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Introduction

Cellulose acetate is a polymer that can be easily molded
into different forms such as membranes, fibers, and spheres.
To conjugate the mechanical properties of the cellulose
acetate with the intrinsic properties of an inorganic
compound, hybrid organic/inorganic materials have been
prepared.1-10 Composites with many metal oxides, such as
TiO

2
,1,11 ZrO

2
,12 Fe

2
O

3
,13 Nb

2
O

5
14 and Sb

2
O

3
,15 have been

prepared and the resulting materials have been
demonstrated to be useful in ion-exchange processes,3 for

enzyme immobilization,16 to prepare semi-permeable
membranes,17 in reverse osmosis experiments,9 in catalytic
reactions8 and to support electroactive chemical species
for use as electrochemical sensors.14 These hybrid materials
are normally made by mixing the polymer solution and
the metal alkoxide solution, followed by a phase inversion
process.10, 18

Al
2
O

3 
dispersed on the cellulose fiber surface can

efficiently immobilize organofunctional molecules,
(RO)

3
Si(CH

2
)

3
L, since the Al-OH groups can easily react

with the precursor alkoxysilane  by forming the very stable
Al-O-Si bond.19 However, the amount of metal oxide, as a
thin film, that can be loaded onto the cellulose fiber is limited
by its surface area. When a larger amount of the metal oxide
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Este trabalho descreve a preparação e a caracterização da fibra acetato de celulose recoberta
com Al

2
O

3
, resultando no híbrido orgânico-inorgânico Cella/Al

2
O

3
. Posteriormente, este híbrido

foi modificado, imobilizando-se grupos organofuncionais,   através da reação com   o   precursor
(RO)

3
Si(CH

2
)

3
L   (L  = -NH

2
, -NH(CH

2
)

2
NH

2
, -NH(CH

2
)

2
NH(CH

2
)

2
NH

2
 e -NC

3
H

3
N),

 
o que resultou

nos materiais Cella/Al
2
O

3
/Si(CH

2
)

3
NH

2 
(1), Cella/Al

2
O

3
/Si(CH

2
)

3
NH(CH

2
)

2
NH

2 
(2), Cella/Al

2
O

3
/

Si(CH
2
)

3
NH(CH

2
)

2
NH(CH

2
)

2
NH

2 
(3) e Cella/Al

2
O

3
/Si(CH

2
)

3
NC

3
H

3
N  (imidazol) (4). A quantidade

de grupos organofuncionais ligados foram (em mmol por grama de material): 1 = 1,90, 2 = 1,89,
3 = 1,66 e 4 = 1,35. As isotermas de adsorção das soluções etanólicas de FeCl

3
, CuCl

2
 e ZnCl

2
 por

Cella/Al
2
O

3
/Si(CH

2
)

3
L foram obtidas à  298 K. Os resultados obtidos pela análise em fluxo

mostraram uma retenção e recuperação de praticamente 100% dos íons metálicos na coluna
empacotada com Cella/Al

2
O

3
/Si(CH

2
)

3
L, para uma solução contendo apenas um ion ou uma mistura

de íons.

This work describes the preparation and characterization of a cellulose acetate fiber coated
with Al

2
O

3
, resulting in the organic-inorganic hybrid Cella/Al

2
O

3
. Furthermore, it was modified

by attaching organofunctional groups, by reaction with the precursor reagents (RO)
3
Si(CH

2
)

3
L

(L = -NH
2
, NH(CH

2
)

2
NH

2
, NH(CH

2
)

2
NH(CH

2
)

2
NH

2
 and NC

3
H

3
N),

 
resulting in Cella/Al

2
O

3
/

Si(CH
2
)

3
NH

2 
(1), Cella/Al

2
O

3
/Si(CH

2
)

3
NH(CH

2
)

2
NH

2
 (2), Cella/Al

2
O

3
/Si(CH

2
)

3
NH(CH

2
)

2

NH(CH
2
)

2
NH

2 
(3) and Cella/Al

2
O

3
/Si(CH

2
)

