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This paper proposes an active search method aimed at finding objects with optimal or near-
optimal y-property values, on the basis of x-variables obtained by indirect, less costly methods. 
The proposed method progresses in a sequential manner, starting from a small subset of objects 
with known y-values. At each iteration, the K-nearest neighbour regression technique is employed 
to obtain estimates ŷ for the objects with unknown y-values. The object with best ŷ value is then 
subjected to a direct analysis procedure for evaluation of the y-property. Examples are presented 
with simulated data, as well as actual quantitative structure-activity relationship (QSAR) and 
near-infrared (NIR) spectrometry datasets. The QSAR and NIR case studies involve the search for 
maximal antidepressant activity in a set of arylpiperazine compounds and maximal pulp yield in a set 
of eucalyptus wood samples, respectively. In all these cases, the active search yielded results closer 
to the maximal y-value compared to the classical Kennard-Stone algorithm for object selection.

Keywords: optimization, quantitative structure-activity relationship, antidepressant 
compounds, near-infrared spectrometry, eucalyptus pulp yield

Introduction 

In many analytical applications, the problem consists 
of finding an object with optimal or near-optimal value 
for a y-property of interest, within a given pool of objects. 
For instance, one may be interested in choosing the most 
appropriate drug from a certain family of compounds to 
obtain a desired therapeutic effect. Another example may 
involve the selection of plant specimens with suitable 
phenotypical features for breeding programs. However, the 
direct determination of y in all the available objects may 
not be a viable option, in view of the required resources, 

workload and/or time. As an alternative, estimates of y 
may be obtained in an indirect manner by using x-variables 
resulting from theoretical calculations or instrumental 
measurements. For this purpose, chemometric models need 
to be constructed on the basis of a subset of calibration 
objects with known y-values. The accuracy of the model 
predictions tends to be improved as more calibration objects 
are employed. However, the use of too many calibration 
objects escapes the purpose of using indirect methods, which 
consists of reducing the experimental workload associated 
to the direct determination of y. Ideally, the search for the 
optimal or near-optimal objects should be carried out with 
as few determinations of the property of interest as possible, 
in order to keep the workload to a minimum.
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The present paper proposes an active search method 
to find objects with optimal or near-optimal y-values on 
the basis of x-variables obtained by indirect, less costly 
methods. The search algorithm progresses in a sequential 
manner, starting from a small subset of objects with 
known y-values. At each iteration, a multivariate weighted-
averaging technique (K-nearest neighbour regression or 
KNNR)1,2 is employed to obtain estimated ŷ values for 
the objects with unknown y-values. The object with best 
ŷ value (smallest in minimization problems or largest 
in maximization problems) is then selected as a likely 
candidate for optimality. This candidate object is then 
subjected to the direct analysis procedure for evaluation 
of the y-property.

The term active is used herein because the search method 
interacts with the analyst by indicating the objects that 
should be subjected to the direct analysis procedure. This 
concept bears similarity with active learning techniques, 
which have been studied within the scope of classification3 
and multivariate calibration tasks.4,5 However, such active 
learning techniques are aimed at the construction of 
classification or regression models, whereas the present work 
is concerned with an optimization problem, which does not 
necessarily involves the construction of an explicit model. 

The problem of finding the optimal or near-optimal 
argument x for a function y = f (x) by using a small number 
of function evaluations has drawn much interest in the 
optimization literature.6-9 However, these works typically 
assume that the function f (x) can be evaluated for any 
vector x with admissible component values. In contrast, the 
present work concerns problems of chemometrics interest 
in which the possible choices for x are restricted to a finite 
pool of objects available for selection.

The proposed active search method is illustrated in a 
simulated example and two case studies with real data. 
The first case study concerns a quantitative structure-
activity relationships (QSAR) investigation involving a 
set of antidepressant compounds (arylpiperazine) with 
inhibition constants (Ki) measured elsewhere.10 In this 
type of problem, the x-values correspond to molecular 
descriptors of the compounds under consideration, which 
are derived through theoretical calculations by using a 
suitable software. In contrast, the y-property is obtained by 
experimental procedures such as in vitro or in vivo studies.11

The second case study involves a set of eucalyptus 
wood samples, with reflectance spectra acquired in the 
near-infrared (NIR) range.12 In this case, the property of 
interest is the pulp yield, which should be maximized for 
use in the pulp and paper industry. It is worth noting that the 
NIR spectra (x-variables) are acquired by using wood chips 
that can be easily extracted from the eucalyptus tree. On the 

other hand, the determination of the pulp yield (y-property) 
requires the use of a much larger wood sample.

