Acessibilidade / Reportar erro

Functionalized Multi Walled Carbon Nanotubes as a Carrier for Doxorubicin: Drug Adsorption Study and Statistical Optimization of Drug Loading by Factorial Design Methodology

Multi walled carbon nanotubes (MWNTs) have been identified as an efficient drug carrier. Here a controlled drug delivery system based on modified MWNTs with polyethylene glycol (PEG) was developed (MWNTs-PEG). Then doxorubicin (DOX) as an anticancer drug loaded to nanocarrier. All the parameters affecting the DOX adsorption such as: dose of adsorbent, pH, initial DOX concentration and contact time were studied for the first time by factorial design methodology to evaluate and optimize the adsorption conditions. The adsorption isotherm and other properties including kinetics and thermodynamics were studied. The adsorption isotherm was well described by the Freundlich model and adsorption kinetics followed a pseudo-second order model. The thermodynamic studies showed that the adsorption of DOX on nanocarrier is spontaneous and exothermic in nature. The cumulative release of DOX from MWNTs-PEG was pH dependent and the release rate was much higher at pH 5.5 than that at pH 7.4.

Keywords:
functionalized multi wall carbon nanotube; doxorubicin; adsorption isotherm; kinetic models


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br