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Um software para análise multivariada foi desenvolvido com o objetivo de oferecer uma 
ferramenta computacional livre com interface gráfica amigável para pesquisadores, professores  
e estudantes com interesse em quimiometria. O Chemoface possui módulos capazes de resolver 
problemas relacionados com planejamento experimental, reconhecimento de padrões, classificação 
e calibração multivariada. É possível obter uma variedade de gráficos e tabelas para explorar os 
resultados. Neste trabalho, as principais funcionalidades do Chemoface são exploradas usando estudos 
de caso reportados na literatura, tais como otimização de adsorção de corante índigo em quitosana 
usando planejamento fatorial completo, análise exploratória de amostras de própolis caracterizadas por 
ESI-MS (espectrometria de massas com ionização electrospray) usando PCA (análise de componentes 
principais) e HCA (análise hierárquica de agrupamentos), modelagem MIA-QSAR (análise multivariada 
de imagem aplicada à relações quantitativas estrutura-atividade) para predição de parâmetro cinético 
relacionado à atividade de peptídeos contra dengue usando PLS (método de quadrados mínimos 
parciais), e classificação de amostras de vinho de diferentes variedades usando PLS-DA (PLS para 
análise discriminante). Todos os exemplos são ilustrados com gráficos e tabelas obtidos no Chemoface.

A software for multivariate analysis was developed in order to provide a free computational 
tool with user-friendly graphical interface for researchers, professors and students with interest 
in chemometrics. Chemoface comprises modules that can solve problems related to experimental 
design, pattern recognition, classification and multivariate calibration. It allows obtaining a variety 
of high quality graphics and tables to explore results. In this work, the main features of Chemoface 
are explored using case studies reported in the literature, such as optimization of adsorption 
of indigo dye on chitosan using full factorial design, exploratory analysis of propolis samples 
characterized by ESI-MS (electrospray ionization-mass spectrometry) using PCA (principal 
component analysis) and HCA (hierarchical cluster analysis), MIA-QSAR (multivariate image 
analysis applied to quantitative structure activity relationship) modeling for the prediction of kinetic 
parameter related to activities of peptides against dengue using PLS (partial least squares), and 
classification of wine samples from different varieties using PLS-DA (PLS discriminant analysis). 
All examples are illustrated with graphs and tables obtained by means of Chemoface.
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calibration

Introduction

A new scientific concept was introduced in the 
1970s; chemometrics, a science related to performing 
calculations on measurements taken in a chemical process 
or system, was presented with the purpose of obtaining 
information about the state of this system by means of 
either mathematical or statistical methods. Due to the 
complex origin of the data involved in chemometric 
works and the need to perform extensive calculations, the 

low processing capabilities of computers were limiting 
for researches at the time.1,2

Important advances in computation have been achieved 
since then, and chemometrics spread into many research 
fields related to chemistry, such as food science,3 soil 
science,4 clinical analysis5 and pharmaceutical sciences,6 
among others.7 Thus, many methods, and especially the 
implementation of computational tools for chemometric 
calculations, have been developed.

Currently, a number of specialized programs for 
chemometric calculations has been marketed. Those with 
somewhat friendly interfaces correspond to expensive 
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commercial versions,8-10 which can impose limitations to 
classrooms with many computers and for students. On the 
other hand, those free licensed ones11,12 are still emerging 
about user-friendly graphical interfaces and usually require 
some command line programming, which generates a 
series of difficulties for less experienced users. Although 
there are some toolboxes with graphical interfaces that can 
facilitate the use of these programs,13,14 they are specific to 
a particular chemometric method.

Therefore, a new software for chemometrics, namely 
Chemoface, was developed in order to provide a free 
computational tool with user-friendly graphical interface 
for researchers, professors and students with interest on 
this science. Chemoface includes several modules that can 
solve problems related to design of experiments, pattern 
recognition, classification  and multivariate calibration. 
Files of different formats can be imported. It also allows 
the obtainment of a variety of high quality graphics and 
tables to explore results. In this work, the main features 
of Chemoface are presented using case studies reported 
in the literature.

Discussion

Requirements

Chemoface was developed on the MATLAB15 
environment. It is a stand-alone application and does not 
require a MATLAB license installation to run. Indeed, only 
MATLAB Compiler Runtime (MCR) is required to be 
installed, which is freely available along with Chemoface. 

MCR is a set of shared libraries that provides complete 
support for all the features of MATLAB.

