
J. Braz. Chem. Soc., Vol. 17, No. 4, 715-722, 2006.
Printed in Brazil - ©2006  Sociedade Brasileira de Química

0103 - 5053  $6.00+0.00

Article

* e-mail: judith@angel.umar.mx, amadorjudith@yahoo.com

Simultaneous Determination and Classification of Riboflavin, Thiamine, Nicotinamide and
Pyridoxine in Pharmaceutical Formulations, by UV-Visible Spectrophotometry

and Multivariate Analysis

Pedro L. López-de-Alba,*,a Leticia López-Martínez,a Vìctor Cerdáb and Judith Amador-Hernándezc

aInstituto de Investigaciones Científicas, Universidad de Guanajuato, 36000 Guanajuato Gto., México
bDepartamento de Química, Universidad de las Islas Baleares, 07071 Palma de Mallorca, España

c
Instituto de Ecología, Universidad del Mar, 70902 Puerto Ángel Oax., México

Soft Independent Modeling of Class Analogy (SIMCA) e Regressão por Mínimos Quadrados
Parciais foram usados nesse trabalho para a identificação e quantificação de tiamina, riboflavina,
nicotinamida e piridoxina, por espectrofotometria UV-Vis, sem realizar os procedimentos
analíticos de separação e pré-concentração. Para a quantificação, os intervalos de trabalho
estabelecidos foram 1-14 mg L-1 para riboflavina, 2-26 mg L-1 para tiamina, 2-30 mg L-1 para
nicotinamida, e 2-22 mg L-1 para piridoxina. Os resultados de recuperação obtidos foram
superiores a 95% em todos os casos, para a análise de amostras sintéticas e comerciais. Na
busca de cada vitamina alvo, foi construído um modelo de classificação com duas categorias:
(i) com a vitamina de interesse e (ii) sem a vitamina de interesse. A capacidade discriminatória
de cada modelo de classificação foi avaliada para aprendizagem, para um conjunto de amostras
teste e para amostras comerciais, com resultados satisfatórios, com exceção da riboflavina.
Assim, um método simples e confiável é proposto para a estimativa simultânea desses compostos.

Soft Independent Modeling of Class Analogy and Partial Least Squares Regression were
used in this work for the identification and quantification of thiamine, riboflavin, nicotinamide
and pyridoxine by UV-Vis spectrophotometry, without separation or preconcentration steps
in the analytical procedure. For quantitative purposes, the working range established was 1-
14 mg L-1 for riboflavin, 2-26 mg L-1 for thiamine, 2-30 mg L-1 for nicotinamide, and 2-22 mg
L-1 for pyridoxine. Recovery results higher than 95% were obtained in all cases during the
analysis of synthetic and commercial samples. In the screening of each target vitamin, a
classification model was built with two classes: (i) with the vitamin of interest, and (ii)
without it. The discriminate capability of each classification model was evaluated for learning,
independent testing and commercial samples, resulting in satisfactory findings with exception
of riboflavin. Thus, a simple and reliable method is proposed for the simultaneous estimation
of these compounds.
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Introduction

Vitamins are essential compounds in living systems which
differ in their chemical structure and physiological action.
Analytical methods have been developed for vitamin
identification and/or quantification, using a wide variety of
strategies. Thus, food and pharmaceutical industries have
taken advantage of these reliable methods and used them for
the estimation of vitamins from simple to complex matrices.

Liquid chromatography has been widely employed for
vitamins determination,1-3 in spite of the fact that the
sample preparation usually requires laborious and time-
consuming steps.4 Other chromatographic techniques such
as micellar eletrockinetic capillary chromatography have
been reported with satisfactory results.5,6 Some analytical
methods based on UV-Vis spectrophotometry and
spectrofluorimetry have also been optimized for the
simultaneous quantification of vitamins. However, these
methods usually require some chemical reaction or
separation steps,7-9 where sample manipulation can
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increase the risk of human error in the results and the cost
of the analysis.