3
NC

3
H

3
N  (imidazole) (4). The amount of attached

organofunctional groups were (in mmol per gram of the material): 1 = 1.90, 2 = 1.89, 3 = 1.66 and
4 = 1.35. The adsorption isotherms from ethanol solutions of FeCl

3
, CuCl

2
 and ZnCl

2
 by Cella/

Al
2
O

3
/Si(CH

2
)

3
L were obtained at 298 K. The results obtained in flow experiments showed a

retention and recovery of ca. 100% of the metal ions by Cella/Al
2
O

3
/Si(CH

2
)

3
L packed in a column,

for a solution containing either one or mixture of the ions.
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is required for incorporation in a matrix, the use of cellulose
acetate is desirable. The reason is that cellulose acetate, in
comparison to pure cellulose, is easily dissolved in organic
solvents and the metal oxide can be entrapped in the matrix
in the phase inversion process step of the preparation.20

This work reports the preparation of a cellulose acetate/
Al

2
O

3
, Cella/Al

2
O

3
, hybrid material and its further reaction

with (RO)
3
Si(CH

2
)

3
L to obtain Cella/Al

2
O

3
/Si(CH

2
)

3
L

(L= -NH
2
, -NH(CH

2
)

2
NH

2
, -NH(CH

2
)

2
NH(CH

2
)

2
NH

2
 and

imidazole group). The materials obtained were characterized
by scanning electron microscopy, nuclear magnetic
resonance (CPMAS 13C and MAS 27Al NMR) and thermal
analyses. Retention capacities of the attached basic organic
groups for Fe(III), Cu(II) and Zn(II) from ethanol solutions
were determined.

Experimental

Preparation of cellulose acetate/Al
2
O

3
 (Cella/Al

2
O

3
)

A viscous syrup containing 10 g of cellulose acetate
dissolved in a mixture of glacial acetic acid (53 mL) and
acetone (37 mL) was prepared. About 15 g of aluminum
isopropoxide (Aldrich), dissolved in a small amount of
trifluoroacetic acid, was added to the syrup (100 g) and
the mixture was stirred to homogenize  the phase. The
resulting syrup was slowly poured  into a flask containing
about 1000 mL of doubly distilled water, under rapid
stirring. The fibers were collected by filtration, washed with
water and dried under vacuum at room temperature.

Attachment of organofunctional groups on Cella/Al
2
O

3

About 5 g of Cella/Al
2
O

3
 was immersed in 100 mL of

dry toluene, 10 mL of (RO)
3
Si(CH

2
)

3
L (Aldrich) (L= -NH

2
,

-NH(CH
2
)

2
NH

2
, -[NH(CH

2
)

2 
]

2
NH

2
 was added and the

mixture was stirred for 8h under an argon atmosphere. The
mixture was filtered, washed with ethanol and water and
then dried under vacuum (10-3 Torr) at room temperature.

To prepare the material with the imidazole attached
group, the procedure was as follows: 9.2 mL of
(MeO)

3
Si(CH

2
)

3
Cl (50 mmol; Aldrich)  was dissolved in 50

mL of dry toluene and 3.4 g (53 mmol) of imidazole was
added and the mixture was refluxed for 3 h under argon.
The solvent was removed by distillation under vacuum and
the resulting oil, containing essentially 3(N-imidazolyl)
propyltrimethoxysilane was redissolved in 100 mL of
toluene. About 5 g of Cella/Al

2
O

3
 was added and the mixture,

was stirred for 12 h at room temperature. The mixture was
filtered, washed with pure ethanol, water, and dried under
vacuum at room temperature.

Characterization of the hybrid materials

The amount of aluminum in Cella/Al
2
O

3
 was

determined by calcinating 0.3 g of the sample at 1173 K,
for 2 h, and the residue was weighed as Al

2
O

3
.

The amount of nitrogen in Cella/Al
2
O

3
/Si(CH

2
)

3
L was

determined, for each sample, by the Kjeldhal method.
The SEM images were obtained for samples dispersed

on a double faced conducting tape adhered on an aluminum
support. The samples were coated with graphite by the low
voltage sputtering deposition technique using a Plasma
Science Model LVC 76 apparatus. The measurements were
made with a JSM T-300 microscope connected to a
secondary electron detector and X-ray energy dispersive
spectrometer (EDS) from Northern.