Computational performance depends on the size of 
the data sets and the hardware capability. The examples 
presented in this work were carried out in a laptop with 
Core i3 processor  and 4 GB RAM. Large data sets 
(about 100 × 10000) were also properly tested on Pattern 
Recognition, Multivariate Calibration, Data Plot and Data 
Organization modules.

Modules and applications

Chemoface consists of five modules which can 
be accessed from the software home screen; these 
modules are Experimental Design, Pattern Recognition, 
Multivariate Calibration, Data Plot and Data Organization. 
In all modules, Chemoface identifies samples in rows and 
variables in columns. Figure 1 shows the home screen and 
the Multivariate Calibration module of Chemoface.

Experimental Design module
This module is able to solve problems related to design 

of experiments using full factorial design, fractional 
factorial design, central composite design, Plackett-
Burman design and mixture design.16,17 The results can be 
explored using effect tables and Pareto charts. The user can 
adjust various parameters related to design and analysis 
of experiments, such as number of factors, number of 
repetitions in the assays, number of central points, fraction 
size in fractional designs, simplex type  and constraints 
on the component proportions in mixture designs,  and 

Figure 1. Home screen (a) and Multivariate Calibration module (b) of the Chemoface.
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confidence level for significance tests. Surface  and 
contour graphs are also available, with settings for linear, 
linear‑interactions, quadratic and pure quadratic models. 
Options to plot the experimental data and to account only 
for the significant regression coefficients are also available 
either for surface or contour plots. Statistics for models 
obtained only with significant regression coefficients are 
also computed.

Some features of this module are illustrated by analyzing 
an experiment for evaluation of the removal of indigo 
carmine dye from aqueous solutions using cross-linked 
chitosan, originally reported by Cestari et al.18 The effects 
of the amount of chitosan (100-300 mg), concentration of 
dye (2.0-5.0 × 10−5 mol L−1) and temperature (25-35 °C) 
over dye adsorption on chitosan were evaluated by a 23 full 
factorial design. The responses were obtained in duplicate. 
In the original work, the authors evaluated the design using 
only a table of the effects and the respective errors. Here, 
this experimental design has also used other tools available 
in Chemoface.

The Pareto chart of the effects is presented in Figure 2a. 
The graph provides a clear visualization of factor 
effects, and indicates that the amount of chitosan exhibited 
an antagonistic effect, while the temperature presented a 
synergistic effect. A significant interaction effect between 
the amount of chitosan and temperature was also verified. 
The third order interaction effect was significant, but 
the main contribution was found to be the amount of 
chitosan and temperature since the main effect or second 
order interaction of dye concentration was not significant. 
A surface plot (Figure 2b) for the amount of chitosan and 
temperature against dye adsorption shows that the increase 
of chitosan mass from 100 to 300 mg decreases the dye 

adsorption, whereas increasing temperature from 25  to 
35 oC increases such an adsorption. The statistical results 
for the model (Figure 3) indicates a significant linear fit 
(R² > 0.9; p-value of F-test < 0.05), and confirms chitosan 
mass and temperature as significant effects based on the 
regression coefficients.

Pattern Recognition module
The Pattern Recognition module performs principal 

component analysis (PCA)19  and hierarchical cluster 
analysis (HCA).20 Several pre-processing methods 
can be easily applied to the data set, such as mean 
center, autoscaling, smoothing/derivative, normalization, 
multiplicative scatter correction, as well as spectral 
conversions (absorbance/transmittance). Graphs for 
2D  and  3D PCA can be generated individually for 
scores and loadings, in addition to biplots. Sample classes 
can be inserted and graphs colored according to such classes 
can be obtained. HCA can be performed using Euclidean 
or Mahalanobis distance with linkage by nearest neighbor, 

Figure 2. Pareto chart (a) and surface plot (b) for the 23 full factorial design for evaluation of the effects of the amount of chitosan (Q, mg), dye concentration 
(C, 10−5 mol L−1) and temperature (T, °C) over dye adsorption on chitosan.

Figure 3. Chemoface output for statistical parameters of the linear model 
relating amount of chitosan (Q), dye concentration (C) and temperature 
(T) against dye adsorption on chitosan.
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furthest neighbor and average. A color can be assigned to 
each group of nodes in dendrograms based on a threshold. 
PCA can also be applied to input data for HCA.

