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Linear and non-linear quantitative structure-activity relationship (QSAR) models were presented 
for modeling and predicting anti-diabetic activities of a set of inhibitors of acetyl-CoA carboxylase 
1 and 2 (ACC1 and ACC2). Different algorithms were utilized to choose the best variables among 
large numbers of descriptors and then these selected descriptors were used for non-linear (artificial 
neural network) and linear (multiple linear regression) modeling. The variable selection methods were 
consisted of stepwise-multiple linear regression (stepwise-MLR), successive projections algorithm 
(SPA), genetic algorithm-multiple linear regression (GA-MLR) and Bayesian regularized genetic 
neural networks (BRGNNs). The prediction abilities of the models were evaluated by Monte Carlo 
cross validation (MCCV) in variable selection and modeling steps. The results revealed that the best 
variables for describing the inhibition mechanism of ACC were among topological charge indices, 
radial distribution function, geometrical, and autocorrelation descriptors. The statistical parameters 
of R2 and root mean square error (RMSE) indicated that BRGNNs is superior for modeling the 
inhibitory activity of ACC modulators over the other methods. The sensitivity analysis together with 
the frequency of the selected molecular descriptors in this work can establish an understanding to 
the mechanism of ACC inhibitory activity of small molecules. 
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Introduction 

Diabetes mellitus is a typical metabolic disorder 
characterized by abnormally high levels of plasma glucose 
or hyperglycemia.1 This disease has been described as 
an “epidemic” of contemporary society and threatens 
to become a global health scourge. The total number of 
people with diabetes is projected to rise from 171 million 
in 2000 to 366 million in 2030.2 Furthermore, the World 
Health Organization (WHO) estimates that the diabetes 
deaths account for 5% of global deaths and are likely to 
expand by more than 50% in the next 10 years without 
urgent action.3 Mainly two distinct clinical forms of the 
diabetes are recognized: the type 1 or insulin-dependent 
diabetes which is usually diagnosed in the children and 
young adolescent and is caused by destruction of insulin-
producing beta cells in the pancreas, leading to a deficiency 

of insulin; type 2 or no-insulin dependent diabetes which is 
the most common form of diabetes mellitus and is caused 
by target cell resistance to insulin. 

Many recent studies have demonstrated that the obesity 
is one of the most important risk factors for the prevention 
of type 2 diabetes and its related co-morbid conditions.4 In 
obese individuals, adipose tissue releases increased amounts 
of non-esterified fatty acids, glycerols, hormones, pro-
inflammatory cytokines and other factors that are involved 
in the development of insulin resistance.5 A drug agent that 
would be expected to impact type 2 diabetes and obesity 
would have potential to positively affect health outcomes 
for diabetes and the obese. Meanwhile, acetyl-coenzyme A 
carboxylase (ACC) has crucial roles in fatty acid metabolism 
in most living organisms and represents an attractive target 
for drug discovery. This heterodimeric protein which has 
two known isoforms, ACC1 and ACC2, is composed of 
carboxyltransferase (CT), biotin carboxyl carrier protein 
(BCCP), and biotin carboxylase (BC) domains, whose 
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purpose is the synthesis of malonyl-CoA (m-CoA) from 
acetyl-CoA in an ATP-dependent reaction via the fixation 
of biocarbonate.6 Inhibition of ACC offers the ability to 
inhibit de novo fatty acid production in lipogenic tissues 
(liver and adipose) while at the same time stimulates fatty 
acid oxidation tissues (heart and skeletal muscle) where it 
plays a role in modulating energy expenditure.7 Therefore, an 
ACC1/2 isozyme nonselective inhibitor would be predicted 
to reduce fatty acid synthesis in liver and adipose tissue while 
at the same time increasing fatty acid oxidation in the liver 
and muscle tissues resulting in increased energy expenditure. 
The ACC1 and ACC2 enzymes are two important targets 
in modern drug discovery projects.8 Designing effective 
dual ACC1 and ACC2 inhibitors is of great importance for 
increasing insulin sensitivity and treatment of metabolite 
syndrome and type 2 diabetes mellitus.9 

Recently, 10 screening Pfizer’s compound library 
resulted in the identification of a total 60 ACC inhibitors 
that exhibited good rat and human pharmacokinetics. To 
discover and design new and more effective compounds, 
it is necessary to make use of computational techniques 
and QSAR methods. Thus, the activities of newly designed 
drugs could be predicted before making a decision whether 
these compounds should be really synthesized or tested. 
The construction of a QSAR model often entails the 
problem of selecting the most relevant predictors from 
the overall set of predictors. Effective variable selection, 
therefore, is an integral part of the QSAR modeling process. 

In the present contribution, four different variable 
selection techniques followed by neural network modeling 
have been used for describing and predicting the ACC1 
and ACC2 inhibitory activities of a series of arylquinoline 
amide derivatives. We explored variable selection 
techniques such as stepwise-multiple linear regression 
(stepwise-MLR), successive projection algorithm (SPA), 
genetic-algorithm multiple linear regression (GA-MLR) 
and Bayesian regularized genetic neural networks 
(BRGNN). In each of these four methods sampling was 
done by the use of shuffling on the raw data. In order 
to deal with the overfitting in both variable selection 
and modeling procedure, Monte Carlo cross validation 
(MCCV) and Bayesian regularization formalism (during 
the training procedure) was used, respectively. The 
detailed theory behind artificial neural network (ANN) 
and Bayesian regularization algorithm can be found in 
literature.11 Section 2 devotes to description of variable 
selection, sensitivity analysis and MCCV algorithms. 
The prediction abilities of the corresponding modeling 
algorithms will be reported in result and discussion section 
and the overall results of the various techniques will be 
compared with each other. This paper help to have a clue 

about inhibition mechanism of ACC1 and ACC2 inhibitors 
and designing new molecules as potent energy modulators 
for treatment of diabetes mellitus type 2 and metabolite 
syndrome. The selected molecular descriptors in this work 
can be considered as informative markers for defining new 
molecular scaffold with potent ACC inhibitory activities.