Nowadays, chemometrics is considered a suitable
alternative to analytical separation procedures. Selectivity
limitations presented by optical detection techniques can be
overcome with the application of some mathematical
algorithms during the interpretation of instrumental data.10,11

Therefore, different research groups have proposed the use
of chemometric strategies for the simultaneous determination
of vitamins. As an example, there are several reports about
the quantification of vitamins in pharmaceutical formulations
by derivative spectrophotometry.12-14 Multiple linear
regression and artificial neural networks were also applied
to resolve overlapping spectrophotometric signals of
multivitamin samples.15,16

Partial Least Squares (PLS) is a multivariate calibration
technique used in the resolution of multicomponent
systems.17-19 Berzas et al.20 reported the fluorimetric
determination of pyridoxal, pyridoxamine and pyridoxic
acid at low concentration levels, using non-linear variable
angle synchronous spectra and PLS. Collado et al.21

applied PLS to quantify nicotinamide and inosine in
ophthalmic solutions by UV-Vis spectrophotometry with
good results. The application of the PLS algorithm was
an excellent tool to eliminate the spectral interferences in
the quantification of the analytes of interest, which was
satisfactorily demonstrated by Ghasemi and Vosough22 and
Aberásturi et al.23 in the resolution of four-component
mixtures of vitamins.

Soft Independent Modeling of Class Analogy (SIMCA)
is a supervised pattern recognition technique used for the
reliable classification of unknown samples which is based
on Principal Component models for the training of set
categories.24 The flow injection screening of PAHs in water
by laser induced spectrofluorimetry,25 the identification of
pharmaceutical excipients by NIR reflectance spectroscopy
and the confirmation of the authenticity of Galician wines
from the Ribeira Sacra area are some successful applications
of SIMCA for sample classification. 26,27

Excellent monographs have been published, which
discuss the principles and algorithms of PLS and SIMCA,
such as interesting applications.28-30 In the present study,
SIMCA and PLS have been used to identify and quantify
B-group vitamins (thiamine, riboflavine, nicotinamide
and pyridoxine) without separation or preconcentration
steps. In mixtures with one to four components, spectral
interferences among the target substances were avoided
by using chemometric tools. Finally, the predictive
ability of classification and calibration models was
evaluated in commercial formulations and showed
satisfactory results.

Experimental

Apparatus

A Spectronic 3000 Diode Array Milton Roy spectro-
photometer with a resolution of 0.35 nm was used, coupled
to a 486 PC. A User Data version 2.01 Milton Roy Inst.
Software was employed for spectral data acquisition,
storage, and manipulation. Data treatment was carried out
using a Pentium IV PC equipped with the GRAMS /386
tm software package, version 3.01A (Galactic, USA) and
the Pirouette software package, V. 3.1 (Infometrix, USA).

Reagents

All chemicals were of analytical reagent grade.
Thiamine hidrochloride (THIA), riboflavine (RIB),
nicotinamide (NIC), and pyridoxine (PYR) were obtained
from Aldrich. Water purified with a Milli-Q system was
used throughout.

Standard solutions of THIA (1000 mg L-1), NIC (1000
mg L-1), PYR (1000 mg L-1), and RIB (50 mg L-1) were
prepared by dissolving the appropriate amounts of each
analytical reagent in pure water. The solutions were stored
and protected from light at 4 °C. Working standard
solutions were prepared daily by appropriate dilution. A
buffer solution of monochloroacetic acid/potassium
hydroxide (pH 2.2; 0.1 mol L-1) was also prepared,
adjusting the pH with hydrochloric acid.

For the analysis of commercial samples, BEPLEX 50
from Laboratorios Carnot de Productos Científicos S.A.
(Product A), TIAMINAL TRIVALENTE from Laboratorios
Silanes S.A. (Product B) and ANEREX from Aplicaciones
Farmacéuticas S.A. (Product C) were used.