Experimental

Preliminaries and notation

Vectors are denoted by lowercase boldface letters and 
scalars by italic characters. The Euclidean norm of a vector 
x is denoted by || x ||. An empty set is represented by the 
symbol ∅. The union of two sets A and B is denoted by A 
∪ B. The difference between two sets A and B is denoted 
by A \ B, i.e., the elements of A \ B are those that belong 
to A and do not belong to B. The notation   is 
employed to indicate the argument i that maximizes g(i). A 
hat symbol (^) is used to indicate an estimated value. The 
x-vectors associated to the objects under consideration are 
denoted by x1, x2, ..., xN. It is assumed that different objects 
are associated to different x-vectors, i.e., xi ≠ xj for i ≠ j.

The proposed active search method is initialized by 
selecting n0 objects on the basis of the x-vectors alone, 
i.e., without using any information concerning the 
corresponding y-values. This initialization is carried out 
by using the Kennard-Stone (KS) algorithm, which is a 
classical method for selecting objects in a near-uniform 
manner on the basis of the Euclidean distances between 
each pair of x-vectors.13 In the presentation given below, 
details of the KS algorithm are initially given, followed by 
a description of the proposed method. 

Kennard-Stone algorithm

In the KS algorithm, the first two selected objects 
are those that are separated by the largest distance in the 
x-space. Each subsequent object is chosen according to 
a maximum-minimum procedure in order to avoid the 
selection of objects that are close together. A formal 
description of this algorithm is presented below, in the form 
of a sequence of steps. It is assumed that n0 > 2 objects are 
to be selected from a pool of N objects. 

Step 1: initialization of the index sets
Let  and  denote the index sets of the selected 

objects and the objects still available for selection, 
respectively. Initially, no object has been selected and thus  

 = ∅   and  = {1, 2, …, N}.

Step 2: distance calculations
Calculate the Euclidean distance d(i,j) = || xi – xj || 

between each pair of vectors xi, xj, for i, j = 1, 2, ..., N, 
with i ≠ j.
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Step 3: selection of the two initial objects
Let k1, k2 be the indexes of the two objects that are 

separated by the largest distance, i.e.:

	  (1)

Update the index sets by moving k1, k2 from  to 
, i.e.:

 = {k1, k2}	 (2)

 =  \ {k1, k2}	 (3)

Let n = 2 (number of objects already selected).

Step 4: selection of the next object
Let kn+1 be the index of the object with the largest 

distance with respect to the nearest object already selected, 
i.e.:

	 (4)

Update the index sets by moving kn+1 from  to ,  
i.e.:

 =  ∪ kn+1	 (5)

 =  \ kn+1	 (6)

Step 5
Let n = n + 1. If n < n0 return to Step 4.

Step 6: end
The index set of the n0 selected objects is .

Proposed active search method

In what follows, it is assumed that the problem involves 
the search for the maximal value of y. Minimization 
problems can be handled in a similar manner by changing 
the sign of the y-values, i.e., by replacing y for −y.

The proposed method involves a sequential algorithm, 
which selects a new object at each iteration. It is assumed 
that the y-values have been experimentally determined for 
the objects already selected. The KNNR technique1,2 is then 
employed to estimate y-values for the objects which have 
not been selected yet. The object with the largest estimated 
y-value is then selected. The algorithm can be described as 
follows, assuming that n0 initial objects were selected by 
using the KS algorithm and a total of nmax ≤ N objects are 
to be selected at the end of the active search.

Step 1: initialization
Let  = {k1, k2, …, kn0

} and  = {1, 2, …, N} \  
be the index sets resulting from the initial selection of 
n0 objects according to the KS algorithm. Moreover, let 
{yk, k ∈ } be the y-values corresponding to the initial 
set of selected objects. Choose the number K of nearest 
neighbours to be employed in the KNNR technique, with 
K ≤ n0. Let n = n0.