The solid state 13C and 27Al NMR spectra were obtained
on a Bruker AC 300P spectrometer at room temperature.
13C CPMAS NMR spectra were obtained using pulse
sequences with 1 ms contact time, an interval between pulses
of 2s and an acquisition time of 156 ms. The chemical shift
was calibrated against standard TMS. 27Al MAS NMR
spectra were obtained using pulse sequences with an interval
between pulses of 1s and acquisition time of 49 ms. The
chemical shift was calibrated by using an external solution
of 1.0 mol L-1 Al(NO

3
)

3
 dissolved in 0.1 mol L-1 HNO

3
.

The thermogravimetric analyses of the cellulose acetate
and the composites were carried out on a Dupont TGA
2050 apparatus. About 5 mg of the samples were heated
with a scan rate of 5 K min-1 under an argon atmosphere.

The adsorption isotherms for FeCl
3
, CuCl

2
 and ZnCl

2

from ethanol solutions were determined by using the batch
technique. About 0.1 g of the modified cellulose acetate
was shaken for 3h, with variable concentration of the metal
halides, at a constant temperature of 298.0 ± 0.2 K. The
concentration of the metal ion in the solution phase, in
equilibrium with the solid phase, was determined by
complexometric titration using a 0.01 mol L-1 EDTA
standard solution. The amount of the adsorbed metal was
determined by applying the equation: N

f
= (N

a
-N

s
)/m, where

m is the mass of the adsorvent, and N
a
 and N

s
 are the initial

and the equilibrium condition mole numbers of the metal
in the solution phase, respectively.

Metal retention experiments

A column with 10 mm length and 5 mm internal diameter
was filled with about 1 g of the material and connected on
line with a peristaltic pump. Individual ethanol solutions
containing of FeCl

3
= 5.7, CuCl

2
= 6.5 and

 
ZnCl

2
= 6.5 mg L-1

were passed through the column with a flow rate of 0.65
mL min-1. The column was washed with pure ethanol and
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Figure 2. MAS 27Al NMR spectra of (A) Cella/Al
2
O

3 
and (B) (1).

the metals eluted with a mixture of (ethanol):(0.1 mol L-1

aqueous HCl solution) in a 4:1 (v/v) proportion. The eluted
metals were analyzed on a Perkin Elmer Model 5100 atomic
absorption spectrometer. For each metal, triplicate
determinations were carried out.

Results and Discussion

Characteristics of the material

The amount of Al
2
O

3 
in Cella/Al

2
O

3 
was 3.7 wt%,

corresponding to 1.4 mmol g-1 of aluminum. The amount
of incorporated oxide in the matrix is very high, in
comparison with that obtained by using pure cellulose fiber
for the reaction to give Cel/Al

2
O

3
, where 2.0 wt % (0.6

mmol g-1 of aluminum ion) was observed. The high yield
obtained is due to the preparation procedure of Cella/Al

2
O

3
,

where the Al
2
O

3
 particles are immobilized-entrapped in the

matrix, while in the case of cellulose fiber, Cel/Al
2
O

3
,

immobilization occurred only on the surface.19

Figure 1 shows the SEM and the corresponding EDS
images for Cella/Al

2
O

3
. In Figure 1a, no particle agglomerate

can be observed on the fiber surface and in the EDS image
(Figure 1b), the white dots are due to the aluminum atoms
and correspond to emission lines with an energy of 1.475

keV.21 The SEM image shows that, within the magnification
used to obtain the images, a uniform dispersion of the particles
with no visible agglomerates on the matrix was achieved.