Methodology

Variable selection

To build a good QSAR model, a minimal set of 
information-rich descriptors is required. The large number 
of possible indices creates several problems for the 
modeling procedure such as: (a) multicollinearity; (b) poor 
models generated from poor descriptors; (c) overfitting of 
the model; (d) lack of relevant molecular information from 
all of the descriptors (some variables may be irrelevant 
or unreliable); (e) chance correlation.12 Consequently, 
selecting the best descriptors from a large set of variables 
is crucial for improving the model performance and 
making better predictions. Many different types of variable 
selection methods are well known and fully described in the 
literature.13 In present article, four currently ones are briefly 
described, used and compared with each other. 

Stepwise multiple linear regression (stepwise-MLR)

A detailed description of the stepwise regression can 
be found in literature.14 As a short definition, the stepwise 
regression method is an iterative selection procedure that 
starts from a variable with largest empirical correlation 
with the dependent variable. Each iteration includes two 
phases: the inclusion phase, in which each of the remaining 
variables is subjected to a partial F-test. If the largest 
F-value is larger than a critical “F-to-enter” value, the 
corresponding variable is inserted in the model. While in the 
exclusion phase, in which each of the variables is subjected 
to a partial F-test, if the smallest F-value is smaller than 
a critical ‘F-to-remove’ value, the corresponding variable 
will be removed from the model and returned to the pool 
of variables still available for selection.15

Successive projection algorithm (SPA)

SPA is a technique specially designed to select subsets of 
variables with small collinearity and appropriate prediction 
power for use in MLR models. This method comprises two 
phases: In the first phase, candidate subsets of variables are 
constructed due to collinearity minimization criteria. In the 
second phase, the best variable subset is chosen according 
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to a criterion that evaluates the prediction ability of the 
resulting MLR model. Finally in the last phase, the selected 
subset will undergo an elimination procedure to determine 
whether any variables can be removed without significant 
loss of prediction ability. More detail on the successive 
projections algorithm can be found elsewhere.15

Genetic algorithm-multiple linear regression (GA-MLR)

A genetic algorithm is a simulated technique somewhat 
inspired by the evolution theory presented by Darwin. 
Several authors have published papers about feature 
selection by GAs which can be found in literatures.13,15,16 
Briefly, the GA is made up by the following basic 
steps: (1) a vector (chromosome) containing zeros and 
ones (genes) is generated with the size corresponding 
to the number of variables; (2) an initial population of 
chromosomes is randomly created; (3) the value of fitness 
function (here MLR and ANN models) is evaluated for each 
new produced chromosomes; (4) the chromosomes with the 
best predictions (according to their fitness function value) 
are used to produce new populations by operations such 
as selection, crossover and mutation. The fitness function 
here is the root mean square error of the inhibitory activities 
calculated by MLR and ANN methods.

Bayesian regularized genetic neural networks (BRGNN)

BRGNN is another combination of genetic algorithms 
that is utilized for feature selection. This method has been 
used by Fernández and co-workers17-24 for modeling of 
enzyme inhibitors, calcium entry blockers and protein 
conformational stability.17-24 In BRGNN approach the error 
function of Bayesian regularized artificial neural networks 
(BRANN) is being used as objective function in genetic 
algorithm for optimization. Actually, each time that GA 
produces a new population, the created chromosomes serve 
as inputs to ANN and would be related to the biological 
activities by the mean of determining the weights and 
biases in the BRANN model. Thus, GA finds the best 
chromosomes in order to minimize the residual error 
between true inhibitory activity values and their calculated 
quantities. It will be shown that this variable selection 
method performs more desirable than the others, since it 
selects the descriptors based on their better correlation with 
dependent variables in a non-linear manner. 

Monte Carlo cross-validation

In order to assess the utility of the model, an estimated 
model must then be validated. One of the most effective 

methods in this case is Monte Carlo cross-validation. By 
definition, this technique involves a large number of random 
splits of the dataset repeatedly, in each of which the available 
data are divided into two groups to be used for the fitting and 
testing. The criterion, e.g. root mean square error, is averaged 
over all repeated splits, so as to not tie the measure to one 
particular division of the data. Moreover, it is essential that 
the repeats in this modeling exercise incorporate all steps 
involved in the modeling process, including both feature 
selection and modeling development.25,26

Sensitivity analysis

There have been a lot of attempts to extract meaning 
from neural network models because of their complicated 
structure. Interpretation of ANN can be considered in broad 
and detailed forms. Broad interpretation characterizes how 
important an input neuron is to the predictive ability of the 
model and therefore ranks the input descriptors in order 
of importance, while the aim of detailed interpretation 
is to extract the structure-activity trends in an ANN 
model to indicate how an input descriptor correlates to 
its corresponding predicted value. Broad interpretation is 
essentially a “sensitivity analysis” of the neural networks. In 
this case Guha and Jurs27 have presented a method to measure 
the importance property of the descriptor in QSAR model.

