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The present manuscript makes an extensive review of the scientific approaches developed in the 
last decade involving infrared and Raman spectroscopy combined with chemometrics for solving 
several issues in the investigation of the most relevant forensic traces, such as questioned documents 
and currency, explosives, gunshot residues, illicit drugs and body fluids. In addition, current 
trends, main challenges and the adequate use of several chemometric techniques are discussed. 
Principal component analysis (PCA) was found to be the most used technique. This unsupervised 
approach, however, has sometimes been misunderstood as a classification technique. Discriminant 
analysis techniques are widely employed, leaving a range of possibilities for application of 
class-modeling techniques, particularly in cases of problems regarding only one target class. In 
addition, increasingly complex dataset structures frequently require nonlinear approaches or flexible 
techniques such as multivariate curve resolution-alternating least squares (MCR-ALS). Results 
reporting, however, still lack reliable quality parameters and sample representativeness, posing 
a significant challenge to the solution of forensic problems. Regarding the analytical techniques, 
Raman has been playing an important role, especially in the area of questioned documents and of 
body fluids. Portable and hyperspectral imaging infrared spectrometers have also been showing 
significant potential in forensic applications.
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1. Introduction

Forensic chemistry is the core field of forensic science, 
using and developing chemical methods and techniques 
for the analysis of materials that are relevant in criminal 
investigations and legal disputes.1 This field presents 
many challenges from an analytical chemistry point of 
view. For instance, the array of materials found at crime 
scenes is diverse, complex and most of the time of an 
unknown nature. In addition, the quantity of evidence may 
be insufficient for multiple analysis, yet maintaining the 
integrity of the material is a legal requirement for counter-
proof analysis.

Vibrational spectroscopic techniques such as infrared 
and Raman have gained particular importance in forensic 
contexts because they combine a number of advantages.2,3 
They can characterize the structure of a great number 

of organic and inorganic materials found at crime 
scenes and can help determine their identity. They are 
nondestructive and relatively simple to use. Moreover, the 
instrumental versatility of handheld, portable, imaging 
and sensing approaches allow for a variety of useful 
analytical possibilities, particularly in loco.4-7 Another 
vibrational technique with forensic application is terahertz 
spectroscopy (for further reading refer to Burnett et al.).8 Its 
use in forensic laboratories is far less common than Raman 
and infrared spectroscopies, which is the main reason why 
it has not been considered within the scope of the present 
manuscript. Nevertheless, it is expected that the potential 
of this technique will emerge in future studies.

Muro et al.9 have reviewed the application of Raman and 
infrared spectroscopy to the analysis of trace evidence, ink 
analysis, biological samples, anthropology, gunshot residues, 
and illicit drugs, among others. They provided an overview 
of the scientific approaches developed in recent years and 
introduced some concepts of multivariate data analysis 
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(a.k.a. chemometrics) for more effective analysis of complex 
spectroscopic data. Since then, several other reviews have 
been published in forensic chemistry with some focus in 
chemometrics. For example, Martín-Alberca et al.10 reviewed 
the application of different analytical techniques for analysis 
of fire debris; Zadora and Menżyk11 discussed the potential 
of spectroscopy (ultraviolet (UV), fluorescence, infrared, 
Raman) for estimation of time of deposition of bloodstains; 
Khandasammy et al.12 described the advances of Raman 
spectroscopy for blood, paint and drug analyses; Mazivila 
and Olivieri13 discussed the applications of vibrational 
spectroscopy and imaging for counterfeit medicines; 
Cailletaud et al.14 and Yu et al.15 reviewed the surface-
enhanced Raman spectroscopy (SERS) applications for 
pharmaceutical and drugs; Kumar and Sharma16,17 published 
two reviews on analytical methodologies employing 
chemometrics and forensic traces. Despite the important 
contributions discussed, the authors only provided brief 
discussions on chemometrics and did not address specific 
issues encountered at the intersection between vibrational 
spectroscopy, chemometrics and forensic chemistry. These 
raise many issues that should be discussed, such as the 
proper method to employ classification techniques, the 
organization and division of the training and test sets, 
validation and substrate influence. The literature clearly 
shows that there is a wide gap between forensic chemists 
and chemometricians. On one hand, most forensic chemists 
are not sufficiently prepared in chemometrics and on the 
other hand, chemometricians are not familiar with forensic 
questions.

This manuscript provides a critical discussion of current 
research studies employing vibrational spectroscopy 
techniques associated with chemometrics in forensic 
chemistry contexts, particularly the analysis of the most 
important types of forensic evidence such as questioned 
documents and currency, gunshot residues, explosives, 
illicit drugs and body fluids. We focus the discussion on 
the main challenges posed by these analyses (for example, 
mixtures and substrate interferences) and the correct 
application of the chemometric techniques. Understanding 
that overlooking the limitations of some methodologies can, 
on occasion, make them seem limited to a single forensic 
problem and to the analysis of only a certain type of 
evidences, this review aims to present the symbiotic relation 
between analytical chemistry, sampling and statistical 
representativeness in forensic chemistry.

2. Chemometrics

Chemometrics appears as a natural consequence of 
the qualitative and quantitative extraction of relevant 

information from spectroscopic data. In many cases, 
chemometrics provides the statistical basis and confidence 
levels for reliable identification of compounds of interest, 
and consequently, helps the experts during the decision-
making process and collection of relevant evidence for 
further analysis. A number of chemometric techniques 
can be employed in forensic analysis, depending on 
the problem at hand and what information is necessary. 
Pattern recognition is particularly interesting for forensic 
purposes because it identifies consistencies in the dataset 
and can, for instance, classify unknown samples in different 
categories.18 There are different techniques for pattern 
recognition in forensic chemistry, which can be roughly 
divided into unsupervised, regression, classification and 
resolution techniques. Here, we address the main techniques 
employed in forensic applications, more specifically, a brief 
consideration of the mathematical theory behind them as 
well as their advantages and drawbacks.

Before any analysis of data, it is extremely important 
to apply preprocessing techniques to discard irrelevant 
information that may be generated by instrumental 
variation, scattering, spurious radiation or even irrelevant 
variations in the samples. Data from spectroscopic 
techniques such as infrared and Raman, usually require 
some correction, but the application of preprocessing 
techniques is out of the scope of the present manuscript 
(for further reading, see Rinnan et al.,19 Bocklitz et al.20 
and Lee et al.21 works). Nevertheless, it is important to 
emphasize that preprocessing tools are no miracle-workers 
and do not replace the acquisition of quality spectra, so fewer 
modifications of the dataset are preferred. Parsimonious 
approaches are always a good option in data treatment.

2.1. Unsupervised techniques

Unsupervised techniques are extremely useful in 
forensic chemical analysis, particularly when the expert 
has no idea of the source of the trace. This is because no 
prior information is required to build models or make 
interpretations. Usually, the purpose of using unsupervised 
techniques is to explore possible clusters and obtain a 
preliminary discrimination of the samples. As will be 
shown in this manuscript, the majority of studies employed 
at least one unsupervised technique before more advanced 
data treatments. In fact, this practice helps to understand a 
bit more about the dataset and can solve simple problems.

Principal component analysis (PCA) is the most widely 
used unsupervised technique, used particularly to extract 
the relevant information of a dataset in a reduced space, 
based on the variance of data. It is important to emphasize 
that PCA is an exploratory technique and not a classification 
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technique per se. Despite this, it can assist classification 
techniques in establishing the class of an unknown sample 
with a given confidence level. Different classification 
techniques are addressed at “2.3. Supervised classification” 
sub-section.

The mathematical aim of PCA is to decompose the 
X matrix (containing the observed data) into scores (T) 
and loadings (P). A PCA model builds a space of new 
orthogonal variables (principal components or PCs) through 
a linear combination of the original ones by maximizing the 
variance in the data. Each PC will retain only a fraction of 
data variance,22,23 which will decrease with the number of 
components. The plot of scores, which represent samples’ 
coordinates on the new space of variables, provides 
information about similarities and differences between/
among the samples. The loadings plot corresponds to the 
weights of the original variables and their contribution to 
the variability of a specific PC. Thus, the loadings identify 
the spectral regions related to the variability described in 
each PC.

PCA is often employed to explore clusters in the 
dataset but without being able to assign samples to groups 
according to their similarities. For this, a set of unsupervised 
classification techniques can be employed, called clustering 
techniques.24 There are two clustering methods, hierarchical 
and partitioning, which differ in output and algorithm. 
Hierarchical methods provide multilevel nested results 
while partitioning offers a single level result. Other 
clustering techniques can be found in the literature25 but 
only the main ones, hierarchical cluster analysis (HCA) and 
K-means, will be considered in this manuscript.

HCA is particularly useful when the number of clusters 
is unknown. There are two approaches for this technique, 
the agglomerative and the divisive. In the agglomerative 
method, each sample constitutes a different cluster and 
an agglomeration process runs until all samples are 
assembled to a single cluster. The contrary occurs in the 
divisive method, where the initial cluster contains all 
samples and a segregation process runs until each sample 
forms an isolated cluster.25 Then, similarities between the 
samples are calculated, for example, using correlation 
coefficients, Euclidean, Manhattan or Mahalanobis 
distances.26 Afterwards, a linkage method can be defined 
for the agglomerative approach or a mining method for the 
divisive approach.

K-means is a clustering technique based on the 
partitioning approach. In this case, the number of clusters 
must be known in advance and the initial clusters are 
randomly assigned. During an iteration, the distance 
between each individual sample and the clusters’ centroid 
is calculated and the sample is reassigned to the group 

of the nearest centroid. In every iteration, the centroid is 
recalculated and this process continues until an ending 
criterion is met, for example, when there are no more 
changes in the clusters.25,27

As previously mentioned, the identification of clusters 
often provides important information to forensic scenarios 
because the similarities and differences between suspicious 
samples can be identified more easily. Although PCA, 
HCA and K-means are usually employed for this matter, 
variance and distances are not always the best approach to 
find meaningful projections within the dataset. Projection 
pursuit (PP)28 is another unsupervised alternative. The 
main idea of PP is to represent the dataset in a low 
dimensional space revealing “interesting structures”. To do 
this, a projection index must be optimized using different 
functions, which will depend upon the final purpose of the 
analysis.29-32 The kurtosis parameter is one useful projection 
index for cluster identification (or outlier detection).32-35 
By minimizing kurtosis, the bimodality of a distribution 
is maximized, leading to clustered structures.32 Ultimately, 
interpretation of PP results is similar to PCA.

Independent component analysis (ICA) is another 
unsupervised technique that can be useful for data 
decomposition.36,37 It is based on the assumption that the X 
matrix, containing the observed data, is a result of a linear 
combination of independent sources. The goal is to perform 
a decomposition in which the statistical independence of 
the components is maximized.38 Different algorithms are 
employed for this, including FastICA, joint approximate 
eigenmatrices (JADE), mean-field ICA (MF-ICA), among 
others.39

2.2. Calibration

Calibration techniques (also referred to as regression 
techniques) are supervised tools, in which previous 
information about the parameter must be provided in order 
to establish a relationship with the spectral information 
and find the regression vector; those techniques are useful 
for quantitative analysis. Principal component regression 
(PCR) is a calibration technique based on PCA that relates 
the scores information of the relevant PCs to a parameter 
of interest, y. The scores relate to y through a rotation or 
regression vector, which is used to estimate the parameter 
for new samples. It is important to observe that, since only 
the relevant PCs are employed in regression, PCR is able to 
retain only the essential information to build the regression 
vector b, which is an advantage when compared to methods 
like multiple linear regression.26,40,41

Partial least squares (PLS or PLSR)42,43 is a widely 
applied regression technique that builds models by 
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maximizing the covariance between the spectral information 
and the property of interest, y. When only one property of 
interest is being analyzed, y is a vector and the model 
is referred to as PLS1; however, when more than one 
property is being analyzed, y is a matrix (Y) and the model 
is referred to as PLS2.44 PLS builds new latent variables 
(LV) that will define the model complexity, analogously 
to PCs in a PCA model. Many extensions of PLS can be 
found in the literature.45-47 For example, OPLS is when 
orthogonal signal correction (OSC)48 pre-processing 
technique is adapted to each iteration of PLS to remove 
from the X matrix the non-correlated information with 
y.49 Another example is sPLS where sparse methods are 
applied as variable selection steps. This technique uses a 
penalty term to set to zero uninformative variables in the 
regression vector.45,50-52 Moreover, PLS and its extensions 
can be adapted to classification purposes, such as PLS-DA 
(partial least squares-discriminant analysis), as discussed 
in “2.3. Supervised classification” sub-section.

Classical least squares (CLS) is another regression 
technique which is based on Beer-Lambert’s law for 
multiple analytes. The spectroscopic data (X matrix) can be 
described as a result of the contributions (C) of each analyte 
represented by their respective spectral profiles (ST). CLS 
can be a very powerful tool for pharmaceutical problems, 
for instance, when the total number of compounds and 
spectral profiles are well-known. However, this technique 
is not appropriate when the total number of analytes present 
in the samples is unknown, nor with complex samples,53 
as in the majority of forensic problems. Alternatively, 
resolution techniques are more appropriate in these cases, 
as it is shown in “2.4. Resolution” sub-section.

2.2.1. Validation and figures of merit
Representative samples are at the core of a reliable model, 

but this is not easily achieved in forensic contexts. When 
dealing with body fluids, unusual drugs or even a wide variety 
in the target class, it can be difficult to represent the universe 
of samples that are being analyzed. Flexible modelling is 
an important approach to circumvent representativeness 
problems, from a modeling standpoint, but undoubtedly, a 
proper validation step can make a big difference.

Each sample set has its own role in model building 
and, therefore, it is of fundamental importance to report 
that information when proposing a new methodology. 
In this review, we address only calibration, validation 
and prediction sets. A calibration set, also known as 
training set in a classification context, is usually, although 
not necessarily, composed by the majority of samples 
in the dataset. It should contain enough samples to be 
representative of the dataset. Together with the validation 

set, it is used to build the model. The validation set can be 
composed of external samples or the same samples used 
in the calibration/training set, e.g. when cross-validation 
or re-sampling techniques are being performed, such as 
bootstrap for example.54,55 This set of samples is used to 
optimize the model and avoid overfitting problems. When 
enough samples are available, external validation should 
be considered, because variability is increased, producing 
more reliable results. The prediction set must be composed 
by external samples that were not used for building the 
model, and it will provide the parameters to assess the 
models’ ability to predict new samples. It is important 
to emphasize that, in general, the dataset must be split 
in a way that all the replicates of a particular sample are 
included in either the calibration or the prediction sets. This 
is particularly important to ensure that the prediction set 
is indeed independent from calibration/training. A recent 
study showed that, in some cases, no statistically significant 
differences were noted between the two approaches in the 
final results.56 This, however, should not be generalized and, 
as a rule of thumb, calibration/training and prediction sets 
should be independent. Notice that independence can have 
different meanings, in terms of sampling, depending on the 
target of analysis. In a hypothetical case of classification 
problem, if one is interested in classifying a given ink 
entry according to a specific brand and model of pen, then 
this particular brand and model must be well represented. 
Different pens should be acquired, and the spectra acquired 
from all ink entries from an individual pen should belong 
either to calibration or to prediction set. However, if the 
target of analysis is to classify a given ink entry according 
with an individual pen, the independence is related to each 
entry, and all spectra from a specific entry should belong to 
either the calibration set or the prediction set.