Organofunctionalization of Cella/Al
2
O

3

Table 1 lists the results of the chemical analyses. Since
the precursor reagent (RO)

3
Si(CH

2
)

3
L reacts with AlOH

groups of the hydrated Al
2
O

3
,  according to the reaction:

3AlOH + (RO)
3
Si(CH

2
)

3
L → (AlO)

3
Si(CH

2
)

3
L + 3ROH

a high degree of orgafunctionalization is achieved in the
present case. For the sake of brevity, the resulting materials
are Cella/Al

2
O

3
/Si(CH

2
)

3
NH

2
 (1); Cella/Al

2
O

3
/

Si(CH
2
)

3
NH(CH

2
)

2
NH

2 
(2); Cella/Al

2
O

3
/Si(CH

2
)

3
-

[NH(CH
2
)

2
]

2
NH

2 
(3) and Cella/Al

2
O

3
/Si(CH

2
)

3
NC

3
H

3
N

(imidazole group) (4).
A clear evidence of the alkoxysilane reaction with the

AlOH groups of Cella/Al
2
O

3
 is given by the 27Al MAS

NMR spectra, illustrated in Figure 2 for 1. The peak at δ 6

Figure 1. SEM image of Cella/Al
2
O

3
 (a) and the corresponding EDS Al

mapping image (b). The Al emission line (white points) energy is 1.475
keV).

b

a

Table 1. Quantity  of attached functional groups in Cella/Al
2
O

3
/Si(CH

2
)

3
L

Samples N Functional
/wt% groups

/mmol g-1

Cella/Al2O3/Si(CH2)3NH2 1 2.66 1.90

Cella/Al2O3/Si(CH2)3NH(CH2)2NH2 2 5.29 1.89

Cella/Al2O3/Si(CH2)3NH(CH2)2NH(CH2)2NH2 3 6.97 1.66

4  3.78 1.35Cella/Al2O3/Si(CH2)3 N N
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is assigned to the aluminum ion in an octahedral
environment (Al

O
) while the peak at δ 62 is assigned to

aluminum in a tetrahedral environment (Al
T
).22, 23 By

reacting with the organofunctional group, the intensities
of the peaks changed, i.e. Al

T 
became more intense. The

reason is that the alkoxy groups of the coupling reagent
(RO)

3
Si(CH

2
)

3
L react with the OH groups of the hydrated

aluminum ions, which are in an octahedral environment,
changing the coordination from 6-fold (Al

O
) to 4-fold

(Al
T
).24-28

Figure 3 shows the 13C NMR spectra of Cella/Al
2
O

3

and 1-4. Table 2 lists the observed chemical shifts and the
corresponding assignments. Comparing the chemical shift
values of Cella/Al

2
O

3
, 1-4, cellulose acetate29 and  the

organofunctional  groups,30 no significant changes are
observed for the cellulose acetate 13C NMR, indicating that
the aluminum oxide and the organic groups attached on
the matrix surface interact weakly with the cellulose acetate
groups.

Thermal stability

Thermogravimetric curves for Cella, Cella/Al
2
O

3
 and

1-4 are presented in Figure 4.  The temperatures at which
the hybrids 1-4 start to degrade, about 250 oC, compared
with that of the Cella and Cella/Al

2
O

3
 are practically

unaffected.

Isotherms of adsorption

In order to verify the usefulness of the material for metal
ion adsorption from ethanol solutions, the adsorption
isotherms of selected metals, Fe3+, Cu2+ and Zn2+ were
studied. Figures  5, 6 and 7 show the isotherms of adsorption
for these three metals from ethanol solutions by Cella/
Al

2
O

3
/Si(CH

2
)

3
L.

The immobilized species on the solid surface are all
neutral ligands and, thus, MCl

z
 diffuse from the solution

phase into the solid surface as neutral species. The metal
ions bind to the nitrogen atoms and the anions can be in
the inner coordination sphere, bonded to the metal ion or
remain in the outer sphere, balancing the charge. In any
case, the equilibrium of complex formation with the
electrically neutral grafted ligands can formally be
expressed as:

n Si(CH
2
)

3
L + MCl

z
  →←  [Si(CH

2
)

3
L]

n
MCl

z

The solid adsorption capacity for the metal halide by
Cella/Al

2
O

3
/Si(CH

2
)

3
L will depend on the nature of the

complex formed on the surface and also on the affinity for

Figure 3. CPMAS 13C NMR spectra of Cella/Al
2
O

3
 and samples 1-4.