Step 2: KNNR calculations
Calculate an estimate of y for each object still available 

for selection, as follows:

	 (7)
	

where NK (i, ) is the index set of the K nearest 
neighbours of xi (in the sense of smallest Euclidean 
distance) among the objects already selected.

Step 3: selection of the next object
Let kn+1 be the index of the object with the largest 

estimated value of y, i.e.:

 	  (8)

Update the index sets by moving kn+1 from  to  
, i.e.:

 =  ∪ kn+1	 (9)

 =  \ kn+1	 (10)

Step 4
Obtain the actual y-property for the selected object and 

store the resulting value in ykn+1
.

Step 5
Let n = n + 1. If n < nmax return to Step 3.

Step 6: end
The index set of the nmax selected objects is .

It is worth noting that the equation 7 for the estimation 
of y-values is solely based on Euclidean distances in the 
x-space, which can be calculated even if the number of 
variables is larger than the number of objects already 
analyzed. This is an advantage over multiple linear 
regression modelling, which typically requires the use 
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of variable selection techniques when the number of 
calibration objects is small.14 Moreover, there is no need 
to choose a parameter related to model complexity, such as 
the number of factors in partial-least-squares modelling.15

The only parameters that need to be chosen in the 
proposed algorithm are the number n0 of initial objects 
that will be selected by the KS procedure, the total number 
nmax of objects to be selected and the number K of nearest 
neighbours. In the tests carried out in the present work, with 
both simulated and actual data, a good compromise was 
obtained by setting n0 = 10. Using fewer initial objects was 
not appropriate, since there was not enough information 
for the active search procedure. On the other hand, using 
more initial objects escaped the purpose of the proposed 
method, which is aimed at using as few objects as possible. 
In practice, the choice of nmax will depend on the time and 
resources available for the analysis of the objects. In fact, 
by analyzing a larger number of objects, the chance of 
achieving the optimal value of the y-property increases.

Different values for K will be employed in the case 
studies, in order to investigate the effect of this parameter 
in the active search outcome. The results will be compared 
with a simpler version of the KNNR technique, in which all 
the objects already selected are employed in the estimation 
of y. In this case, equation 7 is employed with K = n at 
each iteration of the algorithm. Such an alternative has the 
advantage of dispensing with the need to choose a fixed 
number of nearest neighbours K.

Furthermore, a comparison will be carried out between 
the active search and the KS algorithm in order to show that 
better results tend to be obtained with the proposed method. 
It is worth noting that the KS algorithm is not specifically 
aimed at optimization, since it favours the exploration of 
the x-space in a global manner. However, the comparison 
presented herein is of value to illustrate and justify the 
search mechanism of the proposed method, which places 
emphasis on regions associated to larger y values.

Simulated example

The simulated example involved two variables x1, x2 
related to a y-property according to the following expression:

	 (11)

which has global and local maximum points, as can be seen 
in Figure 1. A total of 150 objects were generated by taking 

random pairs (x1, x2) with values in the range [0, 100]. The 
problem consists of finding the object that is closest to the 
global maximum of y.

QSAR data set

Table 1 presents the structure and biological property 
values of the 81 arylpiperazine compounds employed in 
this investigation. The biological property corresponds to 
experimental values of 5-HT1A receptor affinity stated in 
terms of the inhibition constant Ki, as reported in.10 In the 
present study, this property is expressed as pKi = –log Ki, 
with values ranging from 5.3 to 8.3.

A geometry optimization of all compounds was, then, 
performed by using the semiempirical method AM1.16 
From these structures, 14 electronic descriptors were 
calculated at the AM1 level, as shown in Table 2. All these 
descriptors were assumed to represent electronic properties 
of the compounds. The descriptor values were autoscaled 
for use in the present study. The descriptors HLGAP, η and 
χ not were used in the subsequent calculations, since they 
bear redundant information with respect to energy of the 
highest occupied molecular orbital (EHOMO) and energy of 
lowest unoccupied molecular orbital (ELUMO).

A principal component analysis (PCA) using the default 
settings of the Unscrambler software (Camo Software 
AS., Oslo, Norway) was employed in order to identify 
compounds outside the applicability domain. As can be 
seen in Figure 2a, the compounds 20 and 41 (see Table 1) 
present leverage and/or residual variance values greater 
than the corresponding thresholds and were thus removed 
from the dataset.