For calibration purposes, the main parameters being 
evaluated to assess the final performance of the model 
include the coefficient of determination (R2), the root 
mean square error (RMSE) and bias. R2 represents the 
amount of variability from the dataset which is explained 
by the model and ranges from 0 to 1 (or 100%). A model 
with low residual values should have R2 ca. 1, meaning 
that the quadratic sum of regression is similar to the total 
quadratic sum (equation 1). RMSE measures the global 
error in the model and can be calculated for the calibration 
(RMSEC), validation (RMSEV or RMSECV, in case of 
cross-validation) and prediction (RMSEP) sets, as shown 
in equation 2. Bias indicate systematic errors, according 
to equation 3.

 (1)
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 (2)

 (3)

where ŷi, ȳ and yi are the predicted, the mean and the ith 
value of the dependent variable; and N is the number of 
samples in the validation or prediction sets or the degrees 
of freedom in the calibration set.

At this point, it is important to emphasize that bias 
estimation should be carried out using prediction samples 
to provide a significant and reliable result of model 
performance, avoiding the optimistic result that will 
probably be provided by calibration samples. In addition, 
it is important that a proper significance test is performed 
(such as t-test, F-tests, among others) to investigate such 
things as bias or significant differences between models. 
For further information on this, the reader is encouraged 
to consult the ASTM recommendation57 for practices on 
multivariate quantitative analysis.

Other important figures of merit related to the performance 
of calibration models that should be reported are detection 
limit (LOD), uncertainty and precision. Those quality 
parameters are crucial for understanding model validity 
and applicability, especially in real cases, such as forensic 
scenarios. LOD, for instance, refers to the lowest amount of 
a given compound that provides an instrumental response 
that is statistically different from the background, in a given 
confidence interval.58 This confidence interval plays an 
important role in the definition of the detection limit since 
it is able to differentiate the LOD from the critical level 
of the decision limit (LC). The latter defines a minimum 
quantity needed for identification of the analyte but without 
a sufficient level of confidence. This is particularly important 
to differentiate among the evidence of absence, the lack of 
evidence, and the evidence of presence of a given analyte, as 
discussed by Olivieri59 and Olivieri and Escandar.60

Uncertainty measurements are crucial to provide the 
reliability of a given methodology. Since the calibration 
parameters are considered infinitely precise, the only 
source of errors should be related to spectral acquisition 
and measurements. Three main sources of errors can affect 
the uncertainty of the model: (i) spectral measurements 
from unknown samples; (ii) spectral measurements from 
calibration samples; and (iii) measurements from the 
reference values (concentration or a parameter of interest).

When reporting a model result, it is important to 
provide information regarding the concordance between 
two or more results. These precision estimations are usually 
reported in terms of standard deviation and can include 

repeatability, reproducibility and intermediate precision 
measurements. For more detail and comprehensive reading 
on the concept of figures of merit and its role in calibration 
models, the following references are suggested.59,61

In the forensic scenario, those figures of merit are 
seldom reported, but extremely valuable to ensure the 
analyst of the reliability of the model that is being proposed. 
In fact, it is the lack of reliability in forensic results that 
allow flawed analysis and wrong convictions to occur, a 
subject of discussion for some years.62

2.3. Supervised classification

Classification is the process of assigning an individual 
sample to a specific class or category with similar 
features.63 Classification techniques differ in several 
ways and can be categorized according to the linearity 
of the method employed to define the decision boundary, 
the probabilistic nature of the technique (parametric or 
non-parametric) and the nature of discrimination. In 
respect to the latter, a fundamental difference must be made 
among classification techniques, that is, class-modeling 
and discriminant analysis.63,64 But first, it is of utmost 
importance to define the problem from the analytical, the 
forensic and the chemometric point of view before applying 
any classification technique. From the analytical point of 
view, decisions should be made according to the analytical 
technique employed, the type of sample and the target of 
analysis. A discussion of this can be found in “3. Raman 
Spectroscopy” and “4. Infrared Spectroscopy” sections.

From the application point of view, it is important 
to define whether a type of error cannot be tolerated. 
For example, the analysis of an unknown sample should 
provide positive or negative responses for a given class 
and consequently, two types of errors arise, type I and 
type II. Type I correspond to the false positive cases, where 
a negative sample is assigned as positive to the analyzed 
class. On the other hand, type II errors correspond to the 
case where a positive sample is assigned as negative to 
the analyzed class,27 i.e., false negatives. This is especially 
important because the final model must compromise 
between the two types of errors and the purpose of the 
classification. Equally important is the decision of which 
type of error is more critical and this will depend on the 
target and protocol of analysis followed. It is also necessary 
to address the mathematical point of view, by defining 
how many target classes are being evaluated and whether 
hierarchy is important in the classification.

2.3.1. Class modeling
Class-modeling consists of a set of techniques in which 
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the classification is focused on the similarities of samples 
that belong to the same class rather than differences between 
classes. Therefore, the mathematical boundary of a given 
class will (or should) be built based only on the samples 
that belong to the target class.63-65 This is a fundamental 
difference between class-modeling and discriminant 
analysis and it has been discussed in recent years for food 
authenticity.65-68 Those techniques are especially interesting 
when the non-class-belonging samples do not share similar 
characteristics, i.e., there are a variety of samples that do 
not belong to the target class.

Discriminant analysis, however, is the one more 
frequently employed. According to Oliveri and Downey,69 
this is due to the fact that discriminant analysis was 
developed first, it is available most of commercial software 
and results are apparently better than with class-modeling. 
Nevertheless, there are many powerful class-modeling 
techniques that need to be considered for forensic purposes, 
such as unequal class model (UNEQ),70 potential function 
methods (PFM),71 partial least squares density modeling 
(PLS-DM),72 and one-class partial least squares (OCPLS).73 
However, to our knowledge, the only class-modeling 
technique employed for forensic purposes so far, with 
exception of applications in counterfeit food, is soft 
independent modelling of class analogy (SIMCA). This 
was also observed by Kumar and Sharma.16 The authors 
of the present review feel that class-modeling techniques 
have been underrated in forensic applications.

SIMCA74 is a classification technique based on PCA 
where each class of interest is independently modelled 
according to the class-belonging samples. In this case, PCA 
is used to model and describe class variance independently. 
The number of relevant PCs can be defined to each class 
during the validation process. Geometrically speaking, each 
class will be defined by a region in the hyperspace of PCs, 
i.e., a subspace defined by the number of relevant PCs. 
The classification process is distance-based and different 
methods can be adopted for class assignment. The criterion 
for decision-making in the past was based on residuals 
followed by an F-test74 but, more recently, different decision 
criteria have been proposed in the literature,75-80 such as 
the Mahalanobis distance in the score space. Although 
the independent-modeling characteristic can be a positive 
feature of SIMCA models, it can also be a disadvantage 
in the sense that the modeling process does not seek 
for a specific direction in which the class separation is 
maximized.64 Consequently, this can lead to classification 
errors or unassigned samples.

Modification on SIMCA algorithm has been recently 
made by using score and orthogonal distances calculated from 
a particular dataset to stablish a cutoff limit of acceptance for 

the target class. This modified version of SIMCA model is 
known as data driven-SIMCA (DD-SIMCA) and it provides 
significant advantages when modeling contaminated 
datasets, taking into account outliers and extreme samples 
(not outliers), as these play important roles during model 
building and the decision boundary.80-82

2.3.2. Discriminant analysis
Contrary to class-modelling techniques where regions 

in the hyperspace are defined for each class, discriminant 
analysis divides the hyperspace into as many regions 
as classes analyzed. This generates an important aspect 
about classification by discriminant analysis: a sample 
will always be classified in one class. The literature 
reports other approaches, in which a step for outlier 
detection for discriminant analysis allows the analyst to 
eliminate samples, generating unassigned samples.83,84 
Regarding class-modeling techniques, samples can be 
assigned simultaneously to several classes or to none. Such 
conceptual differences are extremely important in forensic 
contexts and must be taken into consideration, depending 
on the problem at hand.

Furthermore, discriminant analysis has the advantage 
that the models usually seek the maximum separation 
between the different classes thus generally providing better 
results. In this case, it is important that non-target analysis 
is well represented, since class boundaries will be defined 
based on both class-belonging and non-class-belonging 
samples. The function that defines class boundaries and 
projections will depend upon the technique, which, in 
its turn, can generate linear or non-linear boundaries. 
The most popular discriminant analysis techniques used 
in forensic applications include partial least squares-
discriminant analysis (PLS-DA) (and some of its extensions 
such as sparse, recursive, and orthogonal, among other 
modifications), linear and quadratic discriminant analysis 
(LDA and QDA, respectively) and support vector machines-
discriminant analysis (SVM-DA).

PLS-DA is essentially PLS regression for discrimination 
purposes.85 In this case, instead of the Y matrix (or y vector), 
it consists of quantitative values of a parameter that will 
be replaced by numerical representations for a class 
membership. Usually, a binary code is employed, such as 
(1) for class-belonging and (0) for non-class-belonging 
samples, and the value for the predicted class, either ŷ or 
Ŷ, will be a real value (ŷi ∈ ). Additionally, a threshold 
must be defined to assign a sample to a given class.

LDA86 is one of the most popular discrimination 
techniques employed. The goal is to find directions, 
known as discriminant functions, in which the variance 
between different classes is maximized and the variance 



Silva et al. 2265Vol. 30, No. 11, 2019

within samples from the same class is minimized. A 
linear boundary is defined based on a discriminant rule 
that optimizes the misclassification rate.64,87 By building 
an LDA model, it must be assumed that all classes are 
normally distributed and have the same variance. However, 
data can be more complex and classes often show different 
variance. In these cases, quadratic boundaries such as 
QDA are preferred.63 It is important to mention that LDA 
and QDA methods employ the inverse of the covariance 
matrix, which is rather difficult to calculate; thus, the 
number of samples must be higher than the number of 
variables. Therefore, variable selection techniques46,88-90 or 
methods for dimensionality reduction such as PCA should 
be employed beforehand.

SVM-DA has become a popular classification technique 
in different fields of science, including forensics, although 
it can also be used for regression purposes.91 One reason 
for this is the fact that it handles linear and non-linear data. 
The simplest approach is linear separation, where samples 
from different classes are selected to determine the decision 
function and establish the class boundary. As such, those 
particular samples located right at the class border are 
called support vectors (SVs) and the decision function (or 
hyperplane) will be defined in such a way that it is equidistant 
from the extreme samples of each class. It is also important 
to emphasize that the hyperplane should be defined so that 
the difference between the extreme samples is maximized. 
Many authors argue that employing SVM technique can be 
risky in linear problems due to the possibility for overfitting.92 
In more complex cases, it should be adapted with some 
additional steps incorporated. Thus, instead of building the 
decision function in the input space (e.g. original variables 
and PCA score space), it should employ a feature map to 
expand the space dimension in such a way that classes are 
linearly separated. In this case, the linear function in the 
spanned space will provide a non-linear boundary in the input 
space.93 The feature mapping step is achieved by means of 
feature functions f(x) that can be found by kernel methods. 
The most common kernel functions employed in SVM 
models are radial function basis (RBF), polynomial function 
(PF) and sigmoidal function (SF). Moreover, a penalty term 
can be employed to control the complexity of the models and 
avoid problems of overfitting.92

2.3.3. Figures of merit
The figures of merit used to assess the performance of 

classification models are rather different from calibration. 
For interesting reading, the theory of each technique, 
consider Ballabio et al.,94 López et al.95 and Ellison and 
Fearn.96 The main ones used in forensic contexts are briefly 
discussed below.

After building a model and assigning samples to classes, 
a contingency table, or confusion matrix, as it is most 
commonly known, should be provided. This table shows 
the relationships between the actual and the predicted result 
for each class, i.e., the number of correct and incorrect 
classification of samples in a certain class. It is important 
to mention that the figures of merit can be class-specific or 
global. The class-specific include sensitivity of a g-class 
(Sng), which relates to the true positive rate, i.e., gives 
the ratio between g-class samples actually predicted in 
g (cgg) and the total number of samples from g-class (ng), 
as described in equation 4. Consequently, sensitivity is 
also a measurement for false negative cases. On the other 
hand, specificity of a given g-class (Spg) relates to the true 
negative rate and is calculated by the ratio between the 
number of samples that do not belong to g-class which were 
not assigned to g and the total number of samples that do 
not belong to g, as can be noticed in equation 5.

 (4)

 (5)

where G stands for the number of classes; k to the kth-class; 
n the total number of samples; and ckg the number of 
samples from k predicted as g.

Accuracy and non-error rate (NER) are global 
parameters and should be carefully interpreted because 
class-specific information cannot be assessed and usually 
does not take into account unbalanced classes. Accuracy 
relates to the overall correct classification ratio and NER to 
the average sensitivity (equations 6 and 7), they both range 
from 0 to 1 (or 100%), where 1 means perfect classification 
and 0 means that the model is not adequate. Parameters such 
as accordance (ACC) and concordance (CON) can also 
be found, which is an attempt to address repeatability and 
intermediate precision of qualitative results, respectively.96

 (6)

 (7)

2.4. Resolution

Resolution techniques can be extremely powerful in 
forensic chemistry, particularly multivariate curve resolution-
alternating least squares (MCR-ALS) due to its high 
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flexibility during model building. MCR-ALS belongs to a 
class of techniques developed to solve mixture problems, 
decomposing the observed data into pure chemical profiles 
and their respective contributions.97 MCR-ALS relies on the 
Beer-Lambert law in which an iterative algorithm is designed 
to seek for possible solutions for equation 8.

X = CST + E (8)

In order to do this, initial estimates of spectral (ST) or 
concentration (C) profiles are needed (E refers to residuals). 
They can be obtained in different ways, for example, 
providing the known profiles or using methods like evolving 
factor analysis (EFA)98 and SIMPLISMA.99 When spectral 
profiles are provided, they can be used to estimate the 
concentration profiles to fit the observed data; and once the 
concentration profiles are obtained, the spectral profiles can 
be optimized to best fit the dataset in an iterative way, by 
employing the ALS algorithm. The iteration process runs 
until a convergence criterion is reached.