Figure 4. Thermogravimetric curves for Cella, Cella/Al
2
O

3
 and samples

1-4. Heating rate of 5 K min-1 under an argon atmosphere.

the metal for the particular attached ligand.  Table 3 lists
the maximum adsorption capacity, N

f
max, for each metal

halide by the modified cellulose acetate. It is observed that
N

f
max is the highest for FeCl

3
 and, for CuCl

2
 and ZnCl

2
,

they are approximately the same.
The distribution coefficient, defined as D=N

f
/C, where

C is the MZ+ equilibrium concentration in the solution phase,
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Figure 5. Adsorption isotherms for FeCl
3
 from ethanol solutions at 298

K. (● ) (1), (▲) (2), (!) (3) and (■ ) (4).
Figure 6. Adsorption isotherms for CuCl

2
 from ethanol solutions at 298

K: (● ) (1), (▲) (2), (!) (3) and (■ ) (4).

Table 2. CP MAS 13C NMR Spectra for Cella, Cella/Al
2
O

3
 and Cella/Al

2
O

3
/Si(CH

2
)

3
L.

Samples Chem. shifts/δppm Assign.

101.9, 63.3 C1,C6

73.5 C2-5

20.0 CH
3

171.3 C-O

101.9, 63.3 C1,C6

73.5 C2-5

20.0 CH
3

171.3 C-O
10.7 C1a

21.3 C2a

43.1 C3a

101.9, 63.3 C1,C6

73.5 C2-5

20.0 CH
3

171.3 C-O
11.7 C1a

20.8 C2a

39.2 C3a

53.2 C4a,5a

101.9, 63.3 C1, C6

73.5 C2-5

20.0 CH
3

171.3 C-O
12.0 C1a

22.8 C2a

43.9 C3a

51.9 C4a-7a

101.9, 63.3 C1, C6

73.5 C2-5

20.0 CH
3

171.3 C-O
10.9 C1a

21.4 C2a

43.2 C3a

129 C4a

145  C5a,6a

CH2OR

CH2OR OR

HH

H

O

H

O
O

RO
H

HOR

HH
O

H

O

RO
H

1

2

3

4
5

6

R= CH3CO- , acetyl, or -H group

Cella/Al2O3/SiCH2CH2CH2-NH2
1a 2a 3a

Cella/Al2O3/SiCH2CH2CH2-NHCH2CH2NH2
1a 2a 3a 4a 5a

7a6a5a4a3a2a1a
Cella/Al2O3/SiCH2CH2CH2-NHCH2CH2NHCH2CH2NH2

5a

6a

4a

3a2a1a
N NCella/Al2O3/SiCH2CH2CH2
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was determined. Since this coefficient is not constant at
higher metal concentration in the solution phase, it was
determined in the region where N

f
 against C showed a linear

correlation, i.e., in the low metal concentration region.31-36

Table 4 lists the values of D determined according to this
procedure. We observe that for 2 and 3, the coefficients
are slightly higher in comparison with 1 and 4. The main
reason is that 2 and 3 are bidentate and tridentate ligands,
respectively, and 1 and 4, monodentate.

Retention of the metal ions

Table 5 summarizes the results obtained for individual
metals ion retention. Experiments, carried out in triplicate

for each metal ion, showed that in every case, the column
retained and released the metal ions with nearly 100%
efficiency. The adsorbed complex metal ion is easily
leached from the surface as an aqua complex when in
contact with acidified water:

[Si(CH
2
)

3
L]

n
MCl

z
 + mH

2
O → nSi(CH

2
)

3
L + M(OH

2
)

m
z+ +  zCl-

Table 6 lists the results obtained from the experiments
carried out  by passing a mixture of the three metals through
the column packed with the material. In this case, retention
and further elution with acidified water was carried out with
the same efficiency as observed for the individual metal.