Data set 

The dataset consists of 60 molecules of arylquinoline 
amide derivatives together with their inhibitory activities 
which was gathered from a recently published article by 
Corbett et al. in 2010.10 In this work, both ACC1 and 
ACC2 inhibitory activities were considered as dependent 
variable for the modeling. The activities involve IC50 and 
ligand efficiency (LE) values for rat ACC1 (rACC1) and 
also IC50 values for human ACC2 (hACC2) inhibitors. The 
IC50 values of rACC1 and hACC2 inhibitors were converted 
to the logarithmic scale (pIC50). The LE values of rACC1 
inhibitors together with the pIC50 values of hACC2 and 
rACC1 inhibitors were then used as dependent variables, 
in our QSAR study. The main skeleton of arylquinoline 
analogues are given in Figure 1 and the list of the inhibitory 
activities are displayed in Table 1. Prior to the calculation of 
the descriptors, the studied compounds were geometrically 
optimized using semi-empirical AM1 method implemented 
in Hyperchem software.28 The 3-dimensional structure of 
the molecules was encoded to a diverse set of molecular 
descriptors (up to 1497) using Dragon software.29 The first 
action taken on the dataset was to remove highly correlated 
descriptors. Therefore, descriptors with zero or constant 
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values and also descriptors with correlation coefficients 
higher than 90% were removed from the whole set of 
independent variables. Thus, the data set consisting of 
60 compounds and 657 descriptors was prepared and used 
for further analysis. 

Different variable selection techniques and BRANN 
modeling

Four different variable selection algorithms were 
utilized to choose the best variables among the large 
number of descriptors and then these selected descriptors 
were used for modeling using BRANN approach. The 
corresponding m-files of the algorithms were prepared and 
run in MATLAB software, version R2010a 30 and in each 
of these methods, in order to deal with overfitting on both 
variable selection and modeling procedures, Monte Carlo 
cross validation and Bayesian regularization formalism 
were used, respectively. The “neural network” and “global 
optimization” toolboxes in MATLAB have been used for 
running BRANN and GA, respectively. The specification of 
the parameters of GA and BRANN applied for optimization 
are given in Table S1 in supplementary material section. In 
order to run the BRGNN algorithm, the BRANN models 
must be stable inside the GA paradigm. The stability of the 
BRANN during the GA procedure has been investigated in 
our previous works.11,31 Similar to our previous works, we 
observed a thorough reproducibility with near zero standard 
deviations in BRANN models in present study. 

Figure 2 shows a flowchart of the overall algorithm 
of feature selection and modeling process in this work. 
It begins by first splitting of the dataset randomly into 
two parts of prediction set (20% of the raw data) and 
calibration set (the remaining 80% of the raw data). This 
procedure repeats for 1000 times. The variable selection 
on the calibration set, again, repeats for 200 times. In each 

variable selection step, the calibration set is randomly 
divided into two subsets (80% training set and 20% test 
set), thus leading to the removal of overfitting with a high 
probability. By the mean of this sampling algorithm, the 
best and most frequent variables would be chosen. In each 
run of 1000 runs, after finishing repeating variable selection 
200 times, the prediction set with the best selected variables 
would be applied to the regression algorithm as inputs to 
fit and evaluate the model’s prediction ability, and then 
the algorithm continues this procedure until 1000 runs are 
completed. 

It must be noticed that in the case of GA-MLR and 
BRGNN feature selection methods, the algorithm was 
defined such as to save and consider the chromosomes of 
hundreds of the last generations out of 200 generations in 
each GA run instead of running only the last chromosome. 
By running this GA variable selection method, adequate 
information was available to select the best variables among 
the whole pool of them. Moreover, this makes confidence 
that the selected variables include all essential descriptors 
for modeling with regression model and no important 
variable is missed. 

Calculation of the importance of molecular descriptors

According to Guha and Jurs,27 an algorithm was 
developed for sensitivity analysis of the constructed ANN 

Figure 2. The flowchart of the Monte Carlo sampling and modeling 
procedure used in the present contribution.

Figure 1. The main skeleton of the ACC inhibitors.
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Table 1. The structural information of the ACC inhibitors together with the experimental and calculated pIC50 values

No. Structure R1 R2 R3

rACC1a hACC2b rACC1

Exp. 
pIC50

c

Cal. pIC50
d 

(BRGNN)
Exp. 
pIC50

Cal. pIC50 
(BRGNN)

Exp. 
LEe

Cal. LE 
(BRGNN)