It is important to be aware that rotational and intensity 
ambiguities are inherent to MCR-ALS,100 and several 
solutions that are mathematically acceptable can be 
obtained. To circumvent this issue, different constraints can 
be applied to narrow down the range of possible solutions 
and achieve one with a chemical meaning. Non negativity, 
unimodality, closure, and selectivity are some of the main 
constraints that can be found in the literature,100-102 although 
new developments, especially in image analysis, are also 
described.103-106

The most interesting feature about MCR-ALS in 
forensic chemistry applications is the ability to find the 
analyte or the target in different, and often unpredictable, 
“chemical contexts”. In some forensic scenarios, the target 
of analysis is usually well known and spectral profiles for 
initial estimations are already available. In other cases, 
however, such as illicit drugs, the target analyte can be 
mixed with a variety of other compounds (adulterants, 
diluents, etc.). This is also true in complex biological 
matrices (blood, saliva, urine, etc.), which poses an 
analytical challenge. Another advantage of MCR-ALS 
is the possibility of employing augmented matrices with 
relevant information to improve the final solution. This 
can be done using different strategies, for example, by 
concatenating spectra from different techniques in the 
spectral direction (column-wise) or spectra from other 
samples (row-wise), like reference spectra.

3. Raman Spectroscopy

Raman spectroscopy is based on the inelastic scattering 

of light when a monochromatic laser beam strikes matter. 
The scattered light has a different frequency from the 
laser frequency and comes from vibrations that caused 
a change in the polarization of the electron cloud of the 
molecule. Thus, the relative frequency is characteristic 
of the molecular vibrations and the chemical structure. 
Raman has particular advantages in forensic chemistry. It 
can analyze a wide range of samples, independent of their 
chemical state and without the need for sample preparation. 
This is most advantageous for in loco analysis. Raman 
is nondestructive due to the low-intensity laser powers 
employed, necessary to maintain trace integrity. The 
experimental parameters are very few, when compared to 
other analytical techniques, and the process requires only 
a few seconds to obtain spectral information with sufficient 
signal-to-noise ratio, which makes it a relatively simple and 
rapid technique. Spectra are highly informative, covering 
the region from 4000 to 50 cm-1 in a single measurement, 
and can have many sharp peaks.

In terms of instrumentation, Raman is very versatile. 
The finely focused laser beam allows for the analysis 
of small areas. Spatial resolutions of 1 µm or less are 
possible when the equipment is coupled with a powerful 
microscope. Most modern instruments have automatic 
sampling stages for two/three dimension-spectroscopic 
mapping and imaging applications. This is particularly 
useful for obtaining spatial information of heterogenic 
samples. Other instruments have an optic fiber probe for 
remote and standoff applications. A variety of lasers are 
available, which is useful for complementary analysis of 
mixtures and for obtaining higher discriminating power. 
Additionally, the laser beam has a shallow penetration 
depth, which makes it attractive for surface analysis.

Some limitations of this technique include fluorescence, 
from impurities or the sample itself, which appear as broad, 
curved and intense signals that mask the naturally weaker 
Raman peaks. Moreover, the laser beam can be too intense 
for a small focus area and cause heating and burning of the 
sample. Regulation of the laser power can avoid this. There 
are a few countermeasures to the fluorescence problem. One 
solution is to use lasers with longer excitation wavelengths 
that have less energy. However, the most effective approach is 
performing surface-enhanced Raman spectroscopy (SERS) 
which involves close contact of the sample with metallic 
nanosubstrates (typically silver or gold). It is known that 
the surface plasmon of the nanosubstrate-analyte amplifies 
the intensity of the Raman signal up to 103 to 106 orders 
of magnitude and simultaneously quenches fluorescence. 
Recent applications of SERS in forensic science have 
been reviewed elsewhere;107 the use of chemometrics in 
combination with SERS applications, however, is still 
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rare. Besides SERS, spatially offset Raman spectroscopy 
(SORS) and time-resolved Raman spectroscopy (TRRS) 
have shown potential for identification of drugs and 
explosives in opaque containers.108-110

Raman spectroscopy has advantages and drawbacks 
compared with infrared spectroscopy. The main advantages 
are that water has a minimum or no spectral signal, which 
enables analysis of aqueous solutions and samples with high 
water content without major interferences. In addition, the 
analysis of inorganic materials is easier and samples can be 
analyzed through transparent glass or polymer packaging. 
In spite of this, Raman is not as well established in forensic 
laboratories as infrared spectroscopy. This may be due to 
the fact that, in general, forensic experts are not familiar 
with the technique, the instrumentation is more expensive 
and it is not as accessible as infrared spectroscopy.

4. Infrared Spectroscopy

Infrared (IR) spectroscopy is based on molecular 
absorption of energy which causes vibrational and 
rotational transitions. IR comprises the spectral ranges 
between 12,800 to 10 cm-1, among which three different 
regions can be identified: the near infrared (NIR) from 
12800 to 4000 cm-1, the middle infrared (MIR) from 4000 
to 200 cm-1, and the far infrared (FIR) from 200 to 10 cm-1. 
MIR and NIR in particular are have been widely employed 
in forensic applications, providing information about 
fundamental transitions, overtones and combination bands.

The wide acceptance of IR to deal with forensic 
problems is due to the high versatility of the technique to 
analyze liquid, solid or gaseous samples with minimum or 
no sample pretreatment, in a non-destructive and often non-
invasive way. While the MIR region provides information 
about functional groups, NIR spectra are more complex 
and often requires statistical techniques to unravel the 
chemical information.111 Despite this complexity, in terms 
of instrumentation, NIR is simple, low-cost, robust and 
easily miniaturized,112,113 particularly useful for analysis 
in loco.

Additionally, some NIR instruments enable image 
acquisitions of considerably large areas very rapidly.114 
Also known as hyperspectral images (HSI), this type of 
data provides the chemical information about a compound 
as well as its spatial distribution. For a more detailed 
discussion of HSI, the reader should consider the following 
references.111-113,115-119

The simplicity of instrumentation and speed of spectral 
acquisition of IR instruments is a great advantage over 
Raman, particularly for the analysis of large sampling 
areas. However, water gives intense and broad absorption 

peaks that can overlap the contributions from important 
compounds. This may be an advantage, however, if the 
purpose is to determine the water content of materials. 
In addition, IR spectra do not suffer interference from 
fluorescence, which is a common problem in Raman 
spectroscopy.

5. Questioned Documents and Currency

Forensic document examination is of vital importance 
in any forensic laboratory. Forensic scientists examine 
and compare handwriting, typewriting, printing processes, 
inks, paper and other document characteristics that can 
attest to the authenticity or fraudulent nature of identity, 
security or any sort of fraudulent paper use. Ink or paper 
differentiation, altered numbers and obliterations are among 
the cases most often encountered. Other more complex 
cases include determining the order of crossing ink lines 
and aging estimation. A comprehensive review of the 
analytical techniques used for examination of questioned 
documents has been published elsewhere.120

5.1. Raman spectroscopy in document analysis

Raman spectroscopy is very advantageous for ink 
analysis of questioned documents because paper has 
a negligible signal compared to inks. Hoehse et al.121 
analyzed ten blue and black ink samples in paper using a 
confocal Raman instrument and laser-induced breakdown 
spectroscopy (LIBS). They applied PCA and, for 
classification purposes, SIMCA, PLS-DA, and SVM-DA 
models were built and compared. PCA showed interesting 
cluster structures, with relative confusion of some pairs 
of samples. SIMCA showed similar results as PCA, as 
expected. All ink pairs were separated by the PLS-DA 
model. When the Raman and LIBS spectra were fused, an 
improvement was observed in PCA, SIMCA and PLS-DA 
performances. SVM-DA yielded high classification rates, 
but these were not improved by the data fusion approach. 
Some authors have argued that SVM-DA can be employed 
as a screening technique due to its reduced calculation time 
when compared to PCA. However, this depends highly 
on the algorithms employed by the software for PCA 
and SVM-DA optimization. In any case, unsupervised 
techniques remain simpler and preferable for screening 
analysis.

Poppi and co-workers122,123 have published two studies 
on this. In the first,122 they analyzed genuine, counterfeit 
and homemade counterfeit banknotes using a confocal 
Raman instrument (laser excitation 785 nm). After band 
identification of the main pigments, exploratory PCA 
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analysis was performed which showed a clear differentiation 
between authentic and counterfeit banknotes, owing to the 
different printing mechanisms used in the manufacturing 
process. Therefore, for PLS-DA classification, data were 
divided according to the printing type (calcographic 
for genuine bills, laser and inkjet for counterfeits). Two 
calibration models were constructed, the first to classify 
real and counterfeit samples and the second to classify 
the counterfeits as laser or inkjet. The threshold used to 
split the classes varied according to the least probability 
of false classifications in the calibration model. They 
used the bootstrap residual re-sampling technique to 
estimate the confidence interval of prediction for PLS-DA 
models. Regarding the first model, all authentic samples 
were correctly classified. Regarding the second model, 
some laser printer samples were incorrectly classified as 
inkjet samples, which the authors explained was due to 
either noisy spectra or mixture of inks that was not under 
consideration. In another study,123 simulated samples of 
forgery by adding text were made with 7 ballpoint pens 
on white paper and two different bank checks. The number 
‘30’ was forged to ‘80’ with different pens and the Raman 
image was acquired. Data were treated with MF-ICA, 
after estimating the number of independent components 
by singular value decomposition (SVD). A high percentage 
of explained variance was obtained for the models and 
the correlation between the Raman spectrum and the 
initial estimates of the inks was higher than 0.85. The 
authors observed that a high number of components (up 
to 5 or 6) were necessary to account for contributions of 
physical variations on the paper surface or detect products 
originating from the different manufacturing of paper. 
Finally, a distribution map related to each ink enabled the 
simulated forgery to be observed.

Braz et al.124,125 published two studies on the matter. In 
the first,124 they investigated the Raman spectral variability 
of 190 blue pens of different ink types, brands, models and 
batches. A confocal Raman instrument (laser excitation 
532 nm) was used. After band assignment and identification 
of the main dyes or pigments, PCA models were built to 
visualize the differences among the samples. PCA models 
were able to show different batches and models of pens. The 
authors suggested that the changes have been introduced 
in the chemical formulae of the pens over the years which 
means that the forensic examiner must keep up with these 
market tendencies. In the second study,125 they analyzed 
crossings between different types of blue pens, written on 
different papers, and with different times separating the 
application of the two ink lines. They used a Raman imaging 
instrument (laser excitation 532 nm) and MCR-ALS with 
two components for resolving the spectral profiles of the 

inks at the crossing area. The MCR-ALS enabled visual 
determination of the order of crossings in more than 60% 
of the cases. MCR-ALS is an adequate technique for this 
application because initial estimates for both inks can be 
obtained directly from the ink lines. Techniques such as ICA 
can also be used as an alternative for these cases.

Borba et al.126 analyzed obliterations and cases of 
crossing lines made with ballpoint pens using Raman 
imaging at different depths in the sample (laser excitation 
532 nm). MCR-ALS and a local rank constraint with 
fixed size image window-evolving factor analysis 
(FSIW-EFA) was used to treat the data. The FSIW-EFA 
algorithm performs local singular value decompositions 
in a 2 × 2 pixel window in all the data to identify which 
components are present in each pixel. Instead of a single 
threshold value, the authors used a threshold band, which 
allowed determination of the consistency of the rank 
information. The authors claimed that this is particularly 
important when inks have spectral similarity. The 
distribution maps and pixel concentrations in the images 
at different depths allowed for satisfactory identification of 
the order of crossings and the cases of obliteration.

Buzzini et al.127 analyzed inkjet printed samples by 
Raman using two laser excitations, 532 and 785 nm, to 
reveal Raman signals which had been undetected by one of 
the lasers due to resonance effects. PCA was used for more 
objective discrimination of the inks involved, although the 
authors claimed that no improvements were achieved from 
a visual comparison of the spectra. They also mentioned 
that spectral pre-processing was not optimized and this 
might have influenced the PCA results.

5.2. Infrared spectroscopy

IR spectroscopy has the potential for identifying the 
chemical structure of the functional groups present in inks, 
colorants and resins. Differently from Raman, IR can be 
particularly useful for chemical analysis of paper. This can 
be an advantage, when the focus is paper discrimination, 
but can also be a disadvantage, when the focus is on ink 
analysis because deeper radiation penetration, especially 
NIR, will result in interfering signals.

Silva et al.128,129 published two studies, where in the 
first,128 they used attenuated total reflectance-Fourier 
transform infrared spectroscopy (ATR-FTIR) and LDA for 
classification of blue pen inks according to their types and 
brands. They analyzed written ink spots made with 100 pens  
(ballpoint, rollerball and gel) from ten different brands on 
three types of paper. They used three approaches for the 
selection of spectral variables: genetic algorithm (GA), 
stepwise formulation (SW) and the successive projections 
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algorithm (SPA). Two LDA models were constructed using 
blue pen ink spectra obtained from one brand on sulfite 
paper, one for classification according to the type of pen 
and another according to the brand of pen used. Three 
prediction sets were employed using the spectra of blue 
inks used on the three papers. The influence of paper was 
evaluated on the model predictions, when different brands 
were considered. Even though, high classification rates 
were achieved in all cases, results for recycled paper have 
shown lower correct classification rates. Overall, LDA-SPA 
and LDA-GA showed better performance than LDA-SW 
models, which was significantly better than the results 
published by one of the first studies on the same matter.130 In 
the second study,129 they demonstrated the potential of NIR 
imaging for detecting number alterations on bank checks, 
revealing obliterated texts, and determining the order of 
crossing lines. They used black pens of different ink types 
and toners to produce the samples. The score images of 
PCA and MCR-ALS were used to elucidate the cases of 
text addition and obliteration. Both MCR-ALS and PLS-
DA (as a variable selection tool) were used to determine the 
order of crossing lines. The obliterated text was successfully 
identified in 43% of the cases using all methods. Text 
additions were successfully identified in 82% of the cases 
and the order of crossings between pens and toners were 
successfully identified in 85% of the cases. In both cases, 
the influence of paper is evident, but the results still show 
the potential of NIR spectroscopy for ink analysis.

Pereira et al.131 evaluated and compared the use of 
NIR and MIR imaging and two unsupervised pattern 
recognition techniques (PCA and PP) for the identification 
of document forgery by means of alterations and additions. 
Different black ink pens were employed to produce a total 
of 120 pairs of samples for discrimination. They performed 
blind testing with 30 different simulated cases of either 
genuine or altered/added numbers on white or bank check 
paper. Initial pre-treatment based on the region of interest 
(ROI) selection and PCA histograms was necessary to 
remove the interfering paper contributions from the ink. 
Overall, PP analysis showed better results than PCA, 
either using MIR (97.5 and 87.5%, respectively) or NIR 
(83.3 and 76.7%, respectively) imaging. However, their 
complementary use enabled identification of up to 90% of 
the blind samples, which indicates the potential for use of 
the methodology proposed.