Procedure

The working solutions were prepared by adding
adequate volumes of the stock vitamin solutions and 5 mL
of buffer solution in 25 mL volumetric flasks and filled up
with pure water. The linear ranges of work were of 2-26
mg L-1 for THIA, 1-14 mg L-1 for RIB, 2-30 mg L-1 for
NIC, and 2-22 mg L-1 for PYR. The samples were stable
for at least 90 min protected from light, according to a
stability study in the proposed experimental conditions. The
absorption spectra were recorded from 200 to 400 nm
against a blank, with a resolution of 0.35 nm, and smoothed
using the Savitzky and Golay procedure (25 experimental
points, moving average function).

For the application of SIMCA and PLS, a training set
of 44 samples was used (see Table 1). A test set of 16
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samples was also used (Table 2), to evaluate the qualitative
and quantitative capabilities of the proposed models.

The analyses of pharmaceutical preparations were
carried out by triplicate, weighing homogeneous portions
of the multivitamin samples in powder (about 1 g) and
dissolving them with pure water in volumetric flasks. Then
each solution was maintained in an ultrasonic bath for a
period of 15 min. In order to remove suspended particles,
a fraction of the solution was centrifuged at 3500 rpm for
15 min. Finally, aliquots of the supernatant were analyzed
by using the procedure described above.

Results and Discussion

Absorption spectra of thiamine, riboflavine, nicotina-
mide and pyridoxine are shown in Figure 1. There is a
substantial overlapping on the spectra from 200 to 400
nm. Therefore, the simultaneous spectrophotometric
identification or quantification of the vitamins of interest
requires the application of a separation step before their
detection, or the use of a chemometric algorithm for the
resolution of multicomponent mixtures.

In order to develop a new spectrophotometric method
for the determination of B-group vitamins by SIMCA and
PLS, the influence of pH in absorption spectra was studied.
It is well known that TIA and RIB are not stable in alkaline
conditions. Therefore, solutions with these vitamins in
KCl 0.1 mol L-1 were prepared for each one, with pH
values between 1.0 and 8.0 adjusted with HCl or NaOH.

As an example, Figure 2 shows the influence of pH in
PYR spectra. Four absorption bands were clearly observed;
the maxima were located at 220, 254, 291 and 324 nm.
The bands between 200-210 were not considered, owing
to major interferences from electrolytes could be expected.
With exception of the band centered at 291 nm (third,
from left to right), the rest of absorption bands showed a
hyperchromic effect while the pH decreased. Contrarily,
the band located between the isosbestic points at 267 and
305 nm (with a maximum in 291 nm), showed a
hyperchromic effect with the increase of the pH.

It was desirable to obtain mayor differences between the
spectral shapes of the analytes to resolve the multicomponent
system by multivariate strategies. Taking into account this
premise and the fact that TIA and RIB were not stable at
basic conditions, a pH 2.2 was selected as optimum. At this
pH value, a major differentiation between the absorption
bands of the four compounds were observed, since pyridoxine
shows only one absorption band (maximum at 291 nm)
instead of three (maxima at 220, 254, and 324). A buffer
solution of monochloroacetic acid/potassium hydroxide 0.1
mol L-1 provided an adequate buffering capacity.

Table 1. Composition of the training set of samples used in the multivita-
min analysis (concentrations in mg L-1)