1 CP-640186 --- --- --- 5.05 5.93 NDf --- ND ---

2 A quinolin-4-yl --- --- 7.04 8.01 ND --- ND ---

3 A Anthracen-9-yl --- --- 6.48 6.55 ND --- 0.26 0.24

4 A 2-phenylquinolin-4-yl --- --- 6.07 7.49 ND --- 0.68 0.56

5 A 1-H-Indazole-7-yl --- --- 5.47 5.92 ND --- 0.26 0.28

6 A 1-H-pyrazole-4-yl --- --- 5.89 6.09 ND --- 0.26 0.27

7 A 1-H-pyrazole-3-yl --- --- 5.52 6.13 ND --- 0.24 0.25

8 B 6-Me 1-H-Indazole-7-carbonyl --- 6.78 5.87 6.20 6.18 0.30 0.31

9 B 6,7-Me 1-H-Indazole-7-carbonyl --- 6.20 5.78 6.40 6.56 0.32 0.33

10 B 7-Me 1-H-Indazole-7-carbonyl --- 6.07 5.79 ND --- 0.30 0.31

11 B 6-OMe 1-H-Indazole-7-carbonyl --- 6.25 5.76 ND --- 0.29 0.28

12 B 6-Cl 1-H-Indazole-7-carbonyl --- 5.85 5.79 5.67 5.24 0.29 0.27

13 B 6,8-Me 1-H-Indazole-7-carbonyl --- 5.88 5.92 6 5.51 0.28 0.26

14 B 5-OMe 1-H-Indazole-7-carbonyl --- 5.79 5.81 6 6.15 0.27 0.25

15 B 5-OMe, 6-Cl 1-H-Indazole-7-carbonyl --- 5.74 5.82 ND --- 0.26 0.29

16 B 7-OMe 1-H-Indazole-7-carbonyl --- 5.60 5.86 ND --- 0.26 0.27

17 B 7-Phenyl 1-H-Indazole-7-carbonyl --- 5.65 6.17 ND --- 0.23 0.22

18 B 6,7-Me 7-Methyl-1-H-Indazole-5-carbonyl --- 7.66 7.39 7.32 7.12 0.34 0.36

19 B 5-OMe 7-Methyl-1-H-Indazole-5-carbonyl --- 6.98 6.72 8.19 7.25 0.32 0.3

20 B 6,7-Me 3-Methyl-1-H-Indazole-5-carbonyl --- 7.44 6.74 ND --- 0.34 0.34

21 B 5-OMe 3-Methyl-1-H-Indazole-5-carbonyl --- 6.65 6.25 6.78 6.72 0.30 0.3

22 B 6,7-Me 7-Ethyl-1-H-Indazole-5-carbonyl --- 7.75 7.44 ND --- 0.34 0.36

23 B 5-OMe 7-Ethyl-1-H-Indazole-5-carbonyl --- 6.99 6.75 6.82 6.12 0.31 0.32

24 B 5-OMe 3,7-Dimethyl-7-Ethyl-1-H-Indazole-
5-carbonyl

--- 7.37 7.47 7.96 8.52 0.32 0.34

25 B 5-OMe 1-H-benzo[d]imidazole-2-
carboxamide-5-carbonyl

--- 7.46 7.07 7.80 7.52 0.32 0.35

26 B 5-OMe 1-H-benzo[d]imidazole-2-
carboxamide-5-carbonyl

--- 6.66 6.02 6.95 6.52 0.31 0.28

27 B 5-OMe 7-Methyl-1-H-benzo[d]imidazole-2-
carboxamide-5-carbonyl

--- 6.76 6.42 6.90 7 0.31 0.34

28 B 5-OMe 2-Methyl-1-H-benzo[d]imidazole-2-
carboxamide-5-carbonyl

--- 6.17 6.53 6.00 6.47 0.28 0.3

29 B 5-OMe 1-H-benzo[d][1,2,3]triazole-2-
carboxamide-5-carbonyl

--- 5.52 6.04 6.30 6.56 0.26 0.24

30 B 5-OMe N-Methyl-1-H-Indole-2-
carboxamide-5-carbonyl

--- 7.36 7.47 7.96 8.15 0.30 0.28

31 B 5-OMe N,7-Dimethyl-1H-Indole-2-
carboxamide-5-carbonyl

--- 7.19 7.55 7.80 7.52 0.30 0.34

32 B 5-OMe 2-Phenyl-1-H-benzo[d]imidazole-5-
carbonyl

--- 7.80 7.22 7.80 8.04 0.30 0.29

33 B 5-OMe 2-(pyridine-2-yl)-1-H-benzo[d]
imidazole-5-carbonyl

--- 7.58 7.15 7.92 7.05 0.29 0.31

34 B 5-OMe 2-(pyridine-3-yl)-1-H-benzo[d]
imidazole-5-carbonyl

--- 7.58 7.26 7.72 7.95 0.30 0.32

35 B 5-OMe 2-(pyridine-4-yl)-1-H-benzo[d]
imidazole-5-carbonyl

--- 7.22 7.35 7.29 7.62 0.28 0.28

36 B 5-OMe 2-(pyridazine-4-yl)-1-H-benzo[d]
imidazole-5-carbonyl

--- 7.00 7.35 ND --- 0.27 0.24
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No. Structure R1 R2 R3

rACC1a hACC2b rACC1

Exp. 
pIC50

c

Cal. pIC50
d 

(BRGNN)
Exp. 
pIC50

Cal. pIC50 
(BRGNN)

Exp. 
LEe

Cal. LE 
(BRGNN)