Sharma and Kumar132 compared the performance of 
high-performance thin layer chromatography (HPTLC) and 
ATR-FTIR to discriminate among 57 blue ballpoint line 
strokes. Two approaches were employed for ATR-FTIR: a 
univariate, by visual examination of the spectra (number 
and position of peaks) and a multivariate approach, by 

using PCA and Varimax rotation, which is a rotation tool 
that changes the directions of the PCs vectors for new 
linear combinations of LVs that maximize the variance 
of the loadings. The multivariate approach enabled 
identification of 99.69% of the samples, which was higher 
when compared to both the univariate approach (97.93%) 
and HPTLC (93.80%).

Lee et al.56,133 recently published two relevant studies 
that evaluated the appropriate use of chemometrics in 
classification of ink lines in questioned documents. In the 
first,56 they discussed whether ink strokes made with the 
same pen should be considered replicates or independent 
samples for classification purposes and the best way for 
splitting the dataset into training and test sets for external 
validation. For this, they analyzed 1361 strokes made by 
273 blue gel pen inks from ten different brands and from 23 
models using ATR-FTIR. The data set was split into two: 
set IP (individual pen), where all the strokes from the same 
pen were included in either the training or validation sets; 
and set NIP (ink entry of an individual pen), where strokes 
from the same pen were included in both the training and 
validation sets. PLS-DA models were built for classification 
according to the brand and model of pens. Although the 
authors expected that the inclusion of replicates of the same 
pen (set NIP) would make the set perform much better, 
results were in fact similar in terms of accuracy, stability 
and fitting. The authors claim that, since the goal of this 
kind of classification is to determine the brand or model of 
a questioned stroke rather than the specific pen employed, 
the use of replicates in both the training and validation sets 
would provide a more realistic predictive performance, 
although in realistic scenario this is not a possibility. In 
the second study,133 they used the same dataset to evaluate 
the effect of nine different preprocessing techniques on 
the prediction performance of the PLS-DA models. The 
main conclusions are relatively obvious for expert users 
of IR spectroscopy, that is, models perform better when 
slope-correcting methods such as asymmetric least squares 
and normalization to sum, are used and when regions with 
fewer contributions from paper substrate are chosen. These 
contributions are fundamental for establishing the use of 
chemometrics techniques within the forensic sciences 
because they lead to a discussion of theoretical issues 
focused on a particular forensic problem.

Asri et al.134 evaluated and compared three strategies for 
the identification of the source of eighteen red gel pen inks 
deposited on a simulated threatening note, using Raman and 
ATR-FTIR. Neither visual comparison of the spectra nor 
Pearson’s product moment correlation (PPMC) coefficient 
(r) calculated among all possible pairs of samples were 
able to determine the actual source of the unknown ink. 
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However, the PCA scores plot performed using both Raman 
and FTIR datasets successfully linked the unknown ink to 
the actual pen used to write the simulated threatening note.

Materazzi et al.135 investigated the use of reflectance 
NIR and PCA to discriminate among ten black toners from 
four brands printed on white paper. They evaluated several 
parameters: different papers, the influence of the printing 
machine and the printing process, for which they used 
four printers, the use of full or a low percentage of ink in 
the cartridge, and replicas prepared on different days. The 
PCA scores plots showed different clusters according to 
each brand of toner. The analysis, on the other hand, did 
not show significant dependence on the printing process nor 
were the results affected by the type of paper and percentage 
of ink in the cartridge used.

Kumar and Sharma136 used ATR-FTIR associated 
with PCA and Varimax rotation for characterization and 
discrimination of twenty-four papers of different brands. 
Three spectral regions were chosen for qualitative and 
multivariate examination, 400-2000, 2000-4000 and 
400-4000 cm−1. Results showed that 97.83% of the paper 
samples were identified based on qualitative spectral 
features; the chemometric approach obtained 99.64% 
discrimination, particularly when the spectral range of 
2000-4000 cm−1 was employed.

Two studies137,138 have been published that investigate 
the aging of paper in documents. In the first, Silva et al.137 
used ATR-FTIR to analyze naturally-aged paper documents 
from 15 different years (between 1985 and 2012), 
considering five documents per year on five different 
sheets of paper. Two datasets were built and two filters 
(generalized least squares weighting, GLSW, and OSC) 
and sPLS were applied and compared for reducing the 
variability among papers of the same period. Results 
showed improvements in attenuating the variability among 
documents with the same age using all methods. Values of 
approximately 4 years were obtained for RMSECV and 
RMSEP, but variable importance in projection (VIP) scores 
showed that spectral regions associated with inorganic 
compounds were influencing the models. The OSC filter 
was more suitable for the analyzed dataset. The authors 
emphasized the importance of sample sets, showing how 
the results can be affected by the manner the datasets 
were built. This opened a discussion on the advantages 
and drawbacks of chemometric techniques applied to 
document dating. In the second study, Risoluti et al.138 used 
a miniature NIR spectrometer and PCA to characterize and 
investigate dating of paper. Two sets of books and sheets 
were used: books with publication dates from 18th century 
(1700) to the 20th century (1952), which had been well 
preserved from the environmental conditions; and paper 

sheets from the 16th century (1500) to the 21st century 
(2016), which had been exposed to degradation. The PCA 
score plots showed some variations among the samples 
based on chemical differences on the surface. The authors 
have suggested that this may be related to the period when 
the documents were made.

Oliveira et al.139 used SIMCA and LDA-SPA to 
classify 100 authentic and 227 counterfeit Brazilian Real 
bank notes using a portable NIR. They analyzed seven 
different regions on the banknotes, including two with 
fluorescent ink, one over the watermark, three from the 
intaglio printing and one over the serial numbers. They 
built models for authentic and counterfeit banknotes. PCA 
showed differences between the authentic and counterfeit 
samples, particularly in the intaglio printing areas analyzed. 
Both SIMCA and LDA-SPA models correctly classified all 
authentic banknotes. The authors argued that LDA-SPA is 
simpler and the variable selection step has the advantage 
of removing noise and nonlinearity. However, in these 
cases where the target class is highly controlled and easily 
modeled, other class-modeling techniques could also be 
explored. In any case, both classification techniques showed 
high potential for routine forensic applications.

Table 1 shows a resume of the research works and 
chemometric techniques for questioned documents.

As depicted, confocal Raman was preferred for 
discrimination of inks and HSI for larger areas like 
crossings, document alterations and currency. The 532 nm 
laser excitation was used for most applications. PCA was 
preferred for preliminary analysis, different classification 
techniques (SIMCA, PLS-DA, SVM-DA, ICA) were used 
for discrimination issues and the resolution technique 
MCR-ALS for HSI applications. ATR-FTIR was preferred 
for discrimination of inks and paper and HSI in the NIR 
and MIR for crossings, document alterations and currency. 
PCA was used alone or with another exploratory technique 
like PP and Varimax rotation. Classification techniques 
(LDA, PLS-DA) were preferred for discrimination issues 
and ATR-FTIR data analysis. The calibration technique 
PLS was used for investigations of aging.

6. Gunshot Residues (GSR)

GSR are a set of burned and unburned particles from 
the projectile and the gun discharge.140 From a forensic 
perspective, the identification of GSR is important for 
estimating shooting distance, identifying bullet holes, 
connecting the suspect/weapon to a crime, confirming 
that a weapon has been fired and confirming a suicide 
hypothesis. GSR can be inorganic, composed of heavy 
metals, inorganic salts, and graphite (a.k.a. IGSR) from the 
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primer and the weapon barrel; and organic, composed of 
explosives, plasticizers, stabilizers, and compounds derived 
from the propellants (a.k.a. OGSR). These particles are 
usually visible to the naked eye.141 Although the established 
examinations include elemental and morphology analysis of 
IGSR using atomic spectroscopy and electron microscopy, 
researchers have been focusing on the use of OGSR due 
to the emerging trend of non-toxic lead-free ammunition.

6.1. Raman spectroscopy

Raman technique is particularly useful for detecting 
different metal anions in GSR particles, such as barium, 
lead and iron oxide, sulfate and carbonate mixtures, and 
has become an important tool for characterizing the 
organic components, particularly in lead-free ammunition. 
However, very few studies have reported the use of 
chemometrics for GSR analysis using Raman spectroscopy. 
Lednev and co-workers142-144 published three studies on 
GSR analysis for the discrimination of firearm caliber, 
using the same confocal Raman instrument (laser excitation 

785 nm). In the first study,142 they analyzed GSR particles 
collected from a cloth, which were fired at from close 
range (30 cm) by a 0.38 mm revolver and a 9 mm firearm. 
GSR particles (brown and tan) showed high fluorescence 
interferences and were discarded; the remainder were 
divided into two datasets, according to their color. After 
band assignment of the organic and inorganic compounds 
of GSR, GLSW preprocessing was applied to attenuate 
the scattering characteristics of each caliber and PCA was 
performed, which enabled observation of the separation of 
samples according to caliber. Then, they employed k-nearest 
neighbors (k-NN), PLS-DA and SVM-DA for classification. 
The result was that one spectrum had been misclassified for 
k-NN and SVM-DA, but PLS-DA gave correct classifications 
for all samples. Only PLS-DA was tested with a prediction 
set, providing perfect classification according to caliber. In 
another study,143 Raman and ATR-FTIR were also used for 
caliber differentiation but they applied low-level data fusion, 
in which both spectra were fused in a row-wise manner as an 
augmented matrix, after separate pre-processing. The authors 
reported that PLS-DA models for Raman alone showed 

Table 1. Resume of techniques for questioned documents and currency

Analytical technique Chemometric technique Sample Reference

Confocal Raman (488, 633, 785 nm), LIBS PCA,a SIMCA,b PLS-DA,b SVM-DAb blue and black inks on paper 121

Confocal Raman (785 nm) PCA,a PLS-DAb authentic and counterfeit banknotes 122

HSI-Raman (785 nm) MF-ICAa number alterations paper and bank checks 123

Confocal Raman (532 nm) PCAa ink on paper 124

HSI-Raman (532 nm) MCR-ALSc crossing ink lines (surface analysis) 125

HSI-Raman (532 nm) MCR-ALSc crossing ink lines (depth-profiling) 126

Confocal Raman (532, 785 nm) PCAa inkjet printed lines 127

ATR-FTIR GA-LDA,b SW-LDA,b SPA-LDAb blue inks on paper 128

HSI-NIR PCA,a PLS-DA,b MCR-ALSc number alterations on bank checks; obliterated 
texts; crossing ink lines

129

HSI-NIR, HSI-MIR PCA,a PPa number alterations on paper and bank check 131

ATR-FTIR, HPLC PCA,a Varimax rotationa blue inks on paper 132

ATR-FTIR PLS-DAb blue inks on paper 56, 133

ATR-FTIR, Raman (785 nm) PCAa red inks on paper 134

NIR PCAa toner printed lines 135

ATR-FTIR PCA,a Varimax rotationa paper 136

ATR-FTIR PLS,d sPLSd aging of paper 137

NIR (portable) PCAa aging of paper 138

NIR (portable) SIMCA,b SPA-LDAb authentic and counterfeit currency 139

aExploratory; bclassification; cresolution; dcalibration. LIBS: laser-induced breakdown spectroscopy; PCA: principal component analysis; SIMCA: soft 
independent modeling of class analogy; PLS-DA: partial least squares-discriminant analysis; SVM-DA: support vector machines-discriminant analysis; 
HSI: hyperspectral images; MF-ICA: mean field independent component analysis; MCR-ALS: multivariate curve resolution-alternating least squares; ATR-
FTIR: attenuated total reflectance-Fourier transform infrared spectroscopy; GA-LDA: genetic algorithm-linear discriminant analysis; SW-LDA: stepwise 
formulation-linear discriminant analysis; SPA: successive projection algorithm; NIR: near infrared; PP: projection pursuit; HPLC: high-performance liquid 
chromatography; sPLS: sparse partial least squares.
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Sn and Sp equal to 98% and for ATR-FTIR, 94 and 97%, 
respectively. The combined augmented data provided perfect 
classification, showing improvement over classification using 
both techniques alone, as reported previously.142,145

In the third study, Bueno and Lednev144 analyzed GSR 
particles collected from a cotton cloth using a double-sided 
adhesive tape. The particles had been from a 0.38 mm 
revolver at close range (30 cm). In this case, Raman imaging 
(laser excitation 785 nm) was used to analyze a 2 mm2 area 
of the sample. The data, comprised of 785 spectra, was 
divided into training and prediction sets and samples were 
divided into four classes using PLS-DA: tape, OGSR, IGSR 
and the unassigned group. Due to experimental issues, the 
authors reported that a GSR particle needed to be larger 
than 3.4 µm for correct identification. The authors reported 
two types of misclassification of the spectra collected at 
the borders of the GSR particles: OGSR particles which 
were classified as tape (false-negative) and tape which was 
classified as GSR (false-positive). The misclassification 
results were due to the size of the laser beam, that reads 
contributions of both GSR and tape. Although the authors 
stated that the false-positive cases were not technically 
wrong, since this only happened in the presence of GSR 
particles, 104 spectra from the borders were removed 
and the classification results of unknown samples were 
improved: 93.7% of correct classification were obtained for 
OGSR, 90.4% for IGSR and 98.9% for tape. No samples 
were classified as unassigned.

López-López et al.146 also analyzed GSR particles from 
4 types of ammunition (three conventional of different 
caliber and one non-toxic) using Raman imaging (laser 
excitation 455 nm). Samples were analyzed directly on 
clothing and particles collected with an adhesive carbon 
tape on a stub. Instead of using a classification technique, 
they applied MCR-ALS to discriminate between the 
GSR and the substrate. They also added blood to some 
samples to evaluate the discriminating potential of the 
method with a possible interference. The GSR particles 
from the conventional and non-toxic ammunition were 
clearly identified. In addition to chemical information, 
this approach provided microscopic visualization of the 
GSR particles.

6.2. Infrared spectroscopy

In the same manner as Raman, IR spectroscopy is 
advantageous for detection of OGSR from the propellant 
because the spectra are highly selective, reproducible and 
analysis is nondestructive. However, very few studies have 
reported the use of chemometrics for GSR analysis using 
IR spectroscopy.

Bueno et al.145 analyzed GSR from three different 
ammunitions (0.38, 0.40 and 9 mm calibers) on a cloth 
substrate at close distance (30 cm) using ATR-FTIR. For 
PLS-DA, the training set consisted of 160 GSR spectra 
and the prediction set consisted of thirty GSR spectra from 
additional discharges. All unknown GSR particles were 
assigned to the correct class of caliber in the validation and 
93.3% GSR particles from new discharges were correctly 
classified in the prediction.

