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Neste trabalho, a espectroscopia de imagens no infravermelho próximo (NIR) foi empregada no 
estudo da distribuição do princípio ativo (API) espironolactona e seus excipientes em comprimidos. 
As análises foram realizadas utilizando resolução espacial de 50 µm, analisando 16 mm2 de cada 
comprimido padrão. Modelos de mínimos quadrados parciais por intervalo (iPLS) foram utilizados 
para quantificação dos excipientes e API em cada pixel afim de obter mapas de concentração 
para cada composto. Foram obtidos erros de quantificação entre 0,49 e 1,26% quando realizada a 
validação cruzada utilizando a média espectral de cada comprimido. Esses modelos de calibração 
foram utilizados para prever a concentração individual de cada componente em cada pixel. A 
concentração média de todos os pixels, para cada composto, produziu erros entre 0,05 e 1,06%. 
Estes resultados indicaram que os modelos estavam aptos a quantificar todos os compostos em 
cada pixel, individualmente. Esta aproximação necessita ser realizada uma vez que não é possível 
conhecer a composição real em cada pixel.

In this work, near infrared (NIR) imaging spectroscopy was employed in the study of the 
distribution of the active pharmaceutical ingredient (API) spironolactone and its excipients in 
tablets. Analyses were performed using 50 µm spatial resolution to analyze 16 mm2 of each 
standard tablet. Interval partial least squares models were used for API and excipients quantification 
in every pixel in order to obtain concentration maps for each compound. It was obtained errors 
of quantification between 0.49 and 1.26% when performed the cross-validation using spectral 
average of each tablet. These calibration models were used to predict individual concentration 
of each compound in the tablet, in every pixel. The average concentration of all pixels, for each 
compound yield errors, was between 0.05 and 1.06%. These results indicate that the models were 
able to quantify all compounds in each pixel. This approach is necessary since it is not possible 
to know the real concentration of each compound in the pixels.
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Introduction

Pharmaceutical products prior to their approval for 
market authorization are evaluated and tested according 
to their quality test specification. These tests are: physical 
tests (appearance, average mass, etc.), chemical tests (assay, 
purity, etc.) and pharmaceutical tests (dissolution, content 
uniformity). Assay and content uniformity (CU) tests are 
two major aspects of drug quality assessment. Assay value 
reflects the mean active content in a production batch. The 
content uniformity test shows the distribution of the active 

content within the production batch.1-3 Production process 
of medicine presented as tablets involves some unitary 
operations: mixture, granulation, drying and compression. 
These unit operations must ensure that each tablet is within 
specification for dissolution, content uniformity, etc. 
Powder homogenization process is essential to obtain the 
correct amount of active pharmaceutical ingredient (API) 
in each tablet in order to satisfy the condition of content 
uniformity. However, the distribution of the particle size and 
density of the crystals greatly influence the forces that cause 
movement between the particles. So, the homogenization 
process is a critical step in the manufacturing process of 
tablets.2-5 An inefficient homogenization can result in some 
tablets with API concentration above correct content, and 
other tablets with the API concentration below correct 
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content. This could directly affect the pharmaceutical 
efficiency of this medicine.

Spironolactone is a synthetic steroidal diuretic to treat 
a series of diseases, such as edema, cirrhosis of liver, 
hypokalemia and hypertension, and is used as antiandrogen 
agent.6,7

Imaging spectroscopy is the combination between 
classic spectrometric methods and microscopic analysis. 
This technique produces hyperspectral images, which are 
cubes of data containing a spectrum by pixel. Raman,8 
mid infrared,9 fluorescence10  and mass spectrometry11 
are techniques that can be adapted to perform imaging 
analysis. Imaging spectroscopy applied to characterization 
of compounds  and spatial localization using near 
infrared (NIR) chemical imaging were demonstrated in 
pharmaceutical applications, such as mapping compound 
distribution, to verify the homogeneity or to detect 
counterfeits.12-18