Sample THIA RIB NIC PYR

1 0 1 0 11
2 2 7 0 0
3 0 0 30 2
4 13 0 2 0
5 0 1 30 6.5
6 2 4 0 11
7 7.5 7 2 0
8 13 0 16 2
9 2 4 2 0
10 13 0 30 6.5
11 13 0 30 11
12 7.5 0 2 2
13 0 4 30 11
14 2 1 0 6.5
15 13 7 16 0
16 0 7 30 11
17 0 1 16 2
18 7.5 7 0 11
19 13 7 0 11
20 13 7 30 0
21 7.5 7 16 2
22 2 7 2 2
23 7.5 7 16 6.5
24 13 1 16 6.5
25 7.5 4 2 11
26 13 1 2 2
27 13 4 16 6.5
28 2 4 30 6.5
29 2 1 30 2
30 7.5 4 30 6.5
31 2 1 2 11
32 7.5 4 16 11
33 1 0 0 0
34 7 0 0 0
35 13 0 0 0
36 0 1 0 0
37 0 4 0 0
38 0 7 0 0
39 0 0 2 0
40 0 0 16 0
41 0 0 30 0
42 0 0 0 2
43 0 0 0 6.5
44 0 0 0 11

Application of PLS to the multicomponent system

Due to the complexity of the system, a large number of
training samples were necessary. Firstly, typical one-compound
calibration experiments were carried out to establish the
concentration ranges for the determination. Linearity was
observed between 2-26 mg L-1 for THIA, 1-14 for RIB, 2-30
mg L-1 for NIC and 2-22 mg L-1 for PYR. However, the
concentration of THIA, RIB and PYR used in multicomponent
samples were below or in the middle of their linear calibration
curves; this latter was to avoid an excessive absorbance of the
mixtures. In contrast, a range from 2 to 30 mg L-1 of NIC was
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considered in calibration samples, since this vitamin is
commonly present at higher concentrations than the others in
pharmaceutical formulations.

The composition of the training set of 44 samples is
shown in Table 1, which corresponds to some practical
guidelines given by several reports.17-19,28 According to the
experience of the authors, the incorporation of approxi-
mately ten samples per component leads to a satisfactory
prediction capability of the calibration model in a complex
system. Also, it is necessary to include samples with
different ratios between components, to incorporate as
much variability as possible to the system. Finally, the
incorporation of samples with only one component at
different levels of concentrations increases the efficiency
of the model.17 For this multivitamin system, samples of
one to four components are included in different ratios,

due to the fact that the composition of commercial samples
shows a wide variety. Spectra did not exceed absorbance
values higher than 1.2 in all cases. The external validation
of calibrations models was carried out using the set of 16
test samples described in Table 2.

For the resolution of four-vitamin mixtures, Aberásturi
et al.23 used an experimental design of two levels plus one
central point (42 + 1) for calibration matrix, while Ghasemi
and Vosough22 proposed a calibration set of solutions in which
absorbances did not exceed a value of 1.0. In the first work,
there were not considered samples without at least one of
the components of interest, while in the work of Ghasemi
and Vosough were considered. Satisfactory prediction
capabilities of PLS models were observed in both cases,
although the sets of validation (synthetic mixtures) included
samples with all components. However, pharmaceutical
formulations did not always contain the four vitamins;
therefore, in the present work were considered samples with
two to four-components for calibration and validation.

Some exploratory analyses based on PCA were carried
out to evaluate the quality of the spectral information
provided. The original spectral range from 200 to 400 nm
was reduced to the region of 215 to 310 nm, to avoid noise
and irrelevant information in the numerical analysis. Mean
centered data was used as independent variables. The
Mahalanobis distance and sample residual tools were applied
in the evaluation of outliers; no outliers were identified.

Under consideration of the training set of samples and
the newly selected spectral region, the leave-one-out cross
validation was developed for each one of the target
compounds. The PRESS (Prediction Error Sum of
Squares) vs. number of factors (or principal components)
plot was constructed for each vitamin. After that, the
criteria of the first local minimum value of PRESS18 and

Table 2. Composition of test samples used for the multivitamin analysis
(concentrations in mg L-1)

Sample THIA RIB NIC PYR

1 0 5 0 0
2 3 0 0 0
3 0 0 25 0
4 0 0 0 4
5 0 0 8 7
6 9 3 0 0
7 0 6 0 5
8 6 0 25 0
9 4 0 21 3
10 0 2 11 8
11 5 6 0 10
12 10 5 19 0
13 9 2 6 6
14 8 3 11 9
15 4 5 24 7
16 12 6 18 3

Figure 1. Absorption spectra of THIA (13 mg L-1, solid line), RIB (7 mg
L-1, dashed line), NIC (15 mg L-1, dotted line) and PYR (11 mg L-1, dashed
dotted dotted line), under the proposed experimental conditions (pH 2.2).