Ortega-Ojeda et al.147 were the first to employ NIR 
imaging and CLS to discriminate GSR patterns from 
conventional and non-toxic 9 mm caliber ammunitions on 
white, black, or white-stamped cotton fabrics. For CLS, 
they tested two calibration sets, one consisting of spectra 
of isolated propellants from both types of ammunitions 
and another composed of pure standards of common 
compounds found in ammunition. In the first calibration 
set, the relative CLS concentration maps showed that in 
the conventional ammunition, the GSR patterns seemed 
to be bigger than the patterns observed in the target shots 
with the non-toxic ammunition. Nevertheless, the authors 
expressed concerns about using this method since not all 
forensic laboratories have large enough sample libraries 
containing sufficient types of ammunition propellants 
to be used as standards. Using the second calibration 
set, the strongest signals found in all targets belonged to 
nitrocellulose; other components were also detected, such 
as diphenylamine, nitroguanidine, 4-nitro-ethyl-centralite, 
and 2,6-dinitrotoluene. The authors argued that this 
calibration set is more versatile as the standards of different 
ammunition components are commercially available. 
They recommended the use of nitrocellulose as standard. 
Thus, the lack of fit responses for conventional and non-
toxic ammunition using the recommended calibration set 
for white and black cotton were 39.8% (conventional on 
white cotton), 39.3% (non-toxic on white cotton), 31.3% 
(conventional on black cotton) and 21.3% (non-toxic on 
black cotton). Values of R2 were approximately 0.84 for 
both types of ammunition on white-cotton fabric and higher 
than 0.90 for black cotton, while the correlation coefficients 
presented values around 0.94.

Weber and co-workers148,149 proposed the incorporation 
of luminescent markers in ammunition, based on 
metalorganic frameworks (MOFs), to facilitate the 
detection and identification of GSR from non-toxic 
ammunition. Furthermore, they argued that adjusting 
the chemical composition of luminescent markers opens 
up new perspectives for ammunition encoding. In this 
context, Carvalho et al.150 proposed the use of NIR imaging 
and MCR-ALS to discriminate among GSR particles 
containing three different MOFs based markers ([Eu(DPA)
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(HDPA)], [Eu(BTC)] and [Eu2(BDC)3(H2O)2]n). The 
luminescent GSR (LGSR) particles were collected from 
weapons, hands and cartridges using five different tapes 
(masking tape, double sided, Teflon tape, adhesive paste 
and conductive carbon tape) placed in a stub. Initially, a 
set of 45 samples was collected to verify the most suitable 
substrate for the NIR analysis. Then, 19 samples that had 
been collected using the masking tape were analyzed to 
develop the MCR-ALS models and 18 other samples were 
used as a blind test. Spectra of the four pure components 
(tape and the luminescent markers) were employed for 
initial estimates. Only constraints for concentration were 
used: non-negativity, closure and equality constraints. An 
augmented MCR-ALS (column-wise) was employed to 
minimize the risk of rank deficiency by inserting matrices 
related to the spectra of the four possible components 
present in the samples. Evaluation of the recovered spectra 
and the relative concentration maps detected and correctly 
identified 72.2% of the samples. The misclassifications 
were related to little amount of material collected (8.3%) 
or confusion caused by one of the markers, [Eu(BTC)] 
(19.4%). The authors recommend that the [Eu(BTC)] 
should not be used for selective tagging and ammunition-
encoding but could be used for GSR detection and 
identification using the methodology described.

Table 2 summarizes the research works and chemometric 
techniques for GSR.

In short, confocal and HSI Raman were selected for most 
GSR analyses performed directly on clothing or adhesive 
substrates. The 785 nm laser excitation was preferred in 
this case. PCA was used first, then several classification 
techniques, such as GLSW, k-NN, PLS-DA and SVM-DA, 
were used for discrimination among ammunition types. 
The MCR-ALS resolution technique was preferred for HSI 

applications. ATR-FTIR and HSI-NIR were both used for 
GSR analysis directly on clothing or adhesive substrates. 
Then, different approaches were used for identification of 
ammunition, such as the PLS-DA classification technique, 
the CLS calibration technique, and the MCR-ALS 
resolution technique.

7. Explosives

Explosives are highly energetic, sensitive and dangerous 
substances, used in military and commercial applications as 
well as in terrorist attacks. The investigation of explosives 
can be very complex and challenging because there are a 
variety of explosive compounds (different physical states 
or composition), from military, commercial and improvised 
sources, and they can be found intact, hidden in containers 
or found as trace amounts as post-blast residues. For 
further reading, refer to Huri et al.151 and López-López and 
García-Ruiz152 works.

7.1. Raman spectroscopy

Stewart et al.153 proposed a semi-quantitative method for 
determining the concentration of hydrogen peroxide using 
a portable Raman (laser excitation 785 nm). First, they 
prepared a calibration curve from the peak height of five 
hydrogen peroxide concentrations (5, 10, 15, 20 and 25%). 
They normalized the spectra to the band of the internal 
standard, sodium perchlorate, and obtained an average error 
of 1.43%. They also did a PLS regression and obtained an 
average error of 0.98%. Although the authors stated that 
the difference was not significant and that the univariate 
method is simpler, no significance test was mentioned for 
model comparison. Finally, they introduced their data into 

Table 2. Resume of techniques for gunshot residues (GSR)

Analytical technique Chemometric technique Sample Reference

Confocal Raman (785 nm) PCA,a k-NN,b PLS-DA,b SVM-DAb GSR on clothing (2 ammunition types) 142

Raman, ATR-FTIR PCA,a PLS-DAb GSR on clothing (2 ammunition types) 143

HSI-Raman (785 nm) PLS-DAb OGSR and IGSR on double-sided adhesive tape 
(2 ammunition types)

144

HSI-Raman (455 nm) MCR-ALSc GSR on adhesive carbon tape and stub  
(4 ammunition types)

146

ATR-FTIR PLS-DAb GSR on clothing (3 ammunition types) 145

HSI-NIR CLSd GSR on white, black and white stamped cotton fabric 
(2 ammunition types)

147

HSI-NIR MCR-ALSc GSR (luminescent markers) on 5 adhesive tapes 150

aExploratory; bclassification; cresolution; dcalibration. PCA: principal component analysis; k-NN: k-nearest neighbors; PLS-DA: partial least squares-
discriminant analysis; SVM-DA: support vector machines-discriminant analysis; ATR-FTIR: attenuated total reflectance-Fourier transform infrared 
spectroscopy; HSI: hyperspectral images; OGSR: organic gunshot residues; IGSR: inorganic gunshot residues; MCR-ALS: multivariate curve resolution-
alternating least squares; NIR: near infrared; CLS: classical least squares.
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the instruments library and compared the matching results 
with a series of testing solutions with different hydrogen 
peroxide concentrations (5, 7, 15, 17, 25 and 27%), for field 
applications. The library gave an average error of 1.16%, 
which was comparable to the other methods. However, 
the potential sources of error in real case scenarios may 
arise from the evidence having been contaminated by 
perchlorate, which would lead to the underestimation of 
hydrogen peroxide.

López-López et al.154 analyzed thirty-three solutions 
of different types of nitrocellulose based gunpowder 
(single-base with and without dinitrotoluene, double-base 
containing nitroglycerin and triple-base) by FTIR and 
confocal Raman spectroscopy (laser excitation 532 nm). 
Visual comparison of the FTIR and Raman spectra allowed 
differentiation only with the gun powders containing 
dinitrotoluene and with the triple-base gunpowders. Raman 
determined the presence of other minor components 
in smokeless gunpowder, such as diphenylamine and 
centralite. After band assignation, LDA using the 
Mahalanobis distance was used for classification. Six 
classes were created considering the type of gunpowder 
(single-base or double-base) and the presence or absence 
of components such as dinitrotoluene, diphenylamine 
or dibutyl phthalate. Raman spectroscopy showed better 
performance in discriminating gunpowders with or without 
diphenylamine and dinitrotoluene, and FTIR performed 
better in differentiating single-base gunpowder with or 
without dinitrotoluene, as well as double-base gunpowder.

Choo and co-workers155 applied PCA and a maximum 
a posteriori (MAP)-LDA method for classification of 
14 explosive powders of different types (nitroaromatics, 
nitramines, nitrate esters, and peroxides). MAP is a 
discriminative Bayesian estimation method that models 
the probability density of each class using parameters from 
the training set, such as mean and covariance. Samples are 
assigned to the “most likely” class based on a feature vector 
with the highest posterior probability.156 They analyzed 
the samples using a benchtop (laser excitation 514.5 and 
633 nm) and a portable Raman instrument (laser excitation 
785 nm). The PCA results showed clear differences 
between the explosives; but there was a wide dispersion 
among spectra of the same type of explosive. Due to this 
within-group dispersion and the small number of training 
samples, only 10/14 explosives were correctly classified. 
Nevertheless, the authors reported an overall classification 
rate of 99.3%.

Poppi and co-workers157,158 published two studies for 
the identification of explosive traces in banknotes using 
the same Raman imaging instrument (laser excitation 
785 nm). In the first,157 they developed the methodology 

for the identification of pre-blast traces of eight explosives 
(three military, four commercial and one propellant) on 
banknotes. They also analyzed different concentrations 
of trinitrotoluene (TNT), for investigating detection 
limits. The methodology consisted of applying MF-ICA 
to recover the spectra and identify the distribution maps 
for each component of the explosives. They used EFA for 
selecting the number of components necessary, because 
this information is unknown in real case scenarios and this 
number varied for each explosive. ICA showed correlation 
coefficients between the spectrum of reference and the 
profiles recovered close to 1 for all but three explosives. 
These three explosives, nonetheless, were unequivocally 
identified from their Raman bands. The method also made 
it possible to detect a level of TNT as low as 50 µg cm-2. 
The MCR-ALS model’s lack of fit (LOF) and correlation 
coefficients were comparable to ICA’s, with exception 
of TNT, where the MCR-ALS was not able to obtain 
satisfactory correlations between the recovered and the 
reference spectra. The authors justified this because 
of the absence of pure pixels and the low signal of the 
explosive TNT in the global model. The same method was 
then applied to the identification of explosives using real 
banknotes. MF-ICA found traces of carbon, sulfur and 
potassium nitrate in the Raman images of the banknote, 
which confirmed the presence of post-blast residues from 
black powder explosive.

In the second study, Poppi and co-workers158 applied 
the same methodology to the identification of post-blast 
explosive traces from an ATM explosion simulation 
experiment. Banknotes were contaminated with ANFO 
(ammonium nitrate fuel oil) and rhodamine B, which is a 
pigment that is usually added to the ATM as a safety device 
to render the banknotes unusable after explosions. The 
models used up to eight components; thus, the recovered 
spectra of each compound were not completely pure, due to 
the complexity of the matrix. Also, the LOF and explained 
variance were high (15.80 and 92.09%, respectively). 
Nonetheless, based on the specific band of NO3

- symmetric 
stretching at 1044 cm-1, it was possible to identify the 
presence of ANFO and its location in the sample.

7.2. Infrared spectroscopy

Banas et al.159 highlighted the importance of using 
multivariate analysis instead of FTIR spectral libraries 
of explosives. They analyzed post-blast debris from three 
high-explosive compounds: C-4, TNT and pentaerythritol 
tetranitrate (PETN). HCA and PCA were used to visualize 
clustering of samples but PCA showed better performance. 
PCA was also employed by the study of Chen et al.,160 
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in which fingerprints contaminated with a hexahydro-
1,3,5-trinitro-1,3,5-triazine (RDX) explosive solution were 
analyzed by FTIR imaging. The PCA scores images and the 
loadings enabled differentiation of the distribution of the 
retrieved eccrine/sebaceous components of gland secretions 
and the distribution of RDX.

Regarding classification applications, de la 
Ossa et al.161,162 published two papers dealing with the use 
of NIR imaging for the detection of residues of different 
explosives on hands. The advantage of the NIR system, 
in comparison with the MIR system employed in the 
study reported in,160 is that it allows the scanning of the 
entire handprint, increasing the possibility of detecting 
the presence of explosive residues. Hands of different 
volunteers which had been contaminated with different 
kinds of explosives (ammonium nitrate, black powder, 
single- and double-base smokeless gunpowder and 
dynamite) were pressed on plastic sheets, similar to that 
used for handprint collection. The calibration set for the 
PLS-DA models consisted of a 50-pixel windows obtained 
from the individual images of each explosive. The cross-
validation confusion matrix showed that all nitrocellulose, 
ammonium nitrate, dynamite, black powder and plastic 
classes were correctly classified in their respective class 
but lower classifications were observed for single- and 
double-base smokeless gunpowder, possibly because they 
are mainly composed of nitrocellulose and showed similar 
NIR signals. Nevertheless, they were differentiated from the 
remainder classes. The authors remark that further studies 
are important to estimate the limits of detection, the mass 
transfer rates from explosives to hands and to sheets, and 
possible interferences.

A direct and fast procedure of sampling and analysis 
of consumer firework post-blast residues using a 
portable ATR-FTIR instrument was proposed by Martín-
Alberca et al.163 The spectra of the post-blast residues from 
five common consumer fireworks were obtained directly 
from the three different cotton swabs tested using the 
ATR crystal. 22 consumer fireworks were also analyzed 
to trace back the signal of the post-blast residues to the 
original pyrotechnic compositions. PCA showed different 
results depending on the swab used and the collecting 
place. The authors recommended more research to find 
an appropriate collection device for sampling a wider 
variety of substrates.

A portable NIR was used with PCA and PLS-DA 
models for the detection of explosives on human hands 
by Risoluti et al.164 Three experiments were conducted to 
investigate the application to real cases, such as the ability 
to detect explosives in complex matrices, the effects of 
interferences from other explosive materials that evaluates 

the ability of the model to detect more than one explosive 
at the same time, and the persistence of the residuals 
over time after daily hand washing. From the twenty-five 
samples from the volunteers involved, 10 were included in 
the training set, 5 to model validation and the other 10 to 
prediction. PLS-DA models were also built using 5 standard 
materials (TNT, PETN, RDX and the composites DEMEX 
and M75) to evaluate the matrix effects on the identification 
of the explosives. PCA was performed using the spectra 
obtained from 15 volunteers to whose hands had been 
contaminated with increasing amounts of explosives, to 
simulate the handling of those materials. Distinct clusters 
from each one of the compounds were observed. PLS-DA 
validation provided classification rates of 80% for M75, 
91.7% for DEMEX, 96.7% for TNT and 100% for PETN 
and RDX. Results from prediction showed 100% correct 
classifications rates of all materials. Moreover, the ability 
to detect the residuals using the method proposed decreased 
as the time from handling increased, which is comparable 
with the results obtained with the reference method gas 
chromatography-mass spectrometry (GC-MS), even after 
a period of 24 h. Among the investigated explosives, both 
DEMEX and M75 proved to be the most persistent on the 
hands, even after washing, whereas TNT had the worst 
resistance after daily activities.

Table 3 shows the main reference mentioned for 
explosives.