In a review of the literature, it is possible to find that the 
principal method used to develop calibration models using 
imaging NIR data is the single wavelength approach, in 
which the intensity of a single wavelength is related to the 
concentration of a specific compound.14,17,19-23 It is obvious 
that the wavelength must be selective for the compound to 
be quantified, turning this a risky strategy. The principal 
multivariate method used to analyze NIR imaging data 
is the principal component analysis (PCA), however, 
PCA cannot be directly used as a prediction method for 
concentraion.14,15,24-31 Other multivariate method is the 
classical least squares regression (CLS).18,22,32 CLS only 
requires the pure compound spectrum of each constituent 
in the sample in order to find their concentration by 
multivariate regression, but it does not work well if there are 
high noise levels and a high number of compounds in the 
sample. In addition, all spectra of compounds in the sample 
need to be known. Multivariate curve resolution-alternating 
least squares (MCR-ALS) is a multivariate method that 
is often used to generate calibration models using NIR 
imaging spectroscopy.27,31,33-35 It works similarly to CLS, 
but by alternating least squares, MCR-ALS can recover 
the concentration and spectra of analytes of interest and 
estimate the spectra of possible interferences. Unlike CLS, 
there is no need to know the pure spectra of the analytes 
to use MCR-ALS. However, MCR-ALS presents the same 
limitations of CLS, i.e., it does not work well if there are 
high noise levels  and a high number of compounds in 
the sample. Partial least squares (PLS) is a well known 
multivariate calibration method that can be applied for 
very complex matrices. However, the concentration of 
the analyte of interest needs to be known to build the 
calibration model. There are few works using PLS due to 

this restriction since it is impossible to perform reference 
analyses in just one pixel, but only in the whole sample. 
One of the main uses of PLS is to perform discriminant 
analysis (PLS-DA) in order to indentify pixels that do not 
belong to the sample (interferences or contaminants).32,36,37 
For quantification, most of works present PLS models 
built using pure spectra  and do not take into account 
possible spectral changes due to interactions of the 
compounds.14,15,19,26,38-41 PLS is employed in few works to 
quantify compounds by NIR imaging using a calibration 
set,18,42-44 and none of them presented interval PLS (iPLS) to 
calculate concentration maps (chemical images) in tablets.

In this work, NIR imaging technique and iPLS were 
applied to simultaneously quantify API and three excipients 
in spironolactone tablets in order to find the chemical 
images of the tablet surface. This is an important criterion 
to study the homogeneity of compound in a single tablet, 
which is related to the manufacturing process quality.

Experimental

Materials and methods

HB43-S Halogen Moisture Analyzer from Mettler-
Toledo was used to perform moisture analyses. Conventional 
NIR analyses were made using a NIR-FT Nicolet Antaris 
II by Thermo Scientific. Hyperspectral images from tablets 
were obtained using a Spotlight 400N NIR imaging system 
from Perkin-Elmer.

Multiplicative scattering correction algorithm, iPLS 
models and all treatments were performed using Matlab 
2009B (Mathworks, Natick, MA, U.S.A).

Interval partial least squares

Interval partial least squares is a multivariate calibration 
method that generates different calibration models from 
different intervals of spectra (or from combinations of 
some intervals). This procedure is used to find spectral 
ranges that produce lower prediction errors (verified by 
cross-validation). Spectral ranges that have non-linear or 
no information are eliminated from the data matrix.45-47

A hyperspectroscopy image can be visualized as a 
cube of data since there are a lot of absorbance/reflectance 
values for each pixel. Each pixel can be considered as 
an individual sample in this technique, but the spatial 
information is preserved. To performed iPLS analysis in 
this kind of data, spectroscopic images need be unfolded 
to rearrange them as a data matrix. After the unfolding 
process, rows will be the spectra related to the different 
pixels in the data matrix.12,48
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Figure 1 shows a graphic illustration of iPLS prediction 
performed on a hyperspectral image.

Standard tablet preparation

Tablets contained spironolactone (API), corn starch, 
calcium sulfate  and polyvinylpyrrolidone (excipients). 
These excipients were selected based upon spironolactone 
commercial tablets. Concentrations of each excipient and 
API were around the concentration of commercial tablets to 
avoid compression problems such as capping, lamination, 
binding and others (proportions cannot be freely changed). 
These problems are solved by formulation work during 
commercial tablet development. Tablets were produced 
using a manual factoring process, in which excipients and 
API were mixed in plastic bags using previously defined 
proportions.