Figure 2. Influence of pH in the absorption spectra of PYR (12 mg L-1) in
KCl 0.1 mol L-1, from 1.0 to 8.0 pH units. The spectrum marked with
open circles indicates the pH condition selected in this work.
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an F-statistic comparison of PRESS28 (probability of 0.75)
were used for the selection of the number of factors
required for the construction of calibration models. The
PRESS was estimated according to:

(1)

where c
i
 is the real concentration (or amount) of the

analyte in sample i, and ĉ
i
 corresponds to the estimated

concentration (or amount) by using the proposed
calibration model, I is the overall number of samples.
Other tools offered by GRAMS Software (e.g., PLS
loading factors) were also considered, to avoid sub-or
overfitting of models due to the inclusion of non-
representative factors in their construction.

The internal cross validation of the proposed models
was performed while taking into account several
statistical parameters.28 The R2 (square of correlation
coefficient), which indicates the quality of data
adjustment between real and estimated concentrations,
was calculated according to:

(2)

where c– is the average concentration of the overall samples.
SEC(P), the standard error of calibration or prediction,
whatever the case, was evaluated by:

(3)

Similarly, the root mean square difference (RMSD),
an average error index in the analysis, was calculated
according to:

(4)

The REP (%), that is the relative error of prediction,
which is considered an error average percentage in the
set of samples, was established by:

(5)

A summary of these results is shown in Table 3, where r2

> 0.999 were obtained in all cases. Comparison of estimated
statistical parameters after considering both criteria for the
selection of factors (first local minimum and F-test), showed
that the use of more than four factors increased the risk of
overfitting, since improvement of the results was not
representative; additionally, the introduction of less factors
in multivariate models reduced their prediction capabilities.
According to Table 3, satisfactory results were obtained using
four factors in each case; error average percentages smaller
than 3% were found for all cases.

The correlation plot revealed that the spectral region
selected was the appropriate for the quantification of vitamins
in mixtures (values higher than an absolute 0.5). In loadings
plot, data features were in accordance with spectral shapes
of individual components, for the factors selected as optima.

The prediction capabilities of the optimum PLS models
were also tested by means of the set of samples described
in Table 2. Recovery results expressed as percentages, as
well as REP (%) and SEP (standard error of prediction)
were estimated as part of the external validation, whose
results are included in Table 4. Since the standard error
rates of calibration and prediction were similar, no sub-
or overfitting problems were observed.

Later, the analyses of pharmaceutical formulations were
carried out. The proposed method was applied for the
determination of THIA, RIB, NIC and PYR in three
commercial samples (Products A, B and C). The results
are shown in Table 5. Data show that the estimated
concentration of vitamins agreed satisfactorily with product
labels. Other substances which where not considered in
the calibration model, e.g., cianocobalamine, ascorbic acid,
excipient, etc., did not interfere.

Table 3. Statistical parameters estimated during the optimization of PLS calibration models (internal validation), with the application of two criteria for the
selection of the optimum number of factors

Compound Criterion of first local minimum PRESS F-statistical comparison of PRESS

Number RMSD SEC REP (%) Number RMSD SEC REP (%)
of factors of factors

THIA 4 0.18 0.19 0.9 9 0.12 0.12 2.4
RIB 4 0.05 0.05 1.8 5 0.04 0.04 0.1
NIC 4 0.32 0.33 2.9 6 0.14 0.14 1.3
PYR 4 0.07 0.07 1.5 7 0.04 0.04 1.0
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Classification of vitamins by SIMCA

Nowadays, the importance of screening methods is
increasing. In many cases, the pre-classification of samples
before the use of chromatographic techniques substantially
reduces the time and cost of the overall analysis.

