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O estudo quântico do processo B3+ + He → B2+ + He+ foi investigado para energias de colisão
variando de 1-102 eV usando um potencial de interação ab-initio. Um método novo foi usado para
resolver a equação de Schrödinger na base adiabática, onde os acoplamentos rotacional e radial
foram considerados. Além disso, uma discussão sobre os acoplamentos de diferentes simetrias é
apresentada. Usando o modelo de Landau-Zenner, mostramos que o modelo de dois estados não
deve ser usado para este sistema. Este estudo poderia indicar que tal modelo deve ser usado
cuidadosamente para outros sistemas onde o processo de transferência de carga seja considerado.
Finalmente, as seções de choque total quântica foram comparadas com trabalhos publicados
anteriormente por Gargaud e co-autores e uma concordância razoável foi observada.

Full quantum charge transfer study of the process B3+ + He → B2+ + He+ has been investigated
in the collision energy range 1-102 eV using an ab-initio interaction potential. A new method to
solve the Schrödinger equation in an adiabatic basis was used, where the radial and rotational
coupling were taken into account, and the importance of the coupling between states of different
symmetry was discussed. Moreover, by using the well known Landau-Zener model, it was concluded
that the two state model cannot be applied for the present system, and this might indicate that such
a model should be applied carefully for other systems when a charge transfer process is considered.
Finally, the quantum total cross sections were compared with the previous published work of
Gargaud and co-workers and a fair agreement was achieved.
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Introduction

Charge transfer in atomic and molecular collisions has
been intensively studied in the past few decades1-5. The
importance of this process arises in different branches of
science such as astrophysics, chemistry, laser research,
material science and many others5.

Theoretical or experimental works in this field have
grown up rapidly due to new techniques that have become6

available, especially in the case of high resolution molecu-
lar beam experiments7.

From the theoretical point of view the mechanisms to
elucidate charge transfer processes need accurate potential
energy functions and therefore exact quantum calculations
have to be carried out. However, most charge transfer
processes studied have been mainly concerned with only

single charge transfer systems5. In this case only covalent
dissociating states are involved and hence the quantum
scattering calculations are simpler. On the other hand, for
systems with multiple charge transfer such calculations are
more difficult to perform due to covalent and ionic states
being involved. The first quantum theoretical work where
double charges were considered was that of Braga et al.8 In
the latter work, the Ar2+/He system was analysed by quan-
tum mechanics and an intermolecular potential model was
proposed based on ab-initio calculations. The quantum
scattering calculations were carried out in the diabatic basis
and no rotational to radial couplings were included. Nev-
ertheless satisfactory agreement was achieved compared
with the experimental measurements of Friedrich and col-
laborators9.

Article

Work supported by CNPq, Brazil. *Present address: Centro de Ciências e
Tecnologia (CCT) - Departamento de Matemática, Universidade Federal
de São Carlos (UFSCar), C.P. 676, 13560-970 São Carlos - SP, Brazil.

J. Braz. Chem. Soc., Vol. 9, No. 5, 449-454, 1998. © 1998 Soc. Bras. Química
Printed in Brazil. 0103 -- 5053 $6.00 + 0.00



The recent research review of Herman10 has updated the
existing literature on charge transfer in atomic and molecu-
lar collisions in the experimental and theoretical pictures.
As shown by Herman, the experimental apparatus have
shown better resolution and consequently lower relative
errors can be obtained for the experimental data.

For the charge transfer process with doubly charged
molecules, Herman and co-workers10-11 have shown that
theory and experiment are well developed for resolving
excited electronic states. For example, Herman and col-
laborators11 have studied the CO2++Ne system by using the
potential energy function calculated by Larsson et al.12 for
this single charge transfer process. This latter work showed
a quantitative agreement with recent experiments of cross
molecular beams perform by Hamdan and Brenton13, and
has confirmed that the intermolecular potential of Larsson
et al.12, for CO2+/Ne collision is able to describe the energy
separation of the minima and the equilibrium distance for
the 13Π and 13Σ states. However, due to the resolution of
the energy, about 0.3 eV, the vibrational states were not
fully resolved although the important features of the popu-
lation for the energy spectra were analysed. For polyatomic
molecules, such as NH3 and H2S colliding with He2+, the
theoretical and experimental work of Fárník and co-work-
ers14 are the most recent advance in multiple charge transfer
processes. By using the crossed molecular beam technique
with resolution of about 120 meV, they were able to study,
in detail, the contribution of the energy transfer between all
quantum state. The relaxation into each rotational, vibra-
tional and electronic states has provided important results
such as the Franck-Condon factors.