API  and excipients raw material had some water 
content that was measured for each excipient  and API 
using the moisture analyzer. Water was not considered an 
excipient in the tablet, but real content of each excipient 
was corrected before calibration and prediction procedure. 
Average water content for all standards was around 11%, 

so water was not considered a variable in this experimental 
design.

Standard tablets were produced by using an 
experimental design based upon ideal concentration 
of excipients from commercial samples. So, it was 
prepared an ideal concentration mixture (IM) containing: 
spironolactone (SP), calcium sulfate (CA), corn starch 
(CS)  and polyvinylpyrrolidone (PV). Standards were 
obtained by addition of SP, CA, CS and PV in this ideal 
mixture. As explained before, changes in excipient 
compositions cannot be freely made due to compression 
problems.

There were four substances to perform the experimental 
design: SP, CA, CS and PV. PV had lower concentration 
than other excipients in the commercial sample. So, it 
was performed a ternary mixture design using three major 
compounds presented in the tablet: SP, CA and CS. Ten 
standards were yielded performing this ternary design, 
providing five variation levels for each compound. It was 
added different concentrations of PV to each standard to 
quantify this compound. It were produced five tablets for 
each of the ten standards.

Standards were prepared using 300 mg of IM. To this 
amount, it was added 60 mg of different combinations of SP, 
CA and CS following a ternary design. Average weight of 
commercial tablet was around 360 mg, for this reason, total 
weight of standard tablets was 360 mg, before addiction 
of PV. Ternary mixture design has a constraint: the sum 
of all compounds is 100% for all standards. Since 100% 
of variation in this design is 60 mg, the constraint will be: 
SP + CA + CS = 60 mg. This design is known as ternary 
mixture design using pseudocomponents since variation 
occurs on a previously fixed condition.49

Standards were prepared according to Table 1. Bracket 
values show the real concentration (%) of each compound 
in each standard tablet. Real concentration was obtained by 
discounting the moisture percentage for each raw material. 
Moisture content in the standards was calculated by the 
percentage of water content in each raw material.

Figure 1. Graphic illustration of iPLS prediction. In this example, imaging 
analysis is performed on nine pixels. This cube of data is unfolded in 
a data matrix. Intervals prior selected are used to predict compound 
concentration in each pixel. Concentration matrix is refolded to produce 
concentration maps.

Table 1. Experimental design (mg) without moisture correction. Brackets show real percentage for each compound in the standards after moisture and 
weight corrections

Standard
Standard composition / mg (%)

1 2 3 4 5 6 7 8 9 10 (IM)

IM 300 300 300 300 300 300 300 300 300 360

SP 60 (27.74) 0 (12.12) 0 (12.28) 30 (20.66) 30 (20.95) 0 (12.45) 40 (23.08) 10 (14.78) 10 (14.59) 0 (15.14)

CA 0 (22.76) 60 (36.24) 0 (23.37) 30 (30.46) 0 (24.02) 30 (30.46) 10 (25.60) 40 (31.85) 10 (24.92) 0 (28.83)

CS 0 (31.72) 0 (32.14) 60 (46.95) 0 (33.02) 30 (40.87) 30 (40.31) 10 (34.97) 10 (34.51) 40 (41.05) 0 (40.18)

PV 20 (7.81) 15 (6.68) 10 (5.52) 5 (4.32) 0 (3.09) 5 (4.32) 10 (5.52) 15 (6.68) 20 (7.81) 0 (3.71)

Moisture (9.97) (12.82) (11.89) (11.53) (11.07) (12.46) (10.83) (12.19) (11.63) (12.14)
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A hydraulic press was used to compress the mixture of 
powders yielding the tablets. It was used 2.5 tons per in2 
pressure. Standard tablets were circular (8 mm diameter) 
having plane surfaces.

Conventional NIR reflectance analysis

NIR-FT Nicolet Antaris II was used to obtain 
reflectance spectra from standard tablets. It was used 
8 cm-1 spectral resolution, 10000-4000 cm-1 spectral 
range and 16 scans. By conventional analysis, it would 
be possible to detect experimental design errors and the 
quantitative prediction performance of this calibration 
set by cross-validation. Conventional NIR reflectance 
analysis uses larger spotlight to avoid heterogeneity 
problems. By using an iris, whole tablet surface could 
be radiated.