Functionalities of this module are illustrated through 
an exploratory analysis of a data set from characterization 
of propolis harvested in different seasons reported 
in literature.21 Alcoholic extracts of propolis samples 
harvested in Spring, Summer and Autumn were analyzed 
by electrospray ionization-mass spectrometry (ESI-MS). 
The mass spectra were expressed as the intensities of the 
individual [M – H]− ions of the most intense ions in the 
fingerprint of each sample. Some ions were identified as 
polyphenolic compounds. In the original work, the results 
were autoscaled and explored by PCA using a PC1 × PC4 
plot. Here, the non-preprocessed data set were analyzed 
by PCA and HCA. A 3D biplot for scores and loadings 
(Figure 4a) reveals the distinction of samples from three 
seasons. The main propolis feature from Spring was the high 
intensity of ion m/z 255. The ions of m/z 301, 315, 353 and 
515 highlighted in Summer propolis. A high intensity 
of ions with m/z 300  and 363 were typical of Autumn 
propolis. Similar characteristics were also observed in the 
original work. The HCA dendrogram (Figure 4b) obtained 
using Euclidean distance and average linkage confirms the 
insights from the PCA analysis: the distinction of samples 
from three seasons, in which the Summer samples were 
better distinguished from the remaining ones.

Multivariate Calibration module
This module performs multivariate calibration using 

multiple linear regression (MLR), principal component 
regression (PCR) and partial least squares regression (PLS), 

as well as modeling for classification by discriminant 
analysis (PLS-DA, PCR-DA  and MLR-DA).22,23 Leave-
one-out cross validation (LOO-CV) can also be performed. 
Performance parameters for the models, such as the widely 
used root mean square error (RMSE)  and correlation 
coefficient (R²) are calculated for the cross-validation, 
calibration and test sets. Additional statistical parameters 
proposed by Roy and co-workers,24-27 namely r²m and r²p, 
are also calculated for validation purposes. A r²m above 0.5 
guarantees that not only a good correlation between the 
experimental and predicted values was obtained for the test 
set, but also that the absolute experimental and predicted 
values are congruent. The r²p parameter gives insight about 
the statistical difference between R² for calibration  and 
R² for y-randomization (values above 0.5 are acceptable). 
New data sets can be inserted for external validations or 
new predictions by using the current calibration model. A 
variety of options for data pre-processing are available. 
Models for multiple independent variables can be built 
simultaneously. The data set can be easily divided into 
samples for calibration and test sets, either manually or 
automatically using the Kennard-Stone algorithm.28 A 
number of charts and tables can be obtained to assist the 
exploration of results.

Some features of this module for PLS regression is 
illustrated by a study on the modeling of a kinetic parameter 
related to activities of modified peptides against dengue 
type 2 using MIA-QSAR (multivariate image analysis 
applied to quantitative structure-activity relationship).29 
In MIA‑QSAR, two-dimensional images of chemical 
structures are correlated with bioactivities and are supposed 
to codify chemical properties.30 In this study, a total of 54 

Figure 4. PCA biplot (a) and HCA dendrogram (b) for ESI-MS fingerprints of propolis samples.
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figures of molecular structures were calibrated against 
the logarithm of their cleavage rates (kcat). In the original 
work, the data set was randomly split into a training set 
of 43 compounds and an external validation (test) set of 
11 compounds. Here, the data set was split into training 
set (43 compounds)  and test set (11  compounds) using 
the Kennard‑Stone function available in Chemoface. This 
algorithm selects the samples based on the Euclidean 
distance. The first two samples selected are the furthest 
ones from each other. The next sample is selected by 
its distance from the previously selected samples.28 
The molecular figures were imported using the Data 
Organization module of Chemoface as described further. An 
outlier detection test was applied by leverages × studentized 
residuals plot (Figure 5a). This test was not applied in the 
original work, and the absence of outliers in the data set 
was confirmed here. RMSE  and R2 for cross-validation 
corroborate 6 LV (latent variables) as the appropriate number 
of PLS components (Figure 6). The model performance 

(Table 1) corroborates the results of Silla et al.29 and support 
the correct random selection of test samples by the authors. 
The r2

p and r2
m above 0.5 attested the model robustness.24-27 

Figure 5. Leverages × studentized residuals for outlier test (a), and measured × predicted multiplot (b) for the PLS-based MIA-QSAR model.

Figure 6. RMSE (a) and R² (b) in the cross-validation of the MIA-QSAR model.

Table 1. PLS performance to prediction of kcat of modified peptides against 
dengue type 2 using MIA-QSAR model

Reference 29 This work

RMSEc 0.08 0.06

R2
cal 0.97 0.98

RMSEcv 0.31 0.31

R2
cv 0.58 0.56

RMSEp 0.30 0.28

R2
test 0.64 0.65

RMSEy-rand – 0.83

R2
y-rand – 0.70

r2
p – 0.52

r2
m – 0.51
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Figure 7. Leverages × studentized residuals for outlier diagnostic (a), and percentage of successful classification for cross-validation (b) of the PLS-DA model.

Finally, the measured × predicted property plot for training, 
cross-validation and test sets suggest a good predictive ability 
for the PLS model (Figure 5b).

A classical data set31 was used to illustrate the 
classification analysis by PLS-DA. The data set refers to 
wine samples from three varieties (Barbera, Grignolino and 
Barolo), which were characterized by measurements 
of alcohol, total phenol, flavonoid, color intensity, 
hue color parameter, optical density at 280 nm/optical 
density at 315 nm and proline. In the original work, the 
data set was evaluated in order to build classification 
models. Classification ability was 97.7% using methods 
like PCA, KNN (K-nearest neighbor)  and SIMCA (soft 
independent modeling of class analogies). Using the 
Chemoface, the data set was autoscaled. An outlier test 
was applied using leverages × studentized residuals plot 
(Figure 7a), and 12 samples were excluded from a total of 

Figure 8. Predicted classes for test samples of wines (a) and PLS-DA scores multiplot for calibration and test samples (b).

178. From 166 samples, 55 were selected for test set using 
the Kennard-Stone algorithm, and 111 were used in the 
calibration step. A percentage of successful classification 
plot for cross-validation indicates 2 LV as appropriated 
(Figure 7b). The 2 LV model presented a good performance 
according success of classifications about 100% (Table 2, 
Figure 8a). The score plot for training and test sets showed 
excellent sample discrimination (Figure 8b).

Table 2. Success of classification of PLS-DA and SIMCA models for 
classification of wine samples

SIMCA31 PLS-DA (this work)

SuccessC / % 97.7 100.0

SuccessCV / % – 99.1

SuccessP / % – 100.0
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Data Plot and Data Organization modules
Scatter plots for data sets can be obtained using the Data 

Plot module. This is especially useful to plot spectral data. 
Graphs can be plotted on both original and preprocessed data.

The Data Organization module allows importing 
numerical data from .txt, .dat, .csv files, and images in .bmp.  
Multiple files, such as spectra files, can be imported 
simultaneously. The process of importing images (.bmp) is 
based on converting them in a three-way array containing 
the RGB values for each pixel. Then the values of R, 
G and B are summed to each pixel, resulting in a two-way 
array (matrix). Finally, this matrix is unfolded to generate 
a vector. This is particularly useful to import molecular 
figures to be used as descriptors in MIA-QSAR models.30

Inserting and exporting data
Numerical data can be inserted into Chemoface by 

two ways: they can be typed directly into the tables; or by 
copying from any numerical data spreadsheet or from a text 
file (separated by spaces or tabs) and pasting them directly 
in the module tables.

Commands to transpose dataset and to delete specific 
rows and columns are available.

After entering the data, they can be saved to a text file 
(.txt) properly structured by Chemoface; only this type of 
text file can be opened by the software. Data from other 
types of text (unstructured and not saved by Chemoface) 
may be inserted by copying and pasting as explained earlier. 
Models obtained by MLR, PCR or PLS can also be saved 
for further use in the software.

All procedures to insert or save data as described above 
are carried out through the main menu “File” of Chemoface 
modules.

The figures obtained can be exported to various image 
formats with high resolution. The numerical data from 
graphs can be copied  and used in different graphical 
software. The data tables can also be copied.

Conclusion

The goal of the Chemoface project is to offer a 
computational tool, which is comprehensive, free  and 
with user-friendly graphical interface for researchers, 
professors and students dealing with common practices in 
Chemometrics.

A number of other functions, graphs  and tables, in 
addition to those presented in this work, are available in 
Chemoface. This version has the main methods used in 
Chemometrics, but new features and other chemometric 
methods, such as multivariate curve resolution  and 
three-way approaches can be implemented hereafter. 

The development of the program is not fully limited, and 
contributions from other researchers are welcomed.

The software can be freely downloaded from the 
Department of Food Science of the Federal University of 
Lavras, Minas Gerais State, Brazil (Download’s link).32
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