According to Herman10, simple models have been ap-
plied to dication-molecule and cation-molecule chemical
reactions and charge transfer processes. In addition, charge
transfer processes with multiple charge are one of the
research areas that have recently turned out to be of con-
siderable interest.

Very recently Boyd and collaborators15 have proposed
an inversion of the diabatic coupling potentials for multiple
charge transfer on the C4+/He system. Experimental inelas-
tic cross sections were used as the input data. By using a
general inversion algorithm based on functional sensitive
analysis, the diabatic coupling potential for such a system
was derived. This inversion was accurate especially in the

region where accurate ab-initio calculations are difficult to
perform.

The present work will analyse the charge transfer of the
B3+/He system, which is isoelectronic to C4+/He, and where
ionic and covalent states are also involved. López-Castillo
and Ornellas16,17 have recently produced a potential energy
surface where all the important couplings (rotational and
radial) for the dynamics were well defined. The reactions
presented in Eq. 1 were calculated with an accurate basis
set17.

Although the above authors have produced quality po-
tentials and couplings, their ab-initio calculations have
been tested using the classical path method16 for colinear
trajectories and for very high collision energy (1 keV up to
50 keV). Nevertheless, their calculations are in fair agree-
ment with experimental cross sections, but some experi-
mental data18,19 are overestimated. The agreement is almost
qualitative, but it is quite consistent with the subsequent
experimental results of the Iwai et al.20

This paper aims to calculate the state-to-state total cross
sections for the above process, in the collision energy
ranging from 1 eV to 102 eV and using the renormalized
Fox-Goodwin method as given by Braga and Belchior21.
The latter method provides a powerfull tool to propagate
the radial wavefunction with the intermolecular potential
in an adiabatic basis. This combination of low collision
energy and quantum analysis will provide a better under-
standing of the quality of the potential energy surfaces
given by López-Castillo and Ornellas16. In addition, the
well known two state Landau-Zener (LZ) model will be
applied to analyse the validity of approaching a problem of
several states by a two state model. Such a method is well
detailed elsewhere8 and will not be repeated here. Since
there is no experimental data in this collision energy range,
a comparison with previous theoretical work will be
done22. Actually, the low collision energy used in the
present calculations could be achieved by experimentalists
for carrying out measurements in this energy range.

Adiabatic quantum scattering theory

The matrix representation of the Schrödinger equation
in the diabatic basis,

d2

dR2u (R) + Q (R) u (R) = 0
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B2+ (1s2 2s) + He+ (1s), 11 ∑ +

B3+(1s2) + He (1s2), 31 ∑ + → B2+ (1s2 2p) + He+ (1s), 21 ∑ + (1)

B2+ (1s2 2p) + He+ (1s), 11 Π

B2+ (1s2 3s) + He+ (1s), 41 ∑ +



where

Q (R) = k2 − 
l(l + 1)

R2  I − 
2µ
h2  V(R)

k2 being the channel wave number, l the angular momen-
tum, µ the system reduced mass and V(R) the intermolecu-
lar potential, is not always convenient to use in the study of
charge transfer process. The non-commutability of the
rotational to radial operators prevents the above repre-
sentation from always be useful. In a standard procedure
rotational to radial couplings are neglected and the diabatic
representation is used for studying charge transfer dyna-
mics.

Concerned with the above problem Braga and Bel-
chior21 have recently developed an algorithm to integrate
the Schrödinger equation in the adiabatic representation,
which is defined in such a way that, in this new repre-
sentation, the diabatic potential becomes diagonal. Cer-
tainly this is performed with the expense of making the
kinetic operator non-diagonal in this adiabatic repre-
sentation. Nevertheless the two representations should co-
incide for the large scattering coordinate where the
transformation between these two representations, denoted
by U(R), becomes R independent and goes to a constant
equals to the identity transformation.

In this new representation the Schrödinger equation is
then written as,

d2

dR2X (R) + 2 (U −1 (R) d
dR

U (R)) d
dR

 X (R) +

     (U −1(R) d2

dR2 U (R)) d
dR

 X (R) + 

     (k2 − 
l(l + 1)

R2  I − 
2µ
h2   D (R)) X(R) = 0 (3)

The algorithm to solve the above equation21, which
combines efficiency and simplicity, is based on a three
point recurrence relation established by Fox and Goodwin
in 194923. Defining the quantities,

QA (R) = k2 − 
l(l + 1)