Figure 7. Adsorption isotherms for ZnCl
2
 from ethanol solutions at 298

K. (● ) (1), (▲) (2), (!) (3) and (■ ) (4).

Table 3. Adsorption capacity (N
f
max) of FeCl

3
, CuCl

2
 and ZnCl

2
 by Cella/

Al
2
O

3
/Si(CH

2
)

3
L.

Samples N
f
max / mmol g-1

FeCl
3

CuCl
2

ZnCl
2

1 0.19 0.16 0.11
2 0.58 0.33 0.35
3 0.48 0.24 0.25
4 0.25 0.19 0.13

Table 4. Distribution coefficient of FeCl
3
, CuCl

2
 and ZnCl

2
 in CellaAl

2
O

3
/

Si(CH
2
)

3
L

Samples Distribution coefficient / mL g-1

FeCl
3

CuCl
2

ZnCl
2

1 1.6x102   1.1x102   6.4x102

2 3.5x102   4.0x102 13x102

3 1.9x102 15x102 16x102

4 1.2x102   0.71x102   0.70x102

Table 5. Pre-concentration and recovery of FeCl
3
, CuCl

2
 and ZnCl

2
,

from individual ethanol solution by Cella/Al
2
O

3
/Si(CH

2
)

3
L in a packed

column.

Samples Flow rate Adsorbed Recovered
/mL min-1 /µmol /µmol

1
Fe(III) 0.65 0.99 0.98 ±  0.01
Cu(II) 0.70 1.07 1.07 ± 0.01
Zn(II) 0.62 0.93 0.92 ± 0.01

2
Fe(III) 0.69 1.05 1.03 ± 0.01
Cu(II) 0.64 0.99 0.97 ± 0.01
Zn(II) 0.60 0.90 0.88 ± 0.01

3
Fe(III) 0.68 1.04 1.03 ± 0.01
Cu(II) 0.63 0.97 0.96 ± 0.01
Zn(II) 0.64 0.95 0.96 ± 0.01

4
Fe(III) 0.64 0.98 0.97 ± 0.01
Cu(II) 0.65 1.00 0.99 ± 0.01
Zn(II) 0.69 1.06 1.03 ± 0.01

Table 6. Pre-concentration and recovery of a mixture of FeCl
3
, CuCl

2

and ZnCl
2
 from ethanol solution by Cella/Al

2
O

3
/Si(CH

2
)

3
L in a packed

column.

Samples Flow rate Adsorbed Recovered
/mL min-1 /µmol /µmol

1
Fe(III) 0.70 0.87 0.87 ±  0.01
Cu(II) 0.70 0.88 0.87 ± 0.01
Zn(II) 0.70 0.88 0.87 ± 0.01

2
Fe(III) 0.62 0.77 0.77 ± 0.01
Cu(II) 0.62 0.78 0.78 ± 0.01
Zn(II) 0.62 0.78 0.77 ± 0.01

3
Fe(III) 0.73 0.91 0.90 ± 0.01
Cu(II) 0.73 0.91 0.90 ± 0.01
Zn(II) 0.73 0.91 0.90 ± 0.01

4
Fe(III) 0.68 0.85 0.84 ± 0.01
Cu(II) 0.68 0.85 0.84 ± 0.01
Zn(II) 0.68 0.85 0.84 ± 0.01
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Conclusions

Al
2
O

3
 can be dispersed on a cellulose acetate fiber using

a procedure wherein the oxide is immobilized by
entrapment in the fiber upon a phase inversion step of the
preparation. EDS metal mapping showed, within the
magnification used, that aluminum oxide particles were
uniformly dispersed in the cellulose acetate matrix.

Pure cellulose acetate fibers cannot be easily
functionalized with the normally available alkoxysilanes.
However, if the surface is coated by a film of Al

2
O

3
, which

strongly adheres to the surface, the modified substrate
becomes very convenient for further modification with
(RO)

3
Si(CH

2
)

3
L coupling reagents. The organofunctional

groups efficiently coat the Cella/Al
2
O

3
 surface by the

formation of a Al-O-Si bond. Since this bond is very stable,
in a normal operation with the material in aqueous acid
solutions or in non aqueous solvents, the organic groups
are not released to the solution phase, due to the breaking
of this bond. Therefore, Cella/Al

2
O

3
/Si(CH

2
)

3
L could be

used, without any significant loss of adsorption capacity,
after various adsoprtion and desorption operations.  An
additional advantage in the present case is the high
functionalization degree exhibited by the material and
consequently the large adsorption capacity, resulting from
the new preparation procedure used in this work.
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