In the case of this study, the pattern recognition strategy
known as SIMCA was applied to identify the presence or
absence of THIA, NIC, PYR, or RIB in commercial
samples, when qualitative and not quantitative estimation
was of interest. To start with, the training set used for
PLS models was also considered for classification by
SIMCA. For each vitamin, all the learning samples (Table
1) were divided into two classes: (i) with and (ii) without
the vitamin of interest. One classification model was made
for each compound. For example, in the classification
model of PYR, samples 1, 3, 5-6, 8, 10-14, 16-19, 21-32,
42-44, were considered class I (with PYR), while samples
2, 4, 7, 9, 15, 20, 33-41, were assigned to class II (without
PYR). In contrast, for the classification model of THIA,
class I included the samples 2, 4, 6-12, 14-15, 18-35, while
class II considered samples 1, 3, 5, 13, 16, 17, 36-44.

Also, absorption spectra from 200 to 400 nm were
assigned as independent variables. Preliminary results
demonstrated a poor discriminant capability of models
regarding the nature of samples. As a consequence, several
strategies were applied.

The learning set was complemented with 12 samples
(three samples for each one of the single analytes). For
feature selection, modeling and discrimination power were
calculated; as a result, variables in the range from 215 to
310 nm were also found convenient to improve class

identification. The relevance of a pretreatment strategy
on a variable-basis was evaluated in the cases of the study,
using original and mean centered data. Outlier diagnostics
was based on Mahalanobis distance of sample residuals.

Later, the classification rules for THIA, RIB, NIC and
PYR were estimated by SIMCA. En each case, the
optimum number of factors for classes (i) with and (ii)
without the target vitamin was determined by considering
the variance related to each factor. Also, the interclass
residuals and interclass distances were estimated for the
selection of the proper factors.24

For example, an interclass residual for class i, can be
defined as:

(6)

where m is the number of original variables; k
2
 is the

number of factors in the class ii model; n
1
 is the number

of class i samples; e
i
 is the row vector of residuals for

class i samples, i.e. the difference between original data
and its k factor estimate.

The interclass distance is defined as:

(7)

where s
11

 denotes the residuals of fitting class i samples
to the class i model; s

22
 corresponds to the residuals of

fitting class ii samples to the class ii model; s
12

 and s
21

represent the residuals of fitting class i samples to the
class ii model and vice-versa. Some of the results obtained
during internal validation of classification models are
summarized in Table 6. It shows that more samples of
both classes (i and ii) were correctly classified starting
from original data than with pretreatment steps, allowing
for the identification of fewer false positives and negatives.
Cumulative variance was in all cases > 99%.

External validation of the classification rules
estimated with SIMCA was carried out with the indepen-

Table 4. Statistical parameters estimated during the external validation
of the proposed PLS calibration models

Compound Number Recoverya SEP REP (%)
of factors

THIA 4 100 ± 2 0.11 2.4
RIB 4 100 ± 2 0.06 2.1
NIC 4 99 ± 1 0.23 2.1
PYR 4 99 ± 1 0.07 1.8

aMean recovery percentage ± standard deviation.