Imaging NIR reflectance analysis

Imaging analyses of yielded tablets were performed 
by reflectance technique using the Spotlight 400N NIR 
imaging system, 50 μm spatial resolution, 16 cm-1 spectral 
resolution, 7800-3800 cm-1 spectral range and 4 scans. It 
was analyzed a square with 16 mm2 (4000 μm × 4000 μm) 
area in the center of the tablets for each standard, resulting 
in 50 hyperspectral images containing 80 × 80 pixels, i.e., 
6400 spectra or pixels per image. Approximately 1 h was 
spent to acquire each hyperspectral image.

Results and Discussion

Preliminary results of conventional analysis by NIR 
reflectance spectroscopy

A multiplicative scattering correction (MSC) procedure 
was used to correct the spectra from conventional NIR 
reflectance analysis. Smoothing processes were performed 
by a moving average. For calculations, it was used first 
derivate spectra.

It was performed PCA analysis for each replicate set 
to find possible outliers (this analysis is necessary due 
to homogeneity problems since reflectance analysis is 
partially a surface analysis). Results show that all standards 
were correctly prepared since results obtained for each 
replicate set needed just a component to explain more than 
99.36% of variance from treated data.

A PLS model was performed with treated data. Absolute 
errors obtained by cross-validation (leave-five-out, taking 
off all replicates of each standard from the calibration set) 
were: 1.38% to SP, 0.89% to CA, 1.21% to CS and 1.19% to 

PV. Four latent variables were used in this cross-validation 
analysis for each compound.

Quantitative analysis using iPLS for imaging spectroscopy 
data

In solid preparations, a perfect homogenization 
is impossible. It is common to have particles whose 
dimensions are contained between 10-500 mm. This is not 
a problem in the product quality. By contrast, the particle 
size is a feature that should be tightly controlled to maintain 
the bioavailability of the API similar in different batches. 
Thus, it is expected to find points in which there is an 
agglomeration of excipients or API due to the presence 
of larger crystals of these substances. The pixel size in 
this application was 50 µm × 50 µm and then, 200 micron 
particles can be viewed by four pixels in the hyperspectral 
images. Reflectance analysis is a surface analysis, but NIR 
radiation can penetrate inside the sample. Penetration power 
of NIR radiation is sample composition and wavelength 
dependent, reaching up micrometers to millimeters, for 
lower absorptive wavelengths. This feature implies that, 
although there are crystals of a pure substance on the tablet 
surface, NIR radiation can pass through the crystal on 
surface and still pass for crystals of other substances inside 
of tablet. It is hard to find pixels containing a pure substance 
signal due to high penetration power of NIR radiation.

Concentration maps were found for all tablets, but 
in this work, it will be presented only the results for the 
first replicate of eighth standard since it presents highest 
heterogeneity.

Tablet spectra and real concentrations of substances of 
interest are required to build a PLS (or iPLS) calibration 
model. It is impossible to obtain the real concentration 
of compounds in each pixel, but total concentration in 
the whole tablet is known. To overcome this problem, an 
average spectrum from all pixels of each tablet was used 
to build the calibration models.

Cross-validation errors were used to examine the 
validity of the models using average spectra of tablets. In 
order to minimize calibration errors, it was performed PLS 
models using some intervals of spectra (iPLS procedure). 
NIR spectra were split in five parts and calibration models 
were developed for each analyte using each part of the 
spectra. Table 2 shows the average errors of the best models 
to each compound, as well as the range of the spectrum 
used for calibration and the number of PCs.

As presented in Table 2, SP, CA and CS have the same 
optimal range to build the calibration models. This occurs 
because NIR spectroscopy is a non-seletive method based 
on molecular overtone  and combination vibrations, i.e., 
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same wavenumbers can bring information from distinct 
compounds and/or chemical bonds.

After building calibration models with the spectra 
average from all pixels for each tablet, these models were 
used to predict the analytes using spectra from each pixel. 
Spatial information was maintained even after unfolding 
operation, so concentration maps were constructed using 
predicted concentration for each analyte in each pixel. 
Four concentration maps were obtained for each tablet.
These maps show the distribution of each component on 
the tablet surface. Figure 2 presents concentration maps for 
SP, CA, CS and PV for the first replicate of eighth standard. 
In addition, it was calculated the total concentration map, 
which provides the sum of the percentage of four monitored 
substances in each pixel. Expected total percentage for the 
sum of concentrations for the four substances is around 
89%, as previous explained, since moisture in tablets was 
around 11% (Table 1).