37 B 5-OMe 2-(1-Methyl-1-H-pyrazol-3-yl)-1-H-
benzo[d]imidazole-5-carbonyl

--- 7.72 7.31 ND --- 0.30 0.27

38 B -CO2H 7-Methyl-1-H-indazole-5-carbonyl --- 6.52 6.76 ND --- 0.29 0.27

39 B 1-H-pyrazol-4-yl 7-Methyl-1-H-indazole-5-carbonyl --- 8.13 7.74 ND --- 0.34 0.38

40 B 1-Methyl-1-H-pyrazol-
4-yl

7-Methyl-1-H-indazole-5-carbonyl --- 8.12 7.66 ND --- 0.33 0.31

41 B 1-H-pyrazol-3-yl 7-Methyl-1-H-indazole-5-carbonyl --- 7.74 6.88 8.34 7.94 0.32 0.3

42 B 1-Methyl-1-H-pyrazol-
3-yl

7-Methyl-1-H-indazole-5-carbonyl --- 7.50 7.69 8.21 8.65 0.30 0.34

43 B 5-Methyl-1-H-pyrazol-
3-yl

7-Methyl-1-H-indazole-5-carbonyl --- 7.74 7.69 8.11 8.32 0.31 0.32

44 B 2-Methyloxazol-4-yl 7-Methyl-1-H-indazole-5-carbonyl --- 7.38 7.52 7.52 7.66 0.31 0.34

45 B 2-Methyloxazol-5-yl 7-Methyl-1-H-indazole-5-carbonyl --- 7.72 7.84 7.40 7.46 0.31 0.28

46 B 3,5-dimethylisoxazol-
4-yl

7-Methyl-1-H-indazole-5-carbonyl --- 7.77 7.72 8.10 7.25 0.31 0.29

47 C 1-Methyl-1-H-pyrazol-
4-yl

2-(1-Methyl-1-H-pyrazol-3-yl)-1-H-
benzo[d]imidazole-5-carbonyl

--- 7.89 7.42 ND --- 0.21 0.23

48 C 1-Methyl-1-H-pyrazol-
4-yl

7-Methyl-H-indazole-5-carbonyl --- 6.01 7.93 ND --- 0.30 0.35

49 C -OMe 7-Methyl-H-indazole-5-carbonyl --- 7.60 7.74 ND --- 0.31 0.34

50 D H -Me H 6.74 6.58 ND --- 0.33 0.31

51 D H -Me -Me 6.81 6.16 6.44 6.30 0.31 0.34

52 D -Me -Me H 6.60 6.98 ND --- 0.30 0.27

53 D H H -Me 6.43 6.62 6.19 6.20 0.30 0.32

54 D -NH2 -Me H 6.11 6.22 ND --- 0.28 0.27

55 E -iPr H H 5.87 6.73 8.35 8.66 0.32 0.33

56 E -Me -Me H 7.52 7.82 7.32 7.12 0.33 0.3

57 E -iBu H H 7.46 7.64 7.00 7.12 0.32 0.3

58 E -Me H H 7.64 6.77 ND --- 0.32 0.31

59 E -Et H H 7.06 6.95 ND --- 0.32 0.34

60 E -iPr H -Me 7.21 7.44 7.70 7.41 0.33 0.34
aRat ACC1; bhuman ACC2; cexperimental pIC50; 

dcalculated pIC50; 
eligand efficiency (LE = –1.4 log IC50/number of heavy atoms); fND means no data. 

Table 1 The structural information of the ACC inhibitors together with the experimental and calculated pIC50 values (cont.)

models. After running variable selection methods for ANN 
based algorithms, the set of the best selected descriptors 
will be indicated. Then in the sensitivity analysis method, 
each of these input descriptors would be iteratively 
replaced with random vectors. At each iteration, the neural 
network would be trained and validated with the new set of 
input descriptors and the root mean square error (RMSE) 
and correlation coefficient would be calculated. As a 
result, the RMSE for these new predictions is expected 
to be larger than the original RMSE (when the individual 
descriptors were not replaced with random vectors). Each 
time that a descriptor would be replaced with random 
numbers, the difference between these two RMSE values 
indicates the importance of that specified descriptor to the 
model’s predictive ability. That is, if a descriptor plays a 
major role in the prediction of the model, changing that 
descriptor will lead to greater loss in predictive ability 

(higher root mean square error) than for a descriptor that 
does not play such an important role in the model. After 
reporting this procedure for all of the descriptors present 
in the model, iteratively, we can rank the descriptors in 
order of importance. 

Results and Discussion 

Comparison of different feature selection methods

For investigating the effect of linear and non-linear 
variable selection methods, two different approaches were 
proposed: 1) stepwise-MLR, GA-MLR and SPA as the linear 
based methods; 2) BRGNN as non-linear one. The results 
demonstrated that the variables which were chosen in a way 
in which non-linear interactions were considered between 
the descriptors and the activity of compounds, were totally 
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different compared to linear based selection methods and 
showed even more acceptable correlation to the activities. 
Table 2 represents the calibration and prediction set results 
for four feature selection methods followed by BRANN 
modeling. The results revealed that for modeling both pIC50 

(rACC1, hACC2) and LE (rACC1) values, BRGNN is a 
robust algorithm for the variable selection and modeling 
procedures, simultaneously. The best selected descriptors for 
modeling the pIC50 and LE values are also given in Table S2 
in Supplementary Information (SI) section. 

Moreover, it is important to notice that for modeling the 
rACC1 and hACC2 activities, the best variables selected after 
repeating GA-MLR-BRANN and stepwise-MLR-BRANN 
procedures were approximately the same, remarking this 
point that in large numbers of repetitions (1000 Monte Carlo 
sampling), the effect of genetic algorithm on MLR becomes 
negligible. For further explanation on this view point, it 
could be assumed that in stepwise-MLR-ANN algorithm, 
since splitting of the dataset was done randomly and in high 
repetitions (1000 × 200), the results would be somewhat 
near the GA-MLR-ANN results. This is actually because 
of random based structure of GA in finding the solution. 

In addition, we have discovered that in early generations 
of GA-MLR the selected variables are entirely different 
from stepwise-MLR. But, as the algorithm continues, in 
the “latter” generations, the results become similar in these 
two methods and they would give the more or less same 
descriptors, revealing the essential effect of crossover and 
mutation on finding the best solution in genetic algorithms. 

