints.

The active cables located in the model are shown in Fig. 9.
The elastic deformations of the active cables are neglected
and a constant 15 N driving force of the active cables in all
configurations is assumed. To deploy the truss successfully, the
dynamic friction coefficient 4 between the active cables and the
pulley is required to be small, the real value of which is difficult
to be measured. It is given to be a small default value 0.005 in
this simulation work. The length of time step in the simulation is

Figure 9. Active cables.

0.05 second. The truss starts to move by active cables and reaches
a static final configuration at last, which is shown in Fig. 10.
When the lengths of the diagonal sleeves are equal to a designed
value, the locked constraint conditions of the sleeves work and
the simulation stops. It takes 102 seconds to be fully deployed.
The coordinate variations of joints 5, 10 and 49 in the deployable
truss are shown in Fig. 11, which can describe the variations of
configurations during the structural motion in details.

(d) t=90 seconds
Figure 10. Motion process of the deployable truss.

120

x-coordinate (m)

—&—joint 5

—&— joint 10

joint 49

time(s)
(a) x axes coordinate

Figure 11. Coordinate variations of joints 5, 10 and 49.
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(e) t=102 seconds

~coordinate (m)

20 40 60 80 100 120

—+—joint §

—&—joint 10

Jjoint 49

time(s)

(b) y axes coordinate
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In the fully deployed configuration, the coordinates of
points 5, 10, and 49 are respectively: (-1.771, 2.483, 0.681),
(-4.730, 0, 0.691), and (-3.469, -2.184, 0.181). However,
the reference coordinates of the deployed configuration,
which are obtained from the geometric equation of this
configuration, are (-1.763, 2.472, 0.6807), (-4.688, 0, 0.687),
and (-3.469, -2.184, 0.181). The maximum error is 0.89%.
Therefore, the method can simulate the motion behavior of
the deployable truss effectively and accurately.

Deployable sail arrays

A scale model of deployable sail array based on SLEs
is presented in Fig. 12. The sail array consists of eight SLE
macroelements and eight rigid plate macroelements. The SLE
macroelements are dynamic machines during deployment and
support structure after deployment. The rigid plate elements
are sail array deck, and these vertical struts such as 1-2 and
3-4 are sleeve element.

There are two active cables in the sail array, in which can
be seen in Fig. 12. One of them, which is firmly connected to
joint 25, runs over a pulley at joint 26, zigzags down the SLE
following the route shown in the figure (it runs over a pulley at
each kink) and, after passing over a pulley at joint 2, is connected
to the motorized drum located below the base. The other active
cable is arranged by the same method. The elastic deformation
of the active cables is neglected, and a constant 10 N drive force
of the active cables in all configurations is assumed.

Fixed boundary conditions are used at joints 1 and 4, and
the translation along x direction of joints 2 and 3 are fixed. The

(a) t=0 seconds

(d) t=120 seconds

Figure 13. Motion process of the deployable sail arrays.
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(b) t=40 seconds

active cables

Figure 12. Scale model of the deployable sail array.

structure is deployed from the nearly flat configuration o = 1.0°
to the final one o = 55°, as shown in Fig. 5. The mass of each
revolute joint is 0.15 kg, and that of joints in the rigid plate
macroelements is 0.075 kg. A time step df = 0.05s is used in
the simulation. The motion behavior of the sail array structure
was simulated by the same program. The sail array starts to
move by active cables and reaches a static final configuration,
as shown in Fig. 13. When the lengths of the vertical sleeves
are equal to a designed value, the locked constraint conditions
of the sleeves work and the simulation stops.

The deployment time of the structure is 140 seconds.
The coordinate variations of point 26 in this model with
time are shown in Fig. 14, which can define the variations of
configurations during the structural motion in details.

In the final completely deployed configuration, the
coordinates of points 5, 26, and 28 are, respectively,
(0.50092, 0, -0.00179), (4.00738, 0, -0.00181), and

(c) t=80 seconds

(e) t=140 seconds
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4.5

x-coordinate (m)
N

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Time (s)

(a) x axes coordinate

Figure 14. Coordinate variations of joint 26.

(4.00738, 0.7, -0.7), while the reference coordinates of these
positions on the deployed configuration, which are obtained
from the geometric equation of this configuration, are
(0.50, 0, 0), (4.00, 0, 0), and (4.0, 0.7, -0.7). The maximum
error is 0.18%. Therefore, the method can simulate the motion
behavior of the deployable sail array effectively.

CONCLUSIONS

This paper presents a numerical approach for kinematic
analysis of the deployable truss structures. The driving
forces of active cables are combined with the equations of
motion. The friction between active cables and the pulley is
considered. Three kinds of macroelements used in deployable
structures are described. The corresponding constraint
equations and Jacobian matrices of the macroelements are
formulated. A double-ring deployable truss and a deployable
solar array structure are selected as numerical examples. The
deployment process and dynamic parameters at each time step
can be simulated for evaluating the deployment behaviors of
the structure. Results of the numerical simulation show that
the capabilities of this method in the motion analysis are of
complex deployable truss structures. The origin of the final
error in the time step of the simulation is too large to stop
the simulation nearby the reference configuration. To achieve
higher simulation accuracy, the time step needs to be smaller.

Based on the researches included in this paper, future
works are suggested: the reliability analysis of the deployment
process can be researched; and deployment control of the
deployable truss antennas needs to be investigated.
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