Concentration maps indicate that when there is an 
accumulation of some substances at certain points of the 
tablet, there will be a deficit in the concentration of other 
substances in those pixels. This feature can be especially 
seen for calcium sulfate  and polyvinylpyrrolidone in 
Figure 2, where there are high accumulation of calcium 
sulfate and polyvinylpyrrolidone at some points probably 
due to large crystals of these substances. Table 3 presents 
the concentration values obtained for the tablet (eighth 
standard) as a whole, using the average concentration in 
pixels found by iPLS model. It also presents the errors and 
standard deviation of concentration between pixels, for 
each compound.

Total concentration map in Figure 2 shows a 
homogeneous distribution profile confirming the good 
prediction of the model since total concentration sum of all 
analytes will always be around the expected, approximately 
89% in each pixel. Lower standard deviation values of 
predicted concentrations in the pixels indicate higher 
homogeneity of analytes in the tablets. Higher standard 
deviation implies lower homogeneity since predicted 
concentration will be so different between pixels due to 
heterogeneity. As presented in Figure 2, it was expected 
higher values of standard deviation to CA and PV due to 
higher heterogeneity in these concentration maps.

The standard deviation of the concentration among the 
pixels do not depends if the substance is in a cluster or not, 
i.e., it does not depends of the spatial distribution. Indeed, 
the standard deviation will be affected by the fraction of 

Table 2. Description of best models for each compound: spectral ranges, 
number of PCs and absolute error. Models created using average spectra 
of tablets and evaluated by cross-validation leave-five-out (all replicate set)

SP CA CS PV

Interval / cm−1 4696-3920 4696-3920 4696-3920 6248-5472

Number of PCs 4 3 3 3

Average absolute 
error / %

0.70 0.94 1.26 0.49

Figure 2. Concentration maps of first replicate from eighth standard. Vertical bars indicate percentage values related to total composition.
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pixels that contain some amount of the analyte. PV had the 
highest standard deviation due to its low concentration in 
tablet composition. For SP, CA and CS, relative standard 
deviations were similar.

There is not a parameter that defines if a simple 
tablet is homogeneous according to any pharmacopoeia. 
This occurs due to the fact that a whole tablet must be 
administered, without breaking it in two or more pieces. 
Currently, the homogeneity is measured among tablets, in 
which the standard deviation of the concentration of the 
active ingredient should not be more than 6%, and the API 
average content must range from 95 to 105% for tablets 
which weigh more than 250 mg, according to the Brazilian 
Pharmacopoeia.50

Conclusions

Preliminary analysis of the standards using conventional 
reflectance NIR spectroscopy showed that standards were 
correctly prepared  and obtained acceptable prediction 
errors by cross-validation. Even using a small number of 
experiments and using average spectra of tablets to develop 
the calibration models, absolute errors of the models using 
spectroscopic images were acceptable (between 0.49 and 
1.26%) when performed iPLS models with cross-validation.

iPLS quantitatively confirmed the presence of each 
compound in each pixel. Total concentration map shows that 
the prediction of concentration in the pixels was correctly 
performed as the sum of the percentages of all components 
is around 88%. This is the expected one since there was 
12.19% of water in the analyzed tablet - the eighth standard.

Prediction of the absolute errors found using average 
predicted concentration in the pixels are according to the 
expected values (between −0.05  and 1.06%) found by 
previous analysis using conventional NIR spectroscopy, 
confirming the consistency of the models.

This work demonstrated that NIR imaging is a powerful 
analytical tool in the study of tablets. If NIR imaging is used 
instead of conventional NIR spectroscopy, the detection 
limit of an API at low concentration could decrease since 

a single crystal in a tablet could be responsible for the total 
signal in a single pixel (50 µm). In addition, NIR imaging 
can be used to evaluate the efficiency of the process of 
homogenization of the excipients and API in the tablets 
manufacturing process.
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