As shown, both confocal, HSI and portable Raman were 
used for identification of several explosives, particularly 
using the 785 nm laser excitation. The exploratory 
techniques PCA and MF-ICA were applied for preliminary 
analysis and then, either the classification techniques PLS 
and LDA or the resolution technique MCR-ALS were 
used for HSI analysis of explosives on banknotes. FTIR 
was used for pre- and post-blast explosive analysis, while 
HSI-NIR was preferred for hand- and fingerprint analysis 
of explosive traces. PCA was preferred in most studies and 
PLS-DA for subsequent analysis of handprints.

8. Illicit Drugs

Investigations of illicit drugs comprise the largest load 
of work by forensic science laboratories, whether it is for 
the identification of unknown substances, the quantification 
of the active compound(s) and major adulterants, the 
profiling for intelligence purposes of bulk seizures or for 
biological and non-biological matrices. Besides interfering 
matrices, the complexity of drug investigations resides in 
the fact that the materials under study contain a variety of 
substances and often require laborious and time-consuming 
chemical separations.
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8.1. Raman spectroscopy

All studies recently published on identification of illicit 
drugs by Raman spectroscopy and chemometrics have 
focused in SERS analysis of drugs in body fluids, like 
urine and saliva, due to the need for sensitive detection 
in complex matrices. Liu and co-workers165,166 published 
two studies for the identification and quantification of 
amphetamines in human urine based in SERS analysis, 
where in the first,165 they analyzed samples of urine mixed 
with different concentrations of the drug (0, 0.01, 0.1, 1, 
10 and 100 ppm) using a portable Raman instrument (laser 
excitation 785 nm). For SERS, gold nanorod substrates 
were used and a different and simplified analysis procedure 
was performed, where the sample was analyzed as it dried 
on a surface, rather than waiting for complete drying, as in 
a conventional SERS method. SVM was applied to classify 
different ratio proportions of two methamphetamines in 
human urine. Calibration models were built using the SERS 
spectra of urine of 50 humans with and without drugs and 
in different concentrations (50, 2.5 and 0.1 ppm). They 
obtained a classification accuracy of 96% for one of the 
drugs; the accuracy for the lowest concentration (0.1 ppm) 
was 94%, as expected. This result was 11% higher than with 
the conventional SERS procedure. The model validation 
with urine samples from three real drug abusers showed 
classification accuracy higher than 90%. The authors 
defended the method as rapid (2 min analysis time) and 
practical (2 µL sample volume) for on-site application. 
In the second study,166 they used an oil-in-water emulsion 
made from silver nanoparticles and a surfactant as SERS 
substrates. Drugs were first extracted from human urine 

with cyclohexane in strong alkaline media. SERS analysis 
enabled a limit of detection of 10 ppb. Besides ultratrace 
identification, PCA (for data reduction) and SVM-DA 
classification resulted in 98% accuracy for different 
proportions of the two methamphetamines in human urine.

Mabbott et al.167 deposited silver nanoparticles on British 
coins to create substrates for SERS analysis of mephedrone 
and two amphetamines (5,6-methylenedioxy-2-aminoindane 
(MDAI) and 3,4-methylenedioxymethamphetamine 
(MDMA)). PCA was used to assess the reproducibility 
of the SERS method and PLS-DA was then used for 
classification. They created three separate models for 
each drug and used bootstrap validation (1000 iterations). 
Overall, the specificity, precision and accuracy for the 
three drugs was higher than 95%. The models displayed 
an excellent sensitivity for MDAI and mephedrone but 
lower for MDMA due to the high number of false negatives 
identified. The authors mentioned that the loadings showed 
discriminating vibrational modes for each drug.

Andreou et al.168 developed a microfluidic device for 
SERS trace detection of amphetamines in saliva, using 
PCA and Varimax rotation. After rotation, they were able 
to identify the different SERS bands in each LV that were 
related to the illicit drug. Based on this, they determined 
methamphetamine concentrations as low as 10 nM. Despite 
the results, the authors made an erroneous statement by 
saying that PCA is a tool for automated classification of 
spectra.

D’Elia et al.169 used gold nanorods for SERS identification 
and quantification of cocaine in oral fluids using a confocal 
Raman (laser excitation 785 nm). OPLS-DA was used 
to discriminate among oral fluid solutions with various 

Table 3. Resume of techniques for explosives

Analytical technique Chemometric technique Sample Reference

Portable Raman (785 nm) PLSRa concentration of hydrogen peroxide 153

Confocal Raman (532 nm), FTIR LDAb solutions of nitrocellulose based gunpowders 154

Confocal Raman (514, 633 nm), 
portable Raman (785 nm)

PCA,c LDAb 14 explosive powders 155

HSI-Raman (785 nm) MF-ICA,c MCR-ALSd pre-blast traces of 8 explosives in banknotes 157

HSI-Raman (785 nm) MF-ICA,c MCR-ALSd post-blast traces of ANFO in banknotes 158

FTIR PCA,c HCAc post-blast traces of 3 high explosives 159

HSI-FTIR PCAc solution of RDX in fingerprints 160

HSI-NIR PCA,c PLS-DAb pre-blast on hand 161, 162

FTIR PCAc pre-blast and post-blast fireworks on cotton swabs 163

Portable NIR PCA,c PLS-DAb 4 explosives on plastic handprints 164

aCalibration; bclassification; cexploratory; dresolution. PLSR: partial least squares regression; FTIR: Fourier transform infrared spectroscopy; LDA: linear 
discriminant analysis; PCA: principal component analysis; HSI: hyperspectral images; MF-ICA: mean field independent component analysis; MCR-ALS: 
multivariate curve resolution-alternating least squares; HCA: hierarchical cluster analysis; NIR: near infrared; PLS-DA: partial least squares-discriminant 
analysis.
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cocaine concentrations. Although authors did not give 
details on the construction of the models, it was clear that 
the data set was small. Despite this, the results showed 
clear differentiation between the samples; and the model 
was able to differentiate the 1 ng mL-1 concentration of 
cocaine from the oral fluid. The authors stated that this 
method could be used for quantification by enlarging the 
number of drug concentrations, sample replication, and the 
inclusion of oral fluids from different donors.

Dies et al.170 used silver nanoparticle substrates which 
were electrochemically immobilized for SERS identification 
of different drugs (cocaine, heroin, tetrahydrocannabinol 
(THC) and oxycodone) in oral fluid using a confocal 
Raman (laser excitation 633 nm). The SVM technique with 
leave-one-out cross validation was used for classification, 
although not many details on model building and sampling 
were provided. As a result, 100% classification accuracy 
was obtained for drugs in solution and the developed model 
was able to classify 98.3% of the different concentrations 
of cocaine samples.

Massarini et al.171 used commercial SERS substrates made 
of gold inverted pyramids for SERS analysis of solutions 
of ten narcotic drugs (amphetamine, cocaine, methadone, 
diazepam, methylphenidate, oxazepam, tramadol, 
morphine, buprenorphine and 6-monoacetylmorphine) in 
different concentrations. Confocal and a portable Raman 
instruments (laser excitation 785 nm) were used. Limits of 
detection were obtained directly from spectra and limits 
of identification were obtained using PLS-DA models. 
Because it was not possible to obtain at least three spectra 
for the 6-monoacetylmorphine, the buprenorphine and 
the morphine with sufficient signal-to-noise ratio, they 
were excluded from the model. The test set consisted of 
42 spectra from the seven drugs and the validation set 
consisted of 149 spectra from the same seven drugs at 
different concentrations in a solvent, which were not used 
in the test set. Results showed that only one amphetamine 
sample was misclassified as cocaine. When comparing 
the PLS-DA results with the conventional method for 
calculating the limit of identification (two times the limit 
of detection), the chemometric method performed better, 
with exception of methylphenidate, possibly because these 
observations were made under sparse concentrations.

8.2. Infrared spectroscopy

The studies published on illicit drugs by IR spectroscopy 
and chemometrics focused in the analysis of confiscated 
bulk drugs. An important issue to consider in the analysis 
of confiscated drugs is the representativeness of calibration 
and prediction sets, due to the large complexity and 

variability of the samples. This was already remarked in 
1999 by Sondermann and Kovar,172,173 one of the first studies 
on the matter. Since then, several studies have reported the 
use of benchtop and portable NIR and MIR instruments 
with multivariate calibration models (mostly PLS), taking 
into consideration calibration sets that are representative for 
the quantitative analysis of illicit drugs in tablets/powder, 
such as methylamphetamine,174 heroin175 and cocaine.176-180

Pérez-Alfonso et al.181 used PLS regression to determine 
the content of cocaine impregnated in seized materials, 
within which were found other forms of illicit drugs. 
Measurements were made by ATR-FTIR and diffuse 
reflectance (DR) NIR directly from the surface of four 
different types of materials, white and black textiles, paper 
and foam. These materials were impregnated with cocaine 
concentrations (m/m) between 38.1 and 54.1% for textiles, 
50.7% for paper and 68.1% for foam. PLS models were 
built using the textile samples. PCA was used to evaluate 
the similarity of the calibration set with new samples. 
The authors concluded that PLS was adequate (RMSECV 
and RMSEP of approximately 4%) when the drug was 
distributed homogenously, even though the matrix could 
be different.

Two studies182,183 employed supervised pattern 
recognition methods and IR to classify cocaine samples 
according to their form (base or salt), content, and 
adulterants. Rodrigues et al.182 used ATF-FTIR to analyze 
91 samples of apprehended cocaine powder. PCA results 
showed the presence of lidocaine, caffeine and benzocaine 
as well as information related to the chemical form of 
cocaine. Two PLS-DA models were built to discriminate 
among the concentrated, diluted, salt and base cocaine 
samples. They showed rates of true positives between 
95 and 97%, and of true negatives between 83 and 88%. 
Marcelo et al.183 analyzed 500 samples and used HCA 
and PCA to evaluate patterns in the data and PLS-DA and 
SVM to classify the samples according to their form. The 
training and prediction sets were composed by 100 and 
413 samples, respectively. They obtained 100% sensitivity 
and specificity with both methods.

Liu et al.184 proposed a two-step qualitative and 
quantitative classification approach to determine the 
content of methamphetamine, ketamine, heroin, and 
cocaine in confiscated samples, using NIR spectroscopy and 
classification methods. A total of 282 samples were used 
for calibration and 836 samples were used for prediction. 
The classification step was used to decide what class the 
sample belonged to (methamphetamine, ketamine, heroin, 
and cocaine or none of these). With this information, the 
sample was directed to the corresponding PLS model. Then, 
SIMCA and SVM were evaluated with the first chosen due 
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to better performance for rejecting false positive results. The 
methodology was considered accurate for qualitative and 
quantitative analysis of drug samples. A similar approach 
was employed by Deconinck et al.185 for 267 seized ecstasy 
tablets and other party drugs, also using DR-NIR and 
ATR-FTIR. PLS-DA was used for classification and PLS 
calibration for quantification of MDMA tablets. In the 
qualitative classification, the DR-NIR gave the best results 
with 96% correct classification for the prediction set. The 
errors obtained, however, were false-positives. Given this, 
the authors warned against routine applications because 
the follow up analysis would include PLS quantification 
and would result in wrong conclusions. Therefore, false-
negatives could be less problematic since samples would be 
sent to a laboratory for confirmatory analysis. The authors 
suggested that the only way to tackle this problem is to 
update the model regularly with new samples, rendering 
the model more robust and more reliable.

Some studies have reported on the analysis of new 
psychoactive substances (NPS), which are a large group 
of synthetic drugs frequently found in the drug market. 
Risoluti et al.186 analyzed synthetic cannabinoids and 
phenethylamines using DR-NIR. Standards of these 
substances alone and in simulated matrices (dried herbs 
and blotter papers) were also analyzed to determine the 
matrix influence on the spectroscopic signal. PCA was 
initially used to differentiate among the type of drugs. The 
scores of the simulated and confiscated samples showed 
some clustering according to the substances investigated 
even when dispersed in the matrix tested.

Pereira et al.187,188 published two studies related to 
this. In the first,187 they analyzed 73 seized samples of 
blotters containing NPS and 21 similar papers without 
drugs using ATR-FTIR and a hierarchical approach of 
sequential modeling using PLS-DA. The models were 
relatively successful in classifying samples into three 
classes (NBOMe, 2C−H and methallylescaline) and in 
differentiating the drug from the blank papers. The average 
of ACC was 91.1%, CON was 86.1% and reliability 
rate (RLR) was 88.9%. The RLR express a global rate 
of true positives and negatives.189 The authors also 
tried to discriminate among lysergic acid diethylamide 
(LSD) samples but without success because of the low 
concentrations present and the limited sensitivity of the 
technique. A sub model was then built to classify different 
NBOMe samples. RLR, ACC and CON results were 82.2, 
100, 94.4%, respectively. After careful spectral interpretation 
using the VIP scores, the authors mentioned that the small 
number of samples in each class did not allow for more 
reliable models but the potential of the methodology had 
been demonstrated. In the second study,188 they used the 

same method to classify confiscated ecstasy-like tablets 
containing cathinone, tryptamines and other amphetamine 
types, including the well-known MDMA. The PLS-DA 
model discriminated four classes of substances: 5-MeO-
MiPT, MDMA, 3,4-methylenedioxy-amphetamine (MDA), 
methamphetamine and cathinone. The RLR and ACC was 
96.8 and 100%, respectively. Then, two sub-models were 
built to identify drugs present in the MDMA, MDA and 
cathinone classes. A total of 92 tablet samples were used 
to build the models and for validation. Since the number 
of samples for each class was very limited, only cross-
validation was employed. The RLR and ACC were 100%.

Table 4 is a resume of the above-mentioned papers and 
their respective chemometric techniques for illicit drugs.

Regarding Raman, SERS was the technique of choice 
for drug analysis in biologic matrices (urine and saliva) 
using the 633 and 785 nm laser excitations. PCA was 
combined with several discriminant analysis techniques 
like SVM-DA, PLS-DA and OPLS-DA. ATR-FTIR was 
applied for direct and bulk analysis of illicit drugs. PCA 
was used preliminary and then, discriminant analyses 
like PLS-DA and SVM-DA were applied. The calibration 
technique PLSR was used to determine the concentration 
of active compounds in drug apprehensions.

9. Body Fluids

Detection and identification of body fluids at a crime 
scene is perhaps one of the most important findings in a 
criminal investigation because it can provide a DNA profile 
that links a suspect to the crime and its presence can help 
determining what happened. The difficulty with most 
investigations is that body fluids in very small amounts can 
be invisible to the naked eye, they can be heterogeneous or 
mixed with other substances and found on different types of 
surfaces. Consequently, examinations should be sensitive, 
selective and non-destructive, particularly concerning 
DNA. The most relevant body fluids include blood, semen, 
saliva and urine.

