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A permeabilidade da barreira hematoencefálica (BBB, do inglês blood-brain barrier) é uma 
propriedade fundamental no planejamento de fármacos que atuam no sistema nervoso central 
(CNS) no tratamento de doenças como a epilepsia, depressão, mal de Alzheimer, mal de Parkinson, 
esquizofrenia, entre outras. No presente trabalho, estudos das relações quantitativas entre a estrutura 
e propriedade (QSPR) foram conduzidos para o desenvolvimento e validação de modelos in silico 
para a predição da permeabilidade da BBB. O conjunto de dados utilizado possui significativa 
diversidade química e ampla distribuição dos valores da propriedade alvo. Os modelos de QSPR 
gerados apresentaram bons parâmetros estatísticos e foram empregados com sucesso na predição de 
um conjunto teste de 48 compostos. Os modelos desenvolvidos são úteis na identificação, seleção 
e planejamento de candidatos a novos fármacos com propriedades farmacocinéticas otimizadas.

Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central 
nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer’s 
disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative 
structure‑property relationship (QSPR) studies were conducted for the development and validation 
of in silico models for the prediction of BBB permeation. The data set used has substantial chemical 
diversity and a relatively wide distribution of property values. The generated QSPR models showed 
good statistical parameters and were successfully employed for the prediction of a test set containing 
48 compounds. The predictive models presented herein are useful in the identification, selection and 
design of new drug candidates having improved pharmacokinetic properties.
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Introduction

The challenges facing the pharmaceutical industry 
are tremendous at every step of the drug discovery and 
development process. Technology-based discovery 
certainly is one of the most important elements to increase 
research and development (R&D) productivity. The new 
paradigm of drug discovery involves a combination 
of classical and modern technologies with innovative 
strategies addressed to the design of new chemical entities 
(NCEs) with improved properties.1-3 NCEs expected to 
advance into clinical trials should have a good balance of 
pharmacodynamic and pharmacokinetic properties. For 
the past decades, problems with absorption, distribution, 
metabolism and excretion (ADME) have been one of the 
major reasons for the failure of attractive compounds in 
advanced stages of drug development.4-6

Traditionally, in vivo and in vitro models are employed 
in the pharmaceutical industry for the evaluation of 
pharmacokinetic parameters. However, animal models 
and cell-based assays are typically time consuming and 
expensive, and thus not applicable to the early screening 
of large libraries of compounds.7-9 In recent years, the 
appearance and consolidation of in silico ADME models 
have provided useful tools for a faster, simpler, and more 
cost-effective evaluation of pharmacokinetic properties.10-12 

Quantitative structure-activity and structure-property 
relationships (QSAR/QSPR) are powerful technologies that 
correlate descriptors based on molecular structures and use 
computational algorithms to relate the key descriptors to 
relevant ADME properties.10,13-15

Drugs to treat human central nervous system (CNS) 
diseases and disorders, such as epilepsy, Alzheimer’s 
disease, Parkinson disease, schizophrenia, depression 
and brain tumors are required to cross the blood-brain 
barrier (BBB) by passive diffusion or through the help of 
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transporters. In contrast, drugs that do not target the CNS 
should present limited capacity to cross the BBB in order 
to avoid drug-induced side effects in the brain.16 Delivering 
drugs into the brain is a complex process that depends on 
multiple factors, such as logP, hydrogen-bond acceptors 
and donors, molecular weight, polar surface area and other 
molecular properties.17 The tight junctions between the 
endothelial cells of the brain’s capillaries make it almost 
impossible for anything to get into the brain around the cells. 
In addition, efflux pumps such as P-glycoprotein (P‑gp)  
and the multidrug resistance-associated protein family 
(MRP) significantly hinder permeation across the BBB 
turning chemical compounds back to the way of blood.16,18