R2  I − 
2µ
h2   D (R) + 

     U −1(R) d 2

dR2U (R) (4)

and,

P (R) = 2 (U −1(R) d
dR

U (R)) (5)

the adiabatic Schrödinger equation is then transformed21

into the recurrence relation,

R (R + h) = (I + 
h
2

 P (R))−1 (2I − h2 QA(R)) − 

     (I + 
h
2

 P (R))−1  (I − 
h
2

 P (R))−1 R −1(R − h) (6)

where R(R) = X(R+h)X-1(R). This renormalization gives
the necessary stability for the closed channels as discussed
in detail by Braga and Belchior21. The matrices U(R) and
D(R) are provided by the electronic calculations. A bicubic
spline interpolator was implemented with the quantum
scaterring code and hence no analytical fitting of these
matrices were necessary. For details about the electronic
calculation see references16,17.

In the asymptotic region the Schrödinger equation,
either in the adiabatic or the diabatic representation, is
decoupled. Nevertheless the ionic and covalent channels
have to be matched with different boundary conditions due
to the tail of the coulomb potential that decreases slower
than the centrifugal term. These equations are then given,
for the large scattering coordinate, as

( d2

dρ2
i

 + 1 − 
l (l + 1)

ρ2
i

 − 2
η
ρ i

 ) Xi (η , ρ i) = 0 (7)

where ρi = kiR and

η  =  
µ

h 2
  

Z1 Z2 e2

ki
(8)

For the covalent channel this quantity has to be taken
equal to zero.

The Riccati-Bessel functions were generated by using
forward and backward recurrence relations24 whereas the
Coulomb functions were generated using Steed’s algorithm
in complex form25. Denoting the diagonal matrices that
contain the Riccati-Bessel and Coulomb functions of the
first kind and second kind respectively by J(R) and N(R)
the K matrix can then be obtained by,

K = (R (R) N (R) − N (R + h)) −1 (R (R) J (R) − 

     J (R + h)) (9)

Scattering matrices and cross sections are then obtained
in the usual way8, i.e, an average over all partial waves are
given by

σi→j  =  
π
k2

i

  ∑ 
l = 0

∞

  (2l + 1) S l
ij
 2 (10)

where Sij
l is the scattering matrix for each partial wave and

for the transition i to j.

The interaction potential

To solve the Hartree-Fock-Roothaan equation, initially
one has to select a set of atomic basis functions for the
molecular expansion. These functions are normally ex-
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pressed as a linear combination of cartesian Gaussians,
which are easier to work in numerical calculations. 

The basis sets selected for the [BHe]3+ system are of
dupla-zeta type and are described in Refs. 26 and 27. They
also contain p-type and d-type polarization functions for
the He and B atoms respectively. They are represented by
(11s,6p)/[5s,4p] for boron, with three d-type polarization
function with coefficients 1.11, 0.402 and 0.14526 and
(6s,1p)/[4s,1p] for helium27. The electronic structure cal-
culation was performed using the MELD program28 and the
potential energy curves were then calculated in the adi-
abatic approximation for the quasi-molecule [BHe]3+ in the
configuration interaction (CI) level. Single and double
excitations relative to the Hartree-Fock configuration
(B3+(1s2) + He0(1s2)) were therefore generated. For more
details see Ref. 16.

The radial and rotational couplings can be formally
written as

<Ψm  ∂
∂ R

 Ψn > = ∑ 
i

 C m
i
  

∂C ni
∂R

 + 

∑ 
αβ

 P mn
αβ

  ( ∑ 
p≠q

 aα
p
  [ aβ

q
 < ϕp 

∂
∂R

 ϕq > ] + < ϕp ϕq >
∂ aβ

q

∂R
 ] +

∑ 
p

 aα
p
  

∂ aβ
p

∂R
(11)

and

<Ψm iLy Ψn > = ∑ 
α β

 P m n
αβ  ∑ 

pq

 a α
p
  

     a β
q
  <ϕ p iLy ϕ q > (12)

where Ψn is a CI wave function, Ci
n are the CI coefficients,

Pαβ
mn represent the element αβ of the transition density

matrix between the Born-Oppenheimer states ψm and ψn in
the molecular base {αβ}, ap

α are the SCF coefficients and
ϕ’s are the atomic orbitals. These couplings were solved by
the central field method (CFM)16,29 where the dependence
with the origin was eliminated.

Results and Discussion
The state-to-state charge transfer quantum cross sec-

tions were calculated by using a new method to solve the
Schrödinger equation21 where the radial and rotational
couplings can be taken into account. In this case, all cou-
plings were included except the one with unphysical be-
havior.