In order to evaluate the proposed active search method, 
the 79 remaining compounds were employed to generate 
150 different subsets by using a subsampling procedure. 

Figure 1. Relationship between the x-variables and the y-property in the 
simulated example.
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Table 1. Molecular structures and pKi values of the 81 arylpiperazine compounds employed in this investigation

Compound R Z Ar1 pKi

 

1 H CO 2-methoxyphenyl 7.30

2 H CHOH 2-methoxyphenyl 7.32

3 H CHO-4-CF3C6H4 2-methoxyphenyl 6.37

4 H CHO-4-CH3OC6H4 2-methoxyphenyl 7.04

5 H CHO-3,4-OCH2O-C6H3 2-methoxyphenyl 7.70

6 H CNOH 2-methoxyphenyl 7.76

7 H CO 4-chlorophenyl 6.10

8 H CHOH 4-chlorophenyl 6.10

9 H CHO-4-CH3OC6H4 4-chlorophenyl 5.84

10 H CHO-3,4-OCH2O-C6H3 4-chlorophenyl 6.26

11 H CNOH 4-chlorophenyl 5.30

12 H CO 4-methoxyphenyl 5.30

13 H CHOH 4-methoxyphenyl 5.30

14 H CHO-4-CF3C6H4 4-methoxyphenyl 5.30

15 H CO 2-pyrimidyl 6.92

16 H CHOH 2-pyrimidyl 6.42

17 H CHO-4-CF3C6H4 2-pyrimidyl 5.79

18 H CO 2-chlorophenyl 6.74

19 H CHOH 2-chlorophenyl 6.94

20 H CHO-4-CF3C6H4 2-chlorophenyl 5.30

21 H CO 4-fluorophenyl 6.10

22 H CHOH 4-fluorophenyl 6.89

23 H CHO-4-CF3C6H4 4-fluorophenyl 5.30

24 H CO 2-pyridyl 7.30

25 H CHOH 2-pyridyl 6.81

26 H CHO-4-CF3C6H4 2-pyridyl 5.79

27 H CO 4-nitrophenyl 5.30

28 H CHOH 4-nitrophenyl 5.30

29 H CHO-4-CF3C6H4 4-nitrophenyl 5.30

30 phenyl CO 2-methoxyphenyl 5.44

31 phenyl CHOH 2-methoxyphenyl 6.07

32 phenyl CHO-4-CF3C6H4 2-methoxyphenyl 5.30

33 methoxy CO 2-methoxyphenyl 5.76

34 methoxy CHOH 2-methoxyphenyl 6.49

35 methoxy CHO-4-CF3C6H4 2-methoxyphenyl 6.00

36 nitro CO 2-methoxyphenyl 7.30

37 nitro CHOH 2-methoxyphenyl 8.00

 

38 H CO 2-methoxyphenyl 7.79

39 H CHOH 2-methoxyphenyl 7.30

40 H CHO-4-CF3C6H4 2-methoxyphenyl 6.59

41 H CNOH 2-methoxyphenyl 8.19

42 H CHO-3,4-OCH2O-C6H3 2-methoxyphenyl 7.26

43 H CHO-1-C10H7 2-methoxyphenyl 6.74

44 H CO 4-chlorophenyl 6.15

45 H CHOH 4-chlorophenyl 5.56
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Compound R Z Ar1 pKi

46 H CO 2-chlorophenyl 6.70

47 H CHOH 2-chlorophenyl 6.70

48 H CO 1-naphthyl 7.45

49 2,5-dimethyl CO 2-methoxyphenyl 8.30

50 2,5-dimethyl CHOH 2-methoxyphenyl 7.92

51 2,5-dimethyl CO 2-hydroxyphenyl 8.12

52 2,5-dimethyl CHOH 2-hydroxyphenyl 7.04

53 2,5-dimethyl CO 1-naphthyl 7.00

54 2,5-dimethyl CO 4-fluoro-2-methoxyphenyl 7.87

55 2,5-dimethyl CO 4-fluoro-2-methoxyphenyl 6.30

 