Table 5. Results of the analyses of pharmaceutical formulations by UV/Vis spectrophotometry and PLS (content in mg)

Compound Content of Product A Content of Product B Content of Product C

Expected Foundeda Expected Foundeda Expected Foundeda

THIA 50 52.0 ± 0.2 100 112.4 ± 0.8 24.15 23.6 ± 0.2
RIB 10 11.5 ± 0.1 - - - -
NIC 50 56.1 ± 0.3 - - - -
PYR 5 5.0 ± 0.1 50 44.3 ± 0.4 16.06 18.2 ± 0.2

aMean predicted value ± standard deviation.
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dent test samples described in Table 2. Interclass
distances and the percentage of correctly classified
samples in categories i and ii are shown in Table 7. It
demonstrates that better results were obtained using data
without pretreatment in all cases, which confirm the
tendency observed during internal validation. Although
mean centering is recommended for most spectral data,
preprocessing increases the influence of outliers. In these
studies no outliers were identified, but the large
variability in the data probably caused the phenomena
that were observed. Therefore, models without
pretratment strategies were proposed for the identi-
fication of the analytes in further studies.

Finally, classification rules established by SIMCA were
applied for the qualitative determination of B-group
vitamins in the pharmaceutical products A, B and C.
Additionally, some of these samples were spiked with the
vitamins of interest in different ratios, mainly in those
cases which original composition not include some of the
analytes. Thus, a set of 20 samples for each commercial
product (spiked or not) were evaluated. The percentage
of correctly classified samples in categories i and ii (which
denotes the presence or absence of each of the target
compounds) are represented in Figure 3. As can be
observed, satisfactory results were obtained in almost all
cases. However, the identification of riboflavin in product
C gave rise to false positives (54% of samples belonging
to group i). The presence of additional components in the
sample matrix could produce interferences that could not

be excluded by the chemometric algorithm. For the rest
of the products and analytes, no false positives or negatives
were obtained. The remaining samples were simply did
not fit in any category.

Conclusions

A simple and reliable spectrophotometric method
is proposed in this work for the analysis of multi-
component samples of vitamins. The construction of
calibration models with four factors for THIA, RIB,
NIC and PYR did not lead to sub- or overfitting
problems; statistical parameter values obtained during
their internal and external validation were satisfactory
in all cases. As an example, binary and quaternary
mixtures of the vitamins of interest (in the presence of
additional substances) were accurately resolved. The
results obtained from the analyses of commercial
samples confirm the predictive ability of the method
to eliminate spectral interferences without use of
separation steps during the analytical procedure, and
the flexibility of the method to analyze samples with a
variable number of vitamins as part of their composition
(from single to four-component mixtures).

On the other hand, the qualitative determination of
THIA, NIC, PYR and RIB was satisfactorily carried out
by SIMCA. Three and four factors were necessary for
the construction of classification models. Large interclass
distances obtained during internal an external validation
showed a good separation between classes. With
exception of RIB, all vitamins were properly identified
in commercial samples and no false positives or negatives
were observed. Again, chemometric techniques such as
SIMCA and PLS proved to be powerful tools to reduce
sample pretreatment steps which are traditionally
required for the proper determination of multiple
components in real samples.

Table 7. Parameters estimated during the external validation of classifi-
cation models derived from SIMCA

Compound Interclass distance Samples correctly classified (%)a

ODb MCDc OD MCD

THIA 1.9 0.5 80; 100 90; 33
RIB 2.1 0.9 90; 67 70; 33
NIC 2.56 0.2 100; 83 70; 67
PYR 5.5 0.4 100; 100 60; 33

aValues separated by semi-colon correspond to classes i and ii, respec-
tively; bOD: original data; cMCD: mean centered data.

Table 6. Results of the internal validation of classification models ob-
tained by SIMCA

Compound Factors selected Samples correctly classified (%)a

ODb MCDc OD MCD

THIA 3; 3 4; 4 87; 93 77; 81
RIB 3; 4 4; 4 94; 100 78; 85
NIC 3; 4 4; 4 94; 92 72; 88
PYR 4; 4 4; 4 97; 96 68; 85

aValues separated by semi-colon correspond to classes i and ii, respec-
tively; bOD: original data; cMCD: mean centered data.

Figure 3. Total percentage of samples belonging to the pharmaceutical
formulations A, B and C, correctly classified in categories i and ii.
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