9.1. Raman spectroscopy

Raman spectroscopy is a useful technique for the 
analysis of biological materials because the spectra are 
informative and present characteristic bands that can 
be linked to specific body fluids. The recognition of 
this analytical tool for body fluids has been due to the 
extensive work of Lednev and co-workers.190-198 They 
published a series of similar studies over four years using 
a similar methodology for the analysis of different body 
fluids (semen,190 saliva,191 blood,192 sweat193 and vaginal 
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fluid)194 using the same confocal Raman (laser excitation 
785 nm). They evaluated the heterogeneity of fluids from 
the same donor and the variability between donors using 
curve fitting methods based on an ALS algorithm. Finally, 
spectral signatures of the different body fluids showed 
many fluorescence contributions, heterogeneity within the 
same donor and significant variations from donor to donor. 
Nevertheless, Raman enabled the identification of each 
body fluid. The same authors published another study195 
for the discrimination of menstrual and peripheral blood 
from 20 and 21 donors, respectively. The Raman spectral 
profiles of both types of blood was very similar but PCA 
showed clear differences. However, the loadings were not 
shown nor discussed. Regarding classification, SVM-DA 
showed better sensitivity and specificity based on single 
spectrum (97.5 and 98%, respectively), evidencing the 
nonlinearity of the dataset. For classification at the donor 

level, both models showed similar sensitivity (95%) but 
SVM-DA gave 100% specificity. Another approach was 
proposed for improving the results of the previous models, 
consisting of excluding misclassified samples from the 
training set until all samples were correctly classified. This 
methodology must be carefully considered because of the 
high risk of overfitting. Instead, increasing the confidence 
level may ensure a high percentage of true positives. Finally, 
they performed SVM-DA using another class for vaginal 
fluid. As a result, no vaginal fluid samples were classified 
as menstrual or peripheral blood.

Two more studies196,197 were published using different 
classification techniques for the analysis of several body 
fluids. In the first,196 they used SIMCA, LDA and PLS-DA 
for discriminating among semen, blood and saliva from 
multiple donors. For the differentiation of these species, 
they applied PCA for data reduction and SIMCA. They used 

Table 4. Resume of techniques for illicit drugs

Analytical technique Chemometric technique Sample Reference

SERS (785 nm) (portable) SVM-DAa amphetamines in human urine 165

SERS PCA,b SVM-DAa methamphetamine in human urine 166

HSI-SERS (633 nm) PCA,b PLS-DAa mephedrone and two amphetamines 167

SERS PCA,b Varimax rotationb amphetamines in saliva 168

SERS (785 nm) OPLS-DAa cocaine in saliva 169

SERS (633 nm) SVM-DAa cocaine, heroin, THC, oxycodone in saliva 170

SERS (785 nm) PLS-DAa 10 narcotic drugs in different concentration 171

ATR-FTIR PCA,b PCRc mixtures containing methylamphetamine 174

DR-NIR HCA,b PLSRc heroin in street drugs 175

NIR PLSRc cocaine 176

ATR-FTIR PLS-DA,a PLSRc cocaine and adulterants quantification 177

ATR-FTIR PLSR,c PCR,c MLRc cocaine and adulterants quantification 178

Portable NIR PCA,b HCA,b PLSRc cocaine quantification, ecstasy, designer drugs, medicines 179

ATR-FTIR PLSRc cocaine quantification 180

ATR-FTIR, DR-NIR PCA,b PLSRc different concentrations of cocaine on white and black 
textile, paper and foam

181

ATR-FTIR PCA,b PLS-DAa 91 cocaine powder seizures and adulterants 182

ATR-FTIR PCA,b HCA,b PLS-DA,a SVM-DAa 500 cocaine seizures 183

NIR PLSR,c SIMCA,a SVM-DAa 282 methamphetamine, ketamine, heroin and cocaine 
seizures

184

DR-NIR, ATR-FTIR PLS-DA,a PLSRc 267 ecstasy tablets and party drugs 185

DR-NIR PCAb synthetic cannabinoids and phenethylamines bulk and with 
dried herbs and on blotter papers

186

ATR-FTIR PLS-DAa 73 NBOMe, 2C−H, methallylescaline on blotter papers 187

ATR-FTIR PLS-DAa cathinones, tryptamines and amphetamine tablets 188

aClassification; bexploratory; ccalibration. SERS: surface-enhanced Raman spectroscopy; SVM-DA: support vector machines-discriminant analysis; 
PCA: principal component analysis); HSI: hyperspectral images; PLS-DA: partial least squares-discriminant analysis; OPLS-DA: orthogonal partial 
least squares-discriminant analysis; THC: tetrahydrocannabinol; ATR-FTIR: attenuated total reflectance-Fourier transform infrared spectroscopy; PCR: 
principal component regression; DR-NIR: diffuse reflectance-near infrared; HCA: hierarchical cluster analysis; PLSR: partial least squares regression; 
MLR: multiple linear regression; SIMCA: soft independent modeling of class analogy.
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17 blood and saliva samples and 50 semen samples. The 
spectra were average for each sample and 100% of correct 
classification was obtained for all classes. Similarly, 100% 
correct classification was obtained with LDA using either 
the leave-one-out cross-validation, naive Bayes classifiers, 
fitting of multivariate normal densities with covariance 
estimates stratified by group or Mahalanobis distances. 
Regarding PLS-DA, all species were clustered separately, 
with except for one Raman spectrum of human saliva that 
fell close to the human blood cluster. In the second study,197 
they compared the use of SVM-DA and PLS-DA with and 
without GA and interval partial least squares (iPLS)-DA 
variable selection for discriminating peripheral blood, 
saliva, semen, sweat and vaginal fluid. Initial comparison 
between PLS-DA and SVM-DA models with the same 
dataset and using five latent variables showed more accurate 
predictions (internal and external validations) for SVM-DA, 
over 99% against 97% for PLS-DA. When using iPLS-DA 
variable selection, accuracy for the internal validation 
improved for both PLS-DA and SVM-DA but was lower 
than before for external validation. On the contrary, the 
accuracy of both models improved when using less than half 
of the variables. In fact, external validation with SVM-DA 
obtained 100% correct classification. The authors reported 
that GA analysis retained the distinctive peaks of each 
fluid, which is the reason for the satisfactory performance.

Mixtures of semen and blood in different ratios (varying 
from pure semen to pure blood) were analyzed in another 
study by the same authors.198 The first approach consisted 
of SVM-DA using only mixtures (total of 15 classes). 
Due to the disappointing results, the authors used another 
approach where SVM regression was applied before 
SVM-DA. Since the Raman spectra of mixtures outside 
of the 15-75% range could not be distinguished from the 
pure fluids, they were omitted from the training set. This 
allowed for 100% correct classifications. However, when 
including the omitted samples, most of the mixtures were 
correctly classified anyway in the cross-validation, with 
exception of the sample with 5% blood that was assigned 
to pure semen. They obtained similar results in a validation 
study using mixture samples from six donors.

Lednev and co-workers199,200 have also published studies 
for differentiating human and animal blood. In one study,199 
they used PCA for visualizing the differences between 
human, canine, and feline blood. The scores plot using 
3 PCs showed three separate groups for each blood type, 
with more than 90% explained variance. In another study,200 
they used PLS-DA for classification of human and animal 
blood from 11 species (cow, cat, dog, horse, pig, mouse, 
opossum, raccoon, rabbit, rat and chicken). The model 
was restrained to a binary classification of samples as 

either human or animal. Calibration was performed using 
110 spectra from all the species, excluding ten cow samples. 
The cross-validation prediction using 4 LVs showed that 
all samples were correctly classified with exception of 
two spectra from different chicken samples. The authors 
suggest that the use of additional LVs could correct this 
issue, but this has to be done carefully to avoid overfitting. 
Then, they performed external validation using the cow 
samples and ten unknown samples chosen blindly (5 human 
and 5 animal) and obtained 100% accuracy, in spite of a 
few samples that were very close to the threshold. The same 
authors recently expanded their dataset to include blood 
samples from 6 other animal species, chimpanzee, deer, 
elk, ferret, fish, and macaque.201 They also included new 
human donors varying in age (11-40+ years old). Results 
showed that most of the new animal species’ blood samples 
were correctly predicted as non-human, with exception of 
samples from one chimpanzee and one macaque, which 
were classified as human blood. The authors were not 
surprised with this result because the hemoglobin structure 
of chimps is similar to humans. Apart from this, they 
reported 100% sensitivity and 93% specificity in external 
validation.

Bai et al.202 also published a similar study but with 
fewer animal species and obtained the same results. 
Fujihara et al.203 also analyzed human and animal blood 
from 11 species using a portable Raman instrument (laser 
excitation 785 nm). However, the authors investigated 
spectral differences in bloodstains that had been aged for 
different periods. PCA scores plot showed no distinction 
between human and animal spectra, even after 3 months 
aging.

Lednev and co-workers204-206 published three studies 
for determining gender and race in bloodstains204,205 and 
sex in saliva.206 For gender discrimination employing 
blood samples, PCA showed no characteristic structure 
and GA was combined with artificial neural networks 
(ANN) to provide specificity and sensitivity of 81 and 81% 
for cross-validation, respectively. The SVM-DA model 
showed worse performance, with 73% for specificity 
and 79% for sensitivity. For saliva samples, an SVM-DA 
model was built employing 48 donors for training and 
12 for prediction. The authors reported that the threshold 
values of 0.50 and 0.67 provided similar results, and they 
chose a threshold of 0.67 and correctly classified 11 out of 
12 donors. For race discrimination, they also used GA for 
variable selection associated to SVM-DA models to classify 
samples according Caucasian and African American classes 
from 20 donors. The area under the receiver operating 
characteristic (ROC) curve, was used for evaluation, 
providing a value of 0.83 based on each subject. The authors 
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explained that not all spectra have noticeable contributions 
from discriminating biomarkers.

The classification of blood samples contaminated with 
sand, dust and soil were evaluated with PLS-DA.207 Four 
classes were built for the training set, consisting of pure 
blood, dust, sand, and soil. The contaminated samples of 
blood were then predicted in that model. Results showed 
that there were no misclassifications of pure samples and 
a considerable numbers of contaminated blood spectra 
were assigned to blood. The authors did not show values 
of classification errors, sensitivity, specificity nor any 
figures of merit for the model; instead, they showed the 
PLS-DA prediction plot, from which many misclassified 
samples could be depicted. A similar approach was used 
for classification of semen stains on different substrates, 
like pig skin, glass, white cotton, blue polyester and white 
fabric composed of 60% cotton and 40% polyester.208 Since 
only a partial separation of samples was possible due to 
strong spectral contributions, MCR-ALS was employed for 
recovering the semen spectra. The authors showed a good 
fitting between the optimized spectra and the pure spectra 
of semen, especially on cotton, but found some difficulties 
with blue polyester.

Two studies209,210 were published regarding the age 
determination of bloodstains. At first, they used PLSR for 
age predictions and 2D correlation for spectral comparison. 
Blood samples from two donors (one male and one female) 
were left to age under normal laboratory conditions and 
spectra were measured at different times (1, 3, 5, 8, 24, 48, 
72, 96, 120, and 168 h). The PLSR model, built with data 
collected from the male donor, provided an RMSECV and 
R2 values of 0.13 h and 0.97, respectively. The performance 
of the PLSR model was externally validated with a dataset 
from spectra of the female donor. It is important to emphasize 
here that a study of this complexity should consider more 
representativeness in the sampling procedure. For further 
investigation on that matter, inclusion of more donors and 
replicates of bloodstains from the same donor is strongly 
recommended. In the second study, they analyzed samples 
naturally aged up to 2 years. An SVM-DA model, which 
had been developed in a previous study197 was employed for 
making predictions of the aged bloodstains. As a result, all 
samples up to one month were correctly classified, which 
is understandable since the model was trained for fresh 
blood samples (up to 48 h). For calibration, they built and 
compared PLSR with PCR and both calibration models 
provided very similar prediction results. However, the PLSR 
presented lower RMSEP value (0.29 compared to 0.31 of 
PCR). Additionally, the PLSR showed some variations in the 
accuracy of predictions at the different time points, but this 
lessened over time, possibly due to spectral quality.

More recently, Doty and Lednev211 attempted to use 
SVM-DA to classify blood samples from newborns (less 
than 1 year), adolescents (11-13 years old) and adults 
(43-68 years old). Results showed sensitivity values 
of 0.95, 1.00, and 0.98, and specificity values of 1.00, 
0.98, and 0.99, for external predictions of the newborn, 
adolescent, and adult age classes, respectively. Although 
most misclassifications occurred between adolescent 
and adult classes, none of these were misclassified in the 
newborn class, which indicates the potential of the method 
to discriminate newborn from older blood samples.

9.2. Infrared spectroscopy

IR spectroscopy is somewhat less applicable for the 
analysis of body fluids than Raman because of the water 
content in most of the evidences. In addition to this, the 
higher penetration of IR in the evidence captures interfering 
signals from the substrates. Notwithstanding, several works 
have been published, particularly on dry stains. Mistek and 
Lednev212 used ATR-FTIR and PLS-DA to discriminate 
between human and animal (cat and dog) blood deposited 
on microscope slides. GA was used for variable selection. 
Classification predictions of unknown blood donors 
resulted in 100% accuracy.

Two studies213,214 have used portable NIR spectrometers 
and supervised pattern recognition methods for 
discrimination and confirmatory identification of bloodstains 
in different substrates. In the first, Pereira et al.213 analyzed 
dried human and animal bloodstains and several red-colored 
products that could be commonly perceived as blood, such 
as red lipstick, pepper sauce, soy sauce, red wine and 
balsamic vinegar. The different substrates used included 
beige floor porcelain tile, white ceramic tile, glass and the 
metallic part of a knife. SIMCA, GA-LDA and SPA-PLS-
DA models were built for each substrate separately. For 
an external validation set, SIMCA showed 100% correct 
classification for porcelain and glass substrates but 80% for 
metal and 90% for ceramic substrates. GA-LDA showed 
better classification performance (100%) than SPA-LDA, 
which gave one false positive and one false negative. PLS-
DA correctly classified human blood and other stains in all 
substrates. Morillas et al.214 analyzed bloodstains and eight 
other substances that resembled fresh or dry blood, such 
as red wine, red ink, tomato sauce, fake blood, coffee, red 
food coloring, red paint and beet root juice. The substrates 
used were glass slides, tile, wood, 100% leather, 100% 
acrylic and 100% cotton. The authors did not describe 
the chemometrics used because the models were created 
using the software tools provided by the manufacturer of 
the device, but they mentioned that these tools utilize a 
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“powerful cloud-based machine learning” method which 
is based on partial least square regression (PLSR). The 
results showed 94% correct identification for blood and 
14% false positives.