The most commonly used experimental approaches 
to predict membrane permeation are the octanol/
water partition coefficient, high performance liquid 
chromatography (HPLC)-related techniques, and the 
in vitro approaches, such as parallel artificial membrane 
permeation (PAMPA) assays and MDCKII-MDR1 cell 
line.19-21 Nonetheless, the complexity, costs, resources and 
time involved in these assays have increased the importance 
of in silico approaches to predict BBB permeability of 
lead compounds that selectively target the CNS.7,8,22,23 In 
the present work, robust QSPR models were developed 
for the consensus prediction of BBB permeation using the 
fragment-based hologram QSAR (HQSAR) approach.10,14 

To the best of our knowledge, the majority of the models 
reported in the literature are associated with qualitative data 
(cross/not cross BBB) that offers imprecise values of BBB 
permeability, thus, the quantitative nature of the models 
generated in this work is of considerable importance in 
medicinal chemistry and drug design.

Experimental

Data set

The relative affinity for the blood or brain tissue 
can be expressed in terms of the blood-brain partition 
coefficient, log(C brain/C blood), where C brain and 
C  blood are the equilibrium concentrations of the drug 
in the brain and the blood, respectively (also known as 
logBB). A data set of 255 structurally diverse molecules 
with known logBB was collected from literature and 
the PK/DB - database for pharmacokinetic properties 
(http://www.pkdb.ifsc.usp.br).24-48 The data consist of in 
vivo measurements in rats of the compound’s partition 
coefficient between the brain and blood. Compounds 
containing one asymmetric (chiral) center, for which the 
corresponding BBB permeation was determined for the 
racemate, were considered as the individual enantiomers 
and modeled accordingly, as previously described.10,14 The 
list of compounds along with the corresponding logBB 
data is shown in Table S1 in Supplementary Information 
(SI) section. This structurally diverse (Figure 1) data 
set consists of several important therapeutic classes, 
including anxiolytics (e.g., alprazolam), anti-ulcers (e.g., 
cimetidine), analgesics (e.g., acetylsalicylic acid), sedatives 
(e.g., diazepam, flunitrazepam), anti-inflammatories (e.g., 
ibuprofen and indometacin), antivirals (e.g., nevirapine, 
zidovudine, indinavir), antihypertensives (e.g., verapamil 
and clonidine), antihistamines (e.g., mepyramine), 
antidepressants (e.g., mianserin), and so on.

The 3D structures of the molecules employed in this 
work were constructed using CONCORD and standard 
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Figure 1. Chemical structures and therapeutic classes of representative drugs included in the data set.
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geometric parameters available in the Sybyl 8.0 molecular 
modeling package (Tripos, St. Louis, USA) and stored 
as SDF files.49 The optimization process of the chemical 
structures was performed by carrying out several standard 
operations present in ChemAxon Standardizer including 
3D depiction layout, hydrogen addition and correction, salt 
and solvent removal, chirality and bond type normalization 
and harmonization of the representation of aromatic rings, 
and others.50 Each molecule in the set was energetically 
minimized using the Tripos force field.48

In this study, the original data set of 255 compounds 
was arranged in training (001-207) and test sets (208-255) 
in Table S1 (SI section) to give approximately 80% and 
20% of the data set, respectively. The structurally diverse 
molecules having a significant coverage of property values 
were included in both sets, as depicted in Figure 2. Thus, 
the data set is suitable for QSPR model development. The 
training set was then used to generate the models, while 

the test set was hold out for the process of model external 
validation.

QSPR studies

All 2D QSPR (HQSAR) calculations and analyses were 
performed using the Sybyl 8.0 package,48 as previously 
described. The HQSAR technique employed in this 
work required the 2D structures and the property value 
(logBB) as input. Initially, the calculations of the several 
parameters for the generation of the molecular holograms 
were performed using the standard parameters implemented 
in Sybyl 8.0.10,14,51All generated models were investigated 
using full cross-validated r2 (q2) partial least squares (PLS) 
leave-one-out (LOO) and leave-many-out (LMO) methods. 
The predictive ability of the models was assessed by their 
q2 values.