Robustness of BRGNN

The combination of genetic algorithms and BRANN is 
named BRGNN and has superior properties to the previous 
BRANN techniques. In the BRGNN algorithm there is 
no more concern about overfitting, since a compromise is 
been made between the weights and RMSE by the Bayes 
theorem, as mentioned earlier. Moreover, this method is 
able to deal with the non-linear interactions in complex 
systems and has the potential to suitably correlate the 
molecular descriptors of the compounds to their biological 
activities. Better prediction ability, more reproducibility and 
generalization power of BRGNN verify the advantages of 
this superior technique (see Table 2). The mean values of 

Table 2. The results of the linear and nonlinear methods for modelling the ACC inhibitory activities

Dependent 
variable

Modeling 
strategy

Method
Calibration set Prediction set

a r2 Std.b RMSE Std. r2
m Std. r2 Std. RMSE Std.

rACC1 (pIC50)

Nonlinear 

Stepwise-MLR-BRANN 0.711 0.040 0.372 0.042 0.710 0.087 0.641 0.084 0.422 0.085

GA-MLR-BRANN 0.750 0.042 0.340 0.035 0.733 0.106 0.665 0.102 0.414 0.057

SPA-MLR-BRANN 0.773 0.028 0.302 0.044 0.751 0.088 0.680 0.095 0.387 0.067

BRGNN 0.815 0.037 0.270 0.026 0.808 0.075 0.732 0.080 0.336 0.054

Linear 

Stepwise-MLR 0.607 0.045 0.460 0.025 0.617 0.065 0.560 0.062 0.533 0.060

GA-MLR 0.633 0.038 0.439 0.042 0.643 0.082 0.582 0.081 0.501 0.055

SPA-MLR 0.670 0.021 0.410 0.031 0.711 0.083 0.644 0.092 0.437 0.046

hACC2 (pIC50)

Nonlinear

Stepwise-MLR-BRANN 0.774 0.024 0.422 0.034 0.730 0.062 0.738 0.058 0.432 0.017

GA-MLR-BRANN 0.785 0.026 0.417 0.027 0.771 0.063 0.741 0.064 0.428 0.024

SPA-MLR-BRANN 0.792 0.019 0.395 0.021 0.726 0.040 0.804 0.037 0.419 0.018

BRGNN 0.837 0.018 0.388 0.017 0.791 0.036 0.884 0.028 0.407 0.013

Linear

Stepwise-MLR 0.684 0.015 0.431 0.019 0.644 0.017 0.726 0.022 0.440 0.024

GA-MLR 0.688 0.018 0.412 0.024 0.627 0.031 0.737 0.038 0.425 0.030

SPA-MLR 0.734 0.020 0.405 0.022 0.667 0.022 0.775 0.027 0.418 0.021

rACC1(LE)

Nonlinear

Stepwise-MLR-BRANN 0.574 0.054 0.033 0.003 0.566 0.099 0.540 0.105 0.034 0.007

GA-MLR-BRANN 0.582 0.033 0.034 0.008 0.524 0.106 0.566 0.114 0.036 0.007

SPA-MLR-BRANN 0.607 0.052 0.028 0.004 0.584 0.056 0.594 0.052 0.031 0.010

BRGNN 0.622 0.024 0.022 0.006 0.620 0.041 0.630 0.035 0.027 0.007

Linear

Stepwise-MLR 0.570 0.011 0.040 0.003 0.561 0.030 0.550 0.024 0.041 0.004

GA-MLR 0.577 0.023 0.038 0.005 0.522 0.049 0.582 0.054 0.039 0.007

SPA-MLR 0.584 0.038 0.033 0.005 0.555 0.035 0.602 0.037 0.035 0.005

aThe mean values for 1000 times repetition of algorithms; bthe standard deviation values for 1000 times repetition of the algorithms.
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the predicted pIC50 (rACC1 and hACC2) and LE (rACC1) 
values obtaining using BRGNN models are listed in 
Table 1. This table shows that the calculated values of pIC50 
and LE are good estimates of the experimental ones. The 
correlations between the experimental and calculated values 
of pIC50 and LE for the calibration and prediction sets are 
shown in Figure 3. For further evaluation of the BRGNN 
models, the values of modified correlation coefficient (r2

m)32 
for the molecules of the prediction set have been calculated 
and given in Table 2. According to the statistic summary 
presented in Table 2, the high values of r2 and r2

m
 together 

with low RMSE values for BRGNN, confirm the robustness 
of this technique between the other methods. 

In order to check the chance correlation, the 
Y-randomization test has been performed. The vector of 
activities for the calibration set was randomly shuffled and 
used as dependent variable for the modeling. The developed 
models were used for the calculation of the ACC inhibitory 
activities of the molecules of the prediction set. The mean 
values of the corrected correlation coefficients (cR2)33 
for 100 times of Y-randomization were 0.385, 0.442 and 
0.359 for the rACC1 (pIC50), hACC2 (pIC50) and rACC1 
(LE) activities, respectively. Poor values for the cR2

prediction 
revealed that the results of BRGNN models are not due to 
a chance correlation and the developed models are reliable.

The residuals of the calculated values of the pIC50 and 
LE are plotted against the experimental values in Figure 4. 
This figure shows that the residuals are normally distributed 
around zero and therefore the models are not biased with a 
systematic error. More visual descriptors of the BRGNN’s 
result can be seen in Figure S1-S3 in SI section. Figure S1a 
is a frequency plot of the variables, showing how many 
times each descriptor has participated in ANN model for 
1000 times repetition of BRGNN algorithm. The higher 
a variable’s frequency, the more it has been displayed in 
GA generations and the better it correlates to activities. 
Figures S2 and S3, are histograms showing the correlations 
obtained from 1000 repetitions of BRGNN on calibration 
and prediction sets, respectively. 