56 H CO 2-methoxyphenyl 8.00

57 H CHOH 2-methoxyphenyl 7.72

58 H CHO-1-C10H7 2-methoxyphenyl 6.66

59 H CO 4-chlorophenyl 5.30

60 H CHOH 4-chlorophenyl 5.30

61 5-methyl CO 2-methoxyphenyl 7.76

62 5-methyl CHOH 2-methoxyphenyl 7.47

63 5-nitro CO 2-methoxyphenyl 6.47

 

64 H CO 2-methoxyphenyl 6.60

65 H CHOH 2-methoxyphenyl 6.38

66 H CO 4-chlorophenyl 5.30

67 H CHOH 4-chlorophenyl 5.30

68 H CO 2-hydroxyphenyl 6.00

69 H CHOH 2-hydroxyphenyl 6.72

 

70 H CO 2-methoxyphenyl 7.36

71 H CHOH 2-methoxyphenyl 7.70

72 H CNOH 2-methoxyphenyl 7.22

73 H CO 4-chlorophenyl 5.30

74 H CHOH 4-chlorophenyl 5.30

75 H CO 2-hydroxyphenyl 6.96

76 H CHOH 2-hydroxyphenyl 7.74

77 H CO 4-chloro-2-methoxyphenyl 6.30

78 H CHOH 4-chloro-2-methoxyphenyl 6.44

79 H CO 4-fluoro-2-methoxyphenyl 6.30

80 H CHOH 4-fluoro-2-methoxyphenyl 6.30

81 H CO 1-naphthyl 7.00

pKi = –log Ki

Table 1. Molecular structures and pKi values of the 81 arylpiperazine compounds employed in this investigation (cont.)

Each subset was created by randomly selecting 54 
compounds. The proposed active search method was 
then applied to each of these subsets in order to find the 
compound with the largest pKi value in each subset.

Eucalyptus wood data set

This data set comprised 100 samples of wood chips 
from small eucalyptus tree logs, collected in different 
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Figure 2. Leverage vs. residual variance plots for (a) quantitative structure-activity relationship (QSAR); and (b) eucalyptus wood data sets. The dashed 
lines correspond to thresholds obtained by using the default settings of the software package. 

Table 2. Electronic descriptors and their definitions

Descriptor Definition

∆fH Heat of formation

α Polarizability

ET Total energy

µ Dipole moment

EHOMO Energy of the HOMO (highest occupied molecular orbital)

ELUMO Energy of the LUMO (lowest unoccupied molecular orbital)

QN1 Atomic charge on nitrogen 1

QN4 Atomic charge on nitrogen 4

QZ Atomic charge on atom Z

QC2Ar1 Atomic charge on carbon 2 of ring Ar1

QS2Ar1 Total charge on carbon 2 of ring Ar1

HLGAP Energy gap between HOMO and LUMO

η Hardness 

 

 

χ Electronegativity

 

plantations. The samples were initially ground in a knife 
chipper and finally in a UDY mill (UDY Corporation, 
Fort Collins, CO, USA) to a granulometry smaller than 
0.50 mm. Prior to the spectral measurements, the samples 
remained for three hours in contact with the lab atmosphere 
with temperature and humidity controlled at 24 ± 1 ºC and 
54 ± 2%, respectively. 

NIR diffuse reflectance spectra were obtained in the 

range of 1100 to 2500 nm, by using a Foss NIRSystems 
5000 spectrophotometer (Silver Spring, MD, USA) fitted 
with a standard circular cell. Each spectrum was obtained 
as an average of 50 scans. The resulting spectra for the 
100 samples are presented in Figure 3a. To circumvent the 
problem of systematic baseline variations, first-derivative 
spectra were employed by using a Savitzky-Golay filter 
with a second order polynomial and an 11-point window.17 
Figure 3b presents the derivative spectra, which were used 
in the active search case study.

Pulp yield was determined by subjecting discs of wood 
from the eucalyptus trees (collected at a standard height) 
to kraft cooking. These samples were chopped and mixed 
with different alkali charges to achieve pulp kappa number 
15. The results ranged from 48.7 to 55.8% (w/w).

As in the QSAR data set, the applicability domain was 
also evaluated by using PCA. As a result, the samples 
10 and 51 were removed because their leverage values 
were found to be larger than the corresponding threshold 
(Figure 2b). A subsampling procedure was also employed 
to generