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Este artigo investiga, teoricamente, a dindmica de um modelo de membrana sob estimulacéo
el étricaexterna. Este sistemamostravariostipos derespostas oscil atorias no potencial damembrana,
quando uma corrente sinoidal AC é superposta & corrente DC aplicada através da membrana. A
medida que a frequéncia da corrente AC varia, este comportamento varia de oscilagfes periddicas,
P1, até oscilagBes do tipo explosivas, através de regides de quase-periodicidade. As sériestemporais
gue apresentam estes comportamentos sdo caracterizadas usando métodos de Teoria de Sistemas
Dinamicos, a saber: mapas de retorno, expoentes de Lyapunov, espectro de poténcias e dimensao
de capacidade. Os resultados sdo discutidos em relacdo a membranas biolégicas sob condicoes
similares.

In this paper we theoreticaly investigate the dynamics of a membrane model under externa
electric stimulation. The system shows various types of oscillatory responses in the membrane
potential when asinusoidal AC electric current is superimposed on the DC current applied across
the membrane. The behavior goes from periodic oscillations, Py, to bursting type oscillations via
quasiperiodicity, when the frequency of the AC current is varied. The time series displaying these
behaviors are characterized using the methods of Dynamical System Theory, namely, return map,
Lyapunov exponents, power spectrum and capacity dimension. Theresults are discussed in relation
to biological membranes under similar conditions.
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sinusoidal stimulation

I ntroduction

The effect of periodic perturbations on the dynamics of
oscillatory chemical system has been extensively studied
both theoretically and experimentally in the last decade'*,
mainly on the famous Bel ousov-Zhabotinskii reaction, the
ceriumion catalyzed oxidation of malonic acid by bromate.
This interest has been motivated mainly by the desire to
understand excitability and signal transmission in biologi-
cal systems, for example, the synaptic transmission in the
central nervous system; the excitation and contraction of
cardiac muscle>®.

In the case of oscillations in artificial membranes the
research has been also motivated by its implications in
biological systems. A number of important biological phe-
nomena are rhytmical and appear to result from the oscil-

latory interaction of a membrane with its environment,
namely: sustained oscillations in neurons and pacemaker
cellsin the heart and secretory glands. Although the scale
and the mechanisms of the processes in artificiad mem-
branes may not be close to those found in rea biological
systems, it is expected that they give fundamental informa-
tion useful in elucidating the oscillation processes at
biomembranesin living organisms.

Periodic perturbations of membrane systems have not
been studied nearly as much as chemical systems, however
thereisafair anount of published work on the subject”2°.
The studiesin thisfield have been focused on bifurcations,
or transitionsto complex oscillations and chaosthat caused
by the application of periodic or quasi-periodic stimulations
to an excitable cdl in a sdf-sustained state of periodic
oscillatory behavior. In this paper, by using a broad pore
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membrane model, we report complex dynamics (bursting
and quasiperiodicity) in the membrane potential when the
system is driven by a periodic stimulating current. Thisis
achieved perturbing the direct current applied across the
membrane by superimposing a small amplitude sinusoidal
AC electric current.

Mode Equations

The model is an electrochemical devicethat consists of
ahighly porousion-exchanger membrane which separates
two electrolyte solutions of different and constant concen-
trations, permitting a steady diffusion process. Oscillations
of the electrical voltage across the membrane and hydro-
static pressure occur when the membraneispolarized by an
electrical current. The oscillations are brought about by
periodic transitions of the salt content in the membrane
caused by the antagonistic action of the hydrostatic and
electro-osmotic pressure across the membrane. In this
membrane oscillator system thereare three kinds of driving
forces: the membrane voltage, the difference of hydrostatic
pressure and the gradient of concentration between the
boundaries of the membrane. The equations governing the
dynamics of the system are'™:

Electrical voltage

du_, U o 1 (i-uf)
e L L T vy

fyoka (ou-p)]

Hydrostatic pressure
dp _ _
g Kka(ou=p)

whereu andi arethevoltage and el ectrical currentimposed
accross the membrane, respectively; p is the hydrostatic
pressure difference arising from the difference of thelevels
of thesolutions, and T istime. The parametershavethesame
meaning and values given in elsewhere'l, namely: ratio of
concentrations, fc = 0.1; sign of fixed charges, o =-1,
drift-parameter, kq = 0.1; time-parameter, k; = 1; and the
electrical membrane resistance at vanishing volume flux
fo = 0.2558. All variables and parameters in the above
equations arein dimensionless form.

In most studies on oscillations in membrane systems,
both experimental and theoretical, the electrical current
applied through the membrane is constant. However, there
exist experimental evidence in artificial and biological
membranes®'213 showing complex dynamics other than
simple P1 oscillations, such as bursting, quasi-periodicity
and chaos, when a periodic stimulating current is applied
across the membrane. aiming at reproducing this complex

Delgado & Munster 493

behavior observed experimentally wehave added asinusoi-
dal forcing term in the electric current, namely:

i= iD(:+ASin((.0T)

where A is the amplitude and w is the frequency of the
superimposed A C current, respectively. Theanalysisof this
driven system requires necessarily the reconstruction of the
attractor from the time series, because only two dynamical
variables are directly accessible. In order to avoid this we
have transformed the above driven system into an
autonomous one adding the following two equations:

do _
dr_v

N e
dt

whose solution with proper initial conditions, namely
@0) =0, istheforcingterminthecurrent,i.e. = Asin (wt).
This new four equation autonomous system is equivalent
to the original one and allows the computation of
dimensions and Lyapunov exponents without the
reconstruction of the attractor. The frequency w was used
as control bifurcation parameter.

Resultsand Discussion

Themodel equationsexhibit varioustypesof oscillatory
responses in the membrane potential asthe frequency w of
theperiodic stimulation (AC current), superimposed on the
DC current, is varied. The behavior goes from periodic to
bursting via quasi-periodicity. Thusin the range 0.86 < w
< 1.0 the system displays periodic behavior (P1), Fig. 1.
This periodic behavior is confirmed quantitatively by its
maximum Lyapunov exponent equa to zero (indicating
that the limit cycle conserves its information in time), its
single main frequency (0.0156) in the power spectrum and
its correlation dimension equal to one.

At frequencies below 0.85 the system shows quasi-pe-
riodicity. The transition from quasi-periodicity to limit
cycle occurs in a somewhat unusua way. Normally one
would expect a torus (secondary Hopf) bifurcation where
two Floguet multipliers ssmultaneously intersect the unit
circle in the plane of complex numbers. In fact, a torus
bifurcation occursat afrequency of w=1.03, asdetermined
using the program package CONT*. At w = 0.8525, how-
ever, the period-one limit cycle undergoes a saddle-node
bifurcation where one non-trivial floquet multiplier inter-
sects the unit circle at 1. It therefore looses stability by
collision with an unstable limit cycle. This saddle-node
bifurcation of limit cycles collides with a torus in analogy
to the well-known sniper-bifurcation where a saddle-node
of dtationary states collides with a limit cycle'®. As a
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consequence the modulation period of the quasiperiodic
oscillations approaches infinity as the forcing frequency is
increased towards the critical value of w = 0.8525, Fig. 2.
The emerging torus is despicted in Fig. 3. The quasiperio-
dic state is confirmed by the power spectrum and the return
map. In the first one it is possible to observe two main fre-
quencies in non-integer ratio, in the second one it is a closed
curve is obtained, Fig. 4. Both features, along with a capa-
city dimension close to 2.00 and a maximum Lyapunov ex-
ponent equal to zero, confirm quasiperiodicity. With a
further decrease of the frequency, w< 5 x 1073, the systems
dynamics switch to burst type oscillations. Such an evo-
lution manifests itself on the phase portrait and the Po-
incaré section as an increase of the global size of the
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Figure 1. Time serie of membrane potential for DC current intensity
icp = 500, AC current amplitude A =25 and frequency w = 0.90.
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Figure 2. Increase of modulation period close to limit point for the
same parameters values given in Fig. 1.
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torus at the expense of the size of its inner part which
shrinks to a thin tube. On the power spectra, this scenario is
associated with a decrease of the secondary frequency,
which means that the thinner the center hole, the larger the
duration of time spent by the trajectory inside the hole. As a
consequence, the time series displays larger and larger win-
dows of nearly stationary behavior, Fig. 5. In Fig. 6, the
window length of the nearly stationary states as function of
the driving frequency is shown.

The responses of these model equations to the sinusoi-
dal stimulation have close similarities with experimental
results reported previously for both artificial and biological
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Figure 3. The attractor showing a torus structure typical for quasipe-
riodicity. Parameters values given in Fig. 1 except w = 0.25.
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Figure 4. The return map of the attractor in Fig. 3 shows a closed cur-
ve as would be expected for a quasiperiodic attractor.
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Figureb. Bursting type oscillationsfor the same parameters val ues given
inFig. 1 except w=5x 103,
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Figure 6. Window length of the nearly stationary statesasfunction of the
driving frequency.

membranes under similar conditions. The rhythm of
autonomous biological oscillators can be markedly affected
by periodic perturbation. Thus, this forcing can lead to
quasiperiodicity, intermittency, chaos and bursting type
oscillations. Many nerve cedlls in both vertebrate and inver-
tebrate nervous systems display the behavior known as
burging. This consists of the generation of membrane
action potentials in regular sequences of “bursts’ which are
separated by periods of inactivity during which the cell
membrane may be hyperpolarized. Among the more com-
monly studied nerve cells which display this behavior are
abdominal ganglion cells of molluscs'®Y’, cardiac pace-
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maker, stomatogastic ganglion cells of crustacea'®*®, and

electrical activity in pancreatic -cells°. Bursting isimpor-
tant for two reasons®. First, it is ardatively simple neural
pattern and yet onewhichisinvolved in the control of many
physiological and behavioral activities such asblood circu-
lation, respiration, mastication and locomotion. Second,
nerve cellsinvolved in epileptic seizure activity have been
observed to burst during interictal (i.e. between seizures)
states.

Finaly, it isimportant to stressthat a knowledge of the
mechanisms underlying this complex behavior may lead to
an increased understanding of the basic physico-chemical
phenomenathat occur during biological membrane oscilla-
tions.
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