Comparison of linear MLR and non-linear ANN modeling

For further investigation in this work, we have applied 
linear modeling as well as non-linear modeling to both 
linear and non-linear variable selection methods. Again, the 
data was randomly divided to two subsets (calibration and 
prediction sets) and the training set was then subjected to 
different feature selection techniques (including stepwise-
MLR, SPA and GA-MLR) to find out the best variables 
correlating to the activities. This process continued with 
the multiple linear regression modeling. The statistical 

Figure 3. The plot of the calculated pIC50 values against the experimental 
ones, for the calibration and prediction sets. (a) rACC1(pIC50); (b) 
hACC2(pIC50); (c) rACC1 (LE) as dependent variable.

results and the best selected descriptors in this approach 
are shown in Table 2 and Table S2, respectively. The higher 
correlation values in ANN based methods, compared to the 
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understanding of structure-activity trends. More flexibility 
in ANNs enables them to be powerful predictor tools, while 
in contrast, MLR models are only capable in modeling 
linear functions and so they have less accurate predictions. 
On the other hand, interpretability is a serious concern in 
ANN models, while linear models could be interpreted in 
a simple manner. 

The specifications of the SPA-MLR in Table 2, indicate 
that this variable selection method was better than others 
in MLR modeling, so relative mean effect (RME) for the 
variables selected by this method have been calculated 
and given in Table 3. The calculated RME values reveal 
the importance of mean Sanderson electronegativities, 
polarity and positive charge of molecules on their rACC1 
and hACC2 inhibitory activities, which is in agreement 
with the results of other variable selection and modeling 
algorithms. 

The coefficient of the selected molecular descriptors 
for SPA-MLR models together with their intercept values 
are given in Table 4. This information helps for deriving 
a simple and efficient view about the rACC1 and hACC2 
inhibitory activity and also rACC1 LE of the molecules. The 
calculated coefficients of molecular descriptors in this table 
reveal that increasing the positive charge of the molecules 
enhances their ACC inhibitory activities.

Sensitivity analysis

At the end of the BRGNN modeling process a set of the 
best selected variables were identified, based on their higher 
frequency in incorporating in the model development. 
These selected descriptors were then applied to “sensitivity 
analysis” to measure their relative importance in predictive 
ability of the model. The results are shown in Table 5. The 
information contained in this table is more easily seen in 
the descriptor importance plot shown in Figure 5. The more 
the RMSE enhancement for each variable demonstrates 
the more importance of that descriptor in the predictive 
ability of the model. 

The results from sensitivity analysis indicate that 
Galvez topological charge index of order 634 (GGI6) is 
the most important descriptor for describing the rACC1 
inhibitory activity, which approximately agrees with the 
results from the frequency plot in Figure S1a, mentioned 
earlier. The importance priority of GGI6 in BRGNN 
model emphasizes its role in modeling the rACC1 activity. 
Moreover, it is intelligible from the results that although 
the linear and non-linear models have no descriptors in 
common, the type of the most important descriptor in both 
cases is the same, charge indices. Inspection of Figure 5b 
and 5c shows that the charge descriptors play a major role 

Figure 4. The residuals of the calculated pIC50 values against the 
experimental values for the calibration and prediction sets. (a) 
rACC1(pIC50); (b) hACC2(pIC50); (c) rACC1 (LE) as dependent variable.

MLR’s correlation values, inform that neural networks has 
performed more accurate than linear models. 

In QSAR models, the ANN models are generally 
used as purely predictive tools rather than as an aid in the 
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for describing the hACC2 inhibitory activities and also 
rACC1 ligand efficiencies. This outlook may be a guide 
to find out a trend in the rACC1 inhibitors towards their 
inhibitory activity which is thereby related to the local 
charge of compounds.

The appearance of the molecular descriptors of total 
positive charge (TPC), relative positive charge (RPC), 
fragment-based polar surface area (F-PSA), unipolarity36 
(UniP), polarity number37 (Pol), and GGI6 in the linear and 
non-linear QSAR models in this work shows the critical 

Table 3. The relative mean effects of the SPA-MLR selected molecular descriptors

Dependent variable Relative mean effect of descriptorsa

rACC1 (pIC50) SubPb 24% MSE 78% UniP 55% CENT 28% More12e 45%

hACC2 (pIC50) RPC 74% MSE 53% DDI 16% X1Sol 23% C-044 35%

rACC1 (LE) TPC 62% Pol 27% Nc 12% X1Sol 19 %  GuD 7% UniP 44%

aThe relative mean effects were calculated on a scale between 0 ca 100%. The results are mean values for 100 times repetition of algorithms with random 
sets of calibration and prediction sets; bplease see Table S2 in SI section in order to find the meaning of the molecular descriptors.

Table 4. The summary of the SPA-MLR models for modelling the rACC1, hACC2 inhibitory activities

Dependent 
variable

Intercept Coefficient of the dependent variablesa

rACC1 (pIC50) 3.62 +2.74 SubPb +0.83 MSE –0.21 UniP –1.44 CENT +0.49 More12e 

hACC2 (pIC50) 2.75 +3.57 RPC +1.24 MSE –0.73 DDI –0.47 X1Sol +0.63 C-044 

rACC1 (LE) 0.27 +1.20 TPC –0.11 Pol +0.28 Nc –0.16 X1Sol +0.15 GuD +0.15 UniP 

aThe intercept and coefficients have been calculated after normalizing the molecular descriptors between 1 and –1 values; bplease see Table S2 in SI section 
in order to find the meaning of the molecular descriptors. 