Results and Discussion

HQSAR analyses

The generation of the molecular fragments for the data 
set compounds was carried out using the following fragment 
distinctions: atoms (A), bonds (B), connections(C), 
hydrogen atoms (H), chirality (Ch), and donor and acceptor 
(DA). In order to assess the process of hologram generation 
and to seek the best predictive models, several combinations 
of these parameters were considered using the fragment size 
default (4-7) (Table 1). The Ch descriptor was considered 
in all fragment combinations due to the presence of several 
(R) and (S) enantiomers. The absence of this descriptor 
could lead to an over-training of the models because two 
different compounds would be considered as one and 
treated as such (i.e., calculated twice). The HQSAR analysis 

Table 1. Results of HQSAR analyses for various fragment distinctions on the key statistical parameters using fragment size default (4-7)

Model Fragment distinction
Statistical parameters

q² r² SEE N HL

1 A/B/C/Ch 0.61 0.81 0.33 8 199

2 A/Ch/DA 0.58 0.79 0.35 8 401

3* A/B/C/H/Ch 0.66 0.87 0.27 8 353

4 A/C/Ch/DA 0.55 0.86 0.29 8 353

5* A/H/Ch/DA 0.66 0.86 0.29 8 353

6 A/B/C/Ch/DA 0.53 0.86 0.29 7 353

7* A/B/H/Ch/DA 0.68 0.88 0.26 8 307

8* A/B/C/H/Ch/DA 0.69 0.91 0.22 8 401

*The four best HQSAR models; q2, cross-validated correlation coefficient (LOO); r2, noncross-validated correlation coefficient; SEE, noncross-validated 
standard error; N, optimal number of components; HL, hologram length.

Figure 2. Data set, training set (modeling set) and test set (validation 
set) distribution.
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was performed over the twelve default series of hologram 
lengths of 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353, 
and 401 bins. The patterns of fragment counts from the 
training set compounds were then related to the measured 
experimental BBB permeation data. 

The best statistical results (predefined accuracy 
thresholds for training r2 ≥ 0.80 and q2 ≥ 0.60) were obtained  
using the fragment distinctions A/B/C/H/Ch (model 3, 
q2 = 0.66 and r2 = 0.87), A/H/Ch/DA (model 5, q2 = 0.66 and 
r2 = 0.86), A/B/H/Ch/DA (model 7, q2 = 0.68 and r2 = 0.88) 
and A/B/C/H/Ch/DA (model 8, q2 = 0.69 and r2 = 0.91).

The influence of different fragment sizes in the 
statistical parameters was further investigated for the four 
best HQSAR models marked with asterisk in Table 1 
(models 3, 5, 7 and 8), and the results are summarized in 
Table 2. Fragment size parameters control the minimum 
and maximum length of fragments to be included in 
the hologram fingerprint. These parameters represent a 
fundamental aspect to this fragment-based approach, and 
should be considered to provide larger or smaller fragments 
into the molecular holograms.10,14,51

The results show that the variation of the fragment size 
did provide a considerable improvement for the majority 
of the models (marked with asterisk in Table 2) when 
compared to the results obtained using the fragment size 
default (4-7). The exception was model 5, for which no 
improvement was observed using a set of different fragment 
sizes. It is worth noting that model 3 exhibited improved 
cross-validated correlation coefficients (q2 of 0.68 and 
0.71). In the case of model 7, the q2 value increased from 
0.68 to 0.71. For model 8, the q2 value varied slightly from 
0.69 to 0.70, whereas the r2 remained unchanged.

As the molecular structure encoded within a 2D 
hologram is directly related to the property value of the 
training set molecules, the HQSAR model should be 
able to predict the logBB for new compounds from its 
fingerprint. The q2 LOO procedure used may give a suitable 
representation of the internal consistency and predictive 
power of the models. However, the real predictive ability 
of the HQSAR model derived with the 207 training set 
molecules was assessed by predicting logBB values of an 
external test set of 48 molecules (compounds 208-255, 
Table S1 (SI section)). Prior to prediction, the test set 
compounds were processed identically to the training set 
compounds as previously indicated. The external validation 
process can be considered the most valuable validation 
method as these compounds were completely excluded 
during the training of the model. The results are listed 
in Table S1 and show that the test set compounds, which 
represent the different structural features incorporated 
with in the training set, are reasonably well predicted by 

the four selected HQSAR models (marked with asterisk in 
Table 2). The good agreement between experimental and 
predicted BBB permeation values indicates the robustness 
of the HQSAR models.