The state-to-state charge transfer quantum cross sec-
tions and the LZ results are shown in table 1 for several
collision energies. Because in the LZ calculation only two
states (21Σ with 31Σ) are taken into account, these cross
sections are to be considered as the total cross section. For
an analysis of these results, the quantum cross sections were

split out for each allowed inelastic transition. The coupling
between the 21Σ and 11Π states was neglected since in the
electronic calculations this coupling generally does not
have the correct asymptotic limit. This kind of procedure
was also adopted recently by Boyd and co-workers15.
Therefore, the coupling between these states are inferred
from other couplings. As can be observed in Table 1, there
is a weak coupling between the lowest (11Σ) and highest
(31Σ) states used in our calculations and this is expected
because such states have very weak radial coupling and no
rotational coupling et al. The contribution due to the ionic
and covalent channels, i.e., the 31Ζ+ state corresponding to
the covalent and to the second ionic channel, were used in
the LZ calculations. As can be seen in table 1 the LZ model
describes correctly the general behaviour of the cross sec-
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Table 1. Cross sections in Å2. The LZ results are the total cross sections

for the process under study. Subscripts 1,2 and 3 refer to the Σ states and
subscript 4 refers to the Π state.

T/eV σT
LZ σ13

q σ23
q σ34

q 

1.0 83.70 0.0 2.576 1.145

5.1 35.92 0.0 6.218 1.424

10.3 25.18 0.001 5.942 1.646

51.0 11.28 0.1786 3.158 1.858

102.0 7.972 0.7063 3.372 1.915

Figure 1. Comparison of total cross sections between our results (boxes)
and Gardaud and co-workers22 cross sections (triangles).



tion in this collision energy regime. For higher energies,
corrections for this model have certainly to be taken into
account. Moreover, it can also be observed from Table 1
that the charge transfer processes, for high energy colli-
sions is not a two state problem. Figure 1 compares the total
cross section out of the covalent state with the calculations
of Gargaud and co-workers22. When the energy increases
above 51 eV the agreement becomes poorer and the main
reason for this is certainly due to the absence of rotational
coupling which is important for higher collision energies.
Such a deviation can also be attributed to the difference
between the intermolecular potential of Gargaud el al.22

and the ab-initio potential of Lópes-Castillo and Ornellas16.
This can be analysed by checking the potential parameters
used in the two calculations as shown in Table 2 and
compared with other calculations. The present results are
equivalent to those of Fraija and co-workers and the great-
est disagreement might be due to the small ∆E of the outer
crossing of the model potential22. In this case our ∆E is
almost twice that of the Gargaud results.

The important region for a charge transfer process is
near the avoided crossing; although Gargaud et al. was
more concerned with the difference of energy in the asymp-
totic region. It is recognized that the CI calculation is more
reliable at intermediary R than at the asymptotic limit. In
the former case the potential model was parametrized for
the asymptotic energies which have provided an error less
than 0.0001%. Therefore one can expect that the potential
used in the present work can be more reliable for describing
the charge transfer process than that reported by Gargaud
and collaborators22, although they have good agreement for
the collision energy range used in this work.

If the results of Fraija and co-workers30, and those
reported by López-Castillo and Ornellas16 do not describe
correctly the outer crossing, then the results of Shipsey et
al.31 also should not properly describe the system, since the
three calculations employ the same method for the calcu-
lation. The agreement between Gargaud et al. calcula-
tions22 with those of Shipsey and collaborators31, for the
outer crossing, is likely to be incorrect. In addition, since
the Shipsey et al. calculation is less accurate than those
previouly reported16,30, it might be concluded that the re-
sults of Gargaud and co-workers are not quantitatively

correct when compared with the calculations of Fraija et al.
Moreover, Shipsey et al. have not used the translation
factor and from their results16 (Fig. 6) it can be observed
that the use of the central field method (or the use of the
translation factor) will increase the absolute value of the
total cross section16. Therefore, a comparison between the
results of Gargaud and those of Shipsey will certainly
disagree if such a factor is taken into account.

The comparison of the total quantum cross section
against the results of Gargaud and co-workers22 in Fig. 1
shows that our results increase faster than those of Gargaud
and co-workers. An extrapolation of these results for higher
energies can show that the ab-initio cross section calculated
in the present work will match the experimental results of
Iwai and co-workers20. This can also be observed in the
work of López-Castillo and Ornellas16 where they used a
colinear classical path method. Actually, a simple extrapo-
lation of the semi-classical total cross section presented by
López-Castillo and Ornellas16 (Fig. 5) to lower energies
indeed confirms this point. 
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