Edelman et al.215 evaluated the feasibility of using 
NIR spectroscopy for blood stain identification and age 
estimation on dark backgrounds. Blood samples were 
deposited on white, black, red, green and blue cotton 
substrates. They also analyzed thirty substances that 
look like blood on white cotton. For the identification of 
bloodstains on colored cotton, a comparison to a library set 
of three bloodstains of different ages was made. The spectra 
of bloodstains of the first 77 days showed high correlation 
with the library data and were easily discriminated from the 
non-blood samples. For age estimation, the PLS regression 
was able to estimate successfully the bloodstains aged 
up to 1 month old, giving a root mean squared error of 
prediction of 8.9%.

Li et al.216 also used ATR-FTIR combined with PLS 
regression to determine the age of bloodstains on glass 
slides with blood that had been aged up to 107 days. The 
samples were stored under indoor and outdoor conditions, 
as similar as possible to a crime scene scenario. For the 
indoor condition, samples were exposed to direct sunlight 
during the day and no light at night. For the outdoor 
condition, samples were exposed to direct sunlight, heat, 
and humidity. Two PLS models (indoor and outdoor) 
with 7-85 days showed RMSEP values of 5.8 and 
4.8 days, respectively. PLS-DA technique was also used 
to discriminate between fresh (age ≤ 1 d) and older (age 
> 1 d) bloodstains. The outdoor model showed better 
performance, discriminating fresh bloodstains, with a 
sensitivity value of 0.92 (compared to 0.25 of the indoor 
classification model), probably due to the more extreme 
conditions from the outdoors.

Zapata et al.217,218 published two studies with the aim of 
identifying and discriminating among different body fluid 
stains. In the first,217 they focused on discrimination among 
semen, vaginal fluid, and urine stains placed on different 
colored cotton fabrics using external reflection FTIR 
combined with SIMCA. The training set was composed of 
18 stains from each fluid deposited on six cotton samples 
of different colors, 17 stains of semen, 17 stains of vaginal 
fluid, and 17 stains of urine (12 on white cotton from four 
different donors and five stains on each colored cotton). 
Several spectra were obtained for each stain. The external 
validation set consisted of six cotton samples of each color, 
three stains from each body fluid (from different donors 
than those used for the training set), 14 stains made by 
cosmetics and foodstuffs, and two stains of a mixture of 
semen and vaginal fluid. The SIMCA classification models 

showed correct classifications of all stains in the validation 
set. No false positives were obtained from the cosmetic or 
foodstuff substances. The stains containing a mixture of 
body fluids were classified as vaginal fluid. The authors 
highlighted that further research is needed to improve 
and refine the classification model, particularly with fluid 
mixtures where only the female’s fluid was identified. In 
the second study,218 they used HSI-NIR to identify stains 
of semen, vaginal fluid, and urine on 100% cotton fabrics. 
The fluids were deposited on the substrates separately and a 
mixture of semen and vaginal fluid was also prepared. The 
PCA scores image made it possible to identify the location 
of each stain. CLS models were able to discriminate among 
the pixels related to semen and vaginal fluid on a mixture 
stain. It is important to remark, however, that CLS requires 
knowledge of all the compounds in the mixture, i.e., the 
fluids spectra and other compounds such as substrates and 
contaminants.

Takamura et al.84,219 published two recent studies 
for discrimination of body fluids using ATR-FTIR and 
multivariate analysis. In the first,219 they raised important 
practical difficulties in the discrimination of body fluid 
using infrared spectroscopy: compositions of both body 
fluids and substrates are distributed heterogeneously on 
body fluid stains. In addition, body fluid compositions 
are diffused extensively into substrates thus making 
signals from body fluids weaker against strong substrate 
interference and more vulnerable to instrumental noise. 
As much forensic evidence cannot be anticipated, it is 
important that the discrimination method be applicable to 
unknown substrate types. To overcome these issues, the 
authors proposed a new strategy to recover blood signals 
in strong substrate interference situations using ATR-
FTIR spectroscopy and an innovative multivariate spectral 
processing. Postmortem blood (PB) and antemortem blood 
(AB) stains were used to show the efficacy of the method. 
The pre-processing approach uses data sets of pure blood 
samples of PB and AB, obtained from dried stains on glass 
slides and pure substrate spectra. From spectra of PB and 
AB stains on interfering substrates (polyester, cotton, 
and denim), blood-originated signals were extracted 
using a weighted linear regression approach developed 
originally using PCs of both blood and substrate. The 
blood-originated signals were then classified by PLS-
DA using only the spectra of PB and AB on glass slides 
to build the models. GA was employed to evaluate the 
specific spectral regions for PB and AB. As a result, the 
discrimination accuracy varied between 86 and 95%, 
depending on the substrate.

In the second study, Takamura et al.84 discriminated 
among different body fluids, including peripheral blood, 
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saliva, semen, urine and sweat. However, the substrate 
employed was not clearly specified. A PLS-DA model 
incorporating the LDA algorithm was successfully 
employed to identify the five fluids. However, as previously 
mentioned, both PLS-DA and LDA are hard modeling 
methods, which means that each sample will be assigned to 
one of the classes. This is a limitation in forensic contexts 
because it can give a variety of false-positives. To overcome 
this, the authors proposed a discrimination scheme, where 
a PLS-LDA model is built followed by Q-statistics tests for 
each class of body fluids, and any spectra not included in a 
class considered outliers and excluded. This strategy was 
successful with fourteen types of false-positive samples, 
including foodstuffs, cleaning products, among other 
outliers. Results showed high discriminatory performance 
for all classes, especially for blood samples. Additionally, 
the robustness of the models against aged body fluids was 
significantly improved using a discrimination scheme 
based on a dichotomous classification tree with hierarchical 
clustering. For this, they applied HCA to the PLS-DA scores 
of the first day and predicted by the first-day-five-class 
PLS-LDA-Q model. According to the structure of the 
dendrogram, a discriminant scheme was built, consisting 
of a dichotomous classification tree and Q-tests inserted 
at each end.

Silva et al.220 discriminated among human semen stains 
in fabrics of different colors and compositions made up 
from animal semen, breast milk and lubricants, using 
HSI-NIR and multivariate models. The authors were also 
hampered by the amount of influence of the substrate. 
They conducted an exhaustive data analysis to test the 
most suitable tool for the detection and discrimination of 
semen stains in diverse fabrics. PCA and MCR-ALS were 
used for initial identification and PLS-DA, sPLS-DA and 
SVM-DA were then used for classification. PCA was 
not successful due to the texture of fabrics that had high 
influence on the results. On the other hand, the MCR-ALS 
was able to identify the presence of stains on all fabrics 
and the recovered spectra showed high correlation with the 
pure spectrum of semen, independent of the fabric used as 
substrate. However, other compounds also showed high 
correlation with pure semen spectrum, which indicated that 
MCR-ALS could be used in a presumptive examination. 
Regarding the classification techniques, SVM-DA showed 
a better performance, in general, providing more specific 
models for all classes. However, sPLS-DA was the only 
technique that did not provide any false negatives for 
human semen. Given the fact that substrates may vary in 
real case scenarios and they may have a strong influence on 
the results, the authors advise the construction of models 
for each substrate.

Table 5 shows the references and the chemometric 
techniques employed for body fluids analysis.

As seen, confocal Raman using the 785 nm 
laser excitation was preferred for identification and 
discrimination of different body fluids, as well as age, 
race and gender determinations. Although the resolution 
curve fitting technique was preferred for establishing the 
Raman signature of the different fluids, the classification 
techniques PLS-DA, SVM-DA and SIMCA were used 
for discrimination issues. The calibration techniques 
PLSR and PCR were applied for age determinations. 
ATR-FTIR, HSI-NIR and portable NIR were preferred for 
identification and discrimination of different body fluids. 
The classification techniques PLS-DA, SVM-DA and 
SIMCA were used for IR data analysis and the calibration 
technique PLSR was preferred for age determinations.

10. Conclusions

After extensive literature research, the potential 
and advances made when combining the vibrational 
spectroscopy techniques with chemometric tools are 
undeniable. By demonstrating their ability, the techniques 
described above are expected to have a strong impact on 
forensic routines, since the majority of scientific police 
laboratories are equipped with either an infrared or a Raman 
spectrometer, and in many cases, both.

The chemometric techniques used will always vary 
according to the trace evidence and the protocol used to 
approach the problem in hands. Regarding unsupervised 
techniques, in general, PCA, as expected, is predominant 
in the majority of forensic investigations involving 
chemometrics. Although it is often erroneously referred as 
a classification technique, its ability to highlight differences 
and similarities are well established and explored not only 
for screening analysis, but also for decision-making. This 
is particularly important for document counterfeits, where 
there are many situations when discrimination of only two 
registers will elucidate the problem.

Regarding classification techniques, PLS-DA, LDA 
and SVM-DA are the most employed techniques for 
supervised classification, noting the special attention given 
to SVM-DA which is often employed for body fluids 
analysis. This might be due to the complexity of samples, 
the classification problem and, in some cases, the substrate 
influence. These issues lead to complex datasets that often 
need nonlinear boundaries for discrimination. In addition, it 
is extremely important to emphasize the need for research 
works that can combine forensic problems with different 
class-modeling techniques. Up to the moment, discriminant 
analysis dominates most forensic applications, but class-
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modeling could be more adequate in certain cases, such as 
drugs and currency counterfeits, because the target class 
is highly controlled.

Different approaches for validation are being explored. 
Re-sampling techniques such as bootstrapping has 
becoming popular in forensic problems. This is particularly 

Table 5. Resume of techniques for body fluids

Analytical technique Chemometric technique Sample Reference

Confocal Raman (785 nm) curve fittinga semen 190

Confocal Raman (785 nm) curve fittinga saliva 191

Confocal Raman (785 nm) curve fittinga blood 192

Confocal Raman (785 nm) curve fittinga sweat 193

Confocal Raman (785 nm) curve fittinga vaginal fluid 194

Confocal Raman (785 nm) PCA,b PLS-DA,c SVM-DAc menstrual and peripheral blood from different donors 195

Confocal Raman (785 nm) PCA,b SIMCA,c LDA,c PLS-DAc semen, blood and saliva from multiple donors 196

Confocal Raman (785 nm) SVM-DA,c PLS-DA,c GA-SVM-DA,c 
GA-PLS-DA,c iPLS-DAc

peripheral blood, saliva, semen, sweat and vaginal fluid 197

Confocal Raman (785 nm) SVM-DA,c SVMd mixtures of semen and blood 198

Confocal Raman (785 nm) PCAb human, canine and feline blood 199

Confocal Raman (785 nm) PLS-DAc human and animal blood from 11 species 200

Confocal Raman (785 nm) PLS-DAc human and animal blood from 6 species 201

Confocal Raman (532, 633, 785 nm) PLS-DAc human and animal blood from 4 species 202

Portable Raman (785 nm) PCAb aged human and animal blood from 11 species 203

Confocal Raman (785 nm) PCA,b k-NN,c SVM-DA,c GA-ANNc male and female blood (gender determination) 204

Confocal Raman (785 nm) GA-SVM-DA,c GA-ANN,c SVM-DAc Caucasian and African-American blood (race 
determination)

205

Confocal Raman (785 nm) SVM-DAc male and female saliva (gender determination) 206

Confocal Raman (785 nm) PLS-DAc blood contaminated with sand, dust and soil 207

Confocal Raman (785 nm) PLS-DAc semen on 6 different substrates 208

Confocal Raman (785 nm) PLSRd aged bloodstains on glass 209

Confocal Raman (785 nm) SVM-DA,c PLSR,d PCRd aged bloodstains on glass 210

Confocal Raman (785 nm) SVM-DAc newborn, adolescent and adult blood 211

ATR-FTIR PLS-DAc human, cat and dog blood 212

Portable NIR SIMCA,c LDA,c PLS-DAc human and animal blood and 5 red substances on 4 different 
substrates

213

Portable NIR PLSRd human blood and 8 red substances on 7 substrates 214

NIR PLSRd aged human blood and 30 red substances on cotton 
substrates of different colors

215

ATR-FTIR PLSR,d PLS-DAc aged (indoors and outdoors) human bloodstains on glass 216

Reflection FTIR SIMCAc semen, vaginal fluid and urine on colored fabrics 217

HSI-NIR PCA,b CLSd semen, vaginal fluid and urine on cotton fabrics 218

ATR-FTIR PLS-DAc postmortem and antemortem blood on glass and different 
fabrics

219

ATR-FTIR PLS-DA,c HCAb peripheral blood, saliva, semen, urine, sweat and 14 red 
substances

84

HSI-NIR PCA,b PLS-DA,c SVM-DA,c MCR-ALSa semen on different fabrics 220

aResolution; bexploratory; cclassification; dcalibration. PCA: principal component analysis; PLS-DA: partial least squares-discriminant analysis; 
SVM-DA: support vector machines-discriminant analysis; SIMCA: soft independent modeling of class analogy; LDA: linear discriminant analysis; 
GA: genetic algorithm; iPLS: interval partial least squares; k-NN: k-nearest neighbors; ANN: artificial neural networks; PLSR: partial least squares 
regression; PCR: principal component regression; ATR-FTIR: attenuated total reflectance-Fourier transform infrared spectroscopy; NIR: near infrared; 
HSI: hyperspectral images; CLS: classical least squares; HCA: hierarchical cluster analysis; MCR-ALS: multivariate curve resolution-alternating least squares.
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important because representativeness is hard to achieve 
in many cases and these approaches can be very useful. 
Another chemometric strategy that is also gaining 
acceptance is data fusion. Nevertheless, only low-level data 
fusion has been used with much success.

One major problem encountered in many applications 
is the substrate influence, especially in body fluids and 
GSR identification. The strategy to attenuate this problem 
depends, among other factors, on the analytical technique 
employed. Chemometric approaches have proven especially 
interesting, particularly pre-processing techniques, 
weighted least squares and MCR-ALS. The latter has an 
advantage due to its flexibility during model building and 
it can be applied to a variety of forensic problems when 
not all components present are well-known.

In a real scenario, the acceptance of chemometric 
models and the routine use of Raman spectroscopy is still a 
challenge. Due to the statistical background needed for model 
development, forensic experts still resist the employment 
and development of chemometric models in a daily basis. 
Naturally, it is expected that this scenario will change over 
the years, since the partnership between academic institutions 
and scientific police departments is increasing. In some 
particular cases, police officers have already employed 
chemometric models in their reports, which is an important 
step towards implementing chemometrics in real cases. 
Additionally, there are a number of other challenges that 
must be considered when implementing those models for a 
routine use. The maintenance of a particular model should 
be constantly improved, especially when complex samples 
are being analyzed.

Finally, it is important to understand that the future 
scenario for forensic analysis combined with vibrational 
spectroscopy and chemometrics is still gaining interest 
and being improved. The need for robust, fast and 
reliable models is still challenging, especially for in loco 
applications and well-established protocols of analysis.
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