The predictive power of the models 3, 5, 7, 8 and 
consensus (r2

pred) are also showed in Table S1. As can 
be seen, model 7 exhibited higher predictive ability 
(r2

pred = 0.79) than that of models 3, 5 and 8 (r2
pred = 0.72, 

r2
pred = 0.69 and r2

pred = 0.62, respectively). The consensus 
approach exhibited an r2

pred of 0.75. Thus, the results 
indicated that models 3, 7 and consensus could provide 
better predictions of the property value for new compounds. 
The graphic representation of the experimental versus 
predicted BBB permeation for both training (model 

Table 2. HQSAR analysis for the influence of various fragment sizes on 
the key statistical parameters using four selected fragment distinctions: 
A/B/C/H/Ch, A/H/Ch/DA, A/B/H/Ch/DA and A/B/C/H/Ch/DA

Fragment 
size

Statistical parameters

q² r² SEE N HL

Model 3

2-5 0.68 0.85 0.30 8 307

3-6* 0.71 0.87 0.28 8 401

4-7 0.66 0.87 0.27 8 353

5-8 0.60 0.81 0.33 7 307

6-9 0.53 0.80 0.34 7 307

Model 5

2-5 0.64 0.78 0.36 8 71

3-6 0.65 0.84 0.30 8 353

4-7* 0.66 0.86 0.29 8 353

5-8 0.64 0.86 0.29 8 353

6-9 0.62 0.86 0.29 8 257

Model 7

2-5* 0.71 0.85 0.29 8 199

3-6 0.68 0.86 0.28 8 353

4-7 0.68 0.88 0.26 8 307

5-8 0.68 0.87 0.27 8 307

6-9 0.61 0.84 0.31 7 307

Model 8

2-5 0.68 0.89 0.25 8 307

3-6* 0.70 0.91 0.23 8 401

4-7 0.69 0.91 0.22 8 401

5-8 0.64 0.85 0.29 6 401

6-9 0.60 0.85 0.29 6 353

*The four selected HQSAR models; q2, cross-validated correlation 
coefficient (LOO); r2, noncross-validated correlation coefficient; SEE, 
noncross-validated standard error; N, optimal number of components; 
HL, hologram length.
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generation) and test (external evaluation) sets for model 7 is 
displayed in Figure 3. Similar graphic results were obtained 
for models 3 and consensus (not shown).

The models were successfully validated as shown in 
Table S1 and Figure 3, especially taking into account the 
complexity of the BBB biological system. Despite not 
having the highest r2

pred, the consensus approach is also an 
attractive tool for the prediction of logBB, considering that 
the ensemble of models would allow a greater coverage of 
the chemical space, which, in turn, could be useful for the 
selection and design of new compounds with improved 
logBB properties. Additionally, the HQSAR technique can 
provide predictions for a broad scope of molecules when 
compared to other methods, considering that the molecular 
fragmentation offers a much larger range of different 
scaffold possibilities.

Conclusions

A key challenge in the development of drugs that act in 
the CNS for the treatment of a variety of human diseases 
and disorders is their transport across the BBB. The final 
HQSAR models described here possesses high internal and 
external consistency. In addition, the quantitative models 
showed good predictive power and could potentially be 
used to assist the processes of chemical library design and 
virtual screening. Compound libraries usually possess a 
broad chemical diversity, and therefore, in silico ADME 
models that are needed to screen these libraries should 
inevitably be able to cover a substantial portion of the 
chemical space. This is hard to be achieved by training 
the model with few hundreds of compounds. It should be 

noted, however, that this limitation may be overcome by the 
application of similarity analyses in the way of selecting 
appropriated compounds for screening, thus, avoid making 
predictions for compounds that differ substantially from the 
training set molecules.12 What is clear at this point is that the 
predictive models generated in this work are useful in the 
processes of early compound identification and selection, 
as well as in the design of lead compounds with improved 
BBB permeability.

Supplementary Information

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br as PDF file.
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