Table 5. The results of sensitivity analysis on BRGNN’s selected molecular descriptors

Dependent Variable Descriptor
RMSE before the 

scrambling procedure
RMSE after the 

scrambling procedure
Relative increase 

in RMSE

rACC1 (pIC50)

RDF060ma 0.336 0.549 0.213

Mor17m 0.336 0.438 0.102

GGI6 0.336 0.828 0.492

ATS4e 0.336 0.460 0.124

hACC2 (pIC50)

MVC 0.407 0.450 0.043

NC 0.407 0.527 0.120

F-PSA 0.407 0.840 0.430

FRB 0.407 0.622 0.215

Xi 0.407 0.421 0.014

TPC 0.407 0.855 0.448

rACC1 (LE)

MRI 0.027 0.036 0.009

nEH 0.027 0.039 0.012

SPN 0.027 0.037 0.010

ECC 0.027 0.042 0.015

RPC 0.027 0.047 0.020

aPlease see Table S2 for the definition of the given molecular descriptors.

role of the charge and polarity of the molecules on their 
inhibition behavior. 

The TPC and RPC descriptors stand for “total” and 
“relative” positive charge in molecules. The data in 
Table 3 implies that the contributions of these molecular 
descriptors on rACC1 (LE) and hACC2 (pIC50) activities 
are 62% and 74%, respectively. The positive coefficients 
in Table 4 suggest that the TPC and RPC descriptors have 
positive effect on ACC bioactivities. Moreover, the most 
important variable selected by BRGNN algorithm is GGI6 
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and represents the total amount of charge transfer in the 
molecules.34 Selection of GGI6 together with TPC and 
RPC in this work implies the inhibition mechanism is an 
electrical based procedure. Regarding the definition of these 
molecular descriptors, it can be concluded that the positive 

charge of molecules has considerable effect on their ACC 
inhibitory activities and therefore this molecular property 
should be taken into account for designing novel and potent 
compounds incorporated in treatment of diabetes type II 
and metabolite syndrome.

The F-PSA is the fragment-based polar surface area and 
encodes the surface in molecule belonging to polar atoms. 
This molecular descriptor was shown to correlate well 
with passive molecular transport through membranes and, 
therefore, allows prediction of transport properties of drugs 
(penetration and intestinal absorption).35 The appearance 
of this molecular descriptor in this work highlights the 
significant role of “diffusion” on ACC inhibitory activity. 

The UniP and Pol descriptors are the unipolarity36 
and polarity number37 of molecules. These molecular 
descriptors can be easily calculated by using the distance 
matrix of the H-depleted molecular graph.37,38 The polarity 
number is the number of pairs of vertices at a topological 
distance equal to three.37,38 It is usually assumed that the 
polarity number accounts for the flexibility of acyclic 
structures in a molecule. The unipolarity is the minimum 
value of the vertex distance degrees in a molecular graph. 
This parameter is inversely related to the local flexibility 
in molecules.39,40 The data in Table 4, suggests the positive 
effect of UniP on ACC inhibitory activity, while it proposes 
a negative effect for polarity number. These two molecular 
descriptors emphasize on the role of bond flexibility on the 
inhibitory activity of studied compounds. 

The previous structure-activity relationship studies 
together with homology modeling and docking investigations 
have found some similar outlines on ACC inhibitory 
activities.41-43 These works suggest potent hydrogen bonding 
between the carbonyl group adjacent to the anthracene of 
CP-640186 and the main-chain amide N atom of Glu2230 in 
ACC structure. Another weak hydrogen bond was observed 
between the carbonyl group adjacent to the morpholine and 
the amide N atom of Gly2162 in ACC structure. Singh et al.44 
reported a comparative molecular field analysis (CoMFA) 
and comparative molecular similarity analysis (CoMSIA) 
for modeling the inhibitory activity of ACC inhibitors. 
They suggest the critical role of electropositive potential 
near carbamol functional group on ACC inhibitory activity. 
Some important spatial steric issues have also been found 
by them affecting the activity.44 These studies represent the 
role of positive charge and shape of molecules on activity 
of compounds and this is in agreement with our findings. 

Conclusions

The main aim of the present work was to develop a 
QSAR model for predicting the inhibitory activity of the 

Figure 5. Importance plot of the variables in BRGNN model. 
(a) rACC1(pIC50); (b) hACC2(pIC50); (c) rACC1 (LE) as dependent 
variable.
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ACC inhibitors. Since variable selection is a critical step 
in every QSAR study, four different algorithms based on 
Monte Carlo cross-validation techniques were investigated. 
Comparing the results of stepwise-MLR, MLR-ANN, 
SPA-ANN, GA-MLR, GA-MLR-ANN and BRGNN 
dedicates that the last model selects the best variables 
for predicting the inhibition action of ACC inhibitors. 
In addition to non-linear ANN modeling, the preceding 
procedure was repeated for linear MLR modeling. A 
sensitivity analysis was done to characterize the relative 
importance of descriptors. By representing the most 
important descriptor in ANN modeling and ranking the 
present variables by importance, we have reduced the 
black-box limitation of the neural network methodology, 
to some extent. The sensitivity analysis of models and 
relative mean effect of the molecular descriptors in this 
work have shown that the positive charge of the molecules 
has considerable effect on their ACC inhibitory activities. 
This is in agreement with previous studies about the 
inhibitors of ACC enzyme whish have emphasized on the 
role of electrostatic interactions on ACC inhibitory activity. 
Generally, the results of present contribution would help for 
better understanding the mechanism of the ACC inhibitory 
activity of arylquinoline amide derivatives and would be 
useful for medicinal chemists dealing with optimization of 
this series of compounds.

Supplementary Information

Supplementary data (frequency plot and histograms) are 
available free of charge at http://jbcs.sbq.org.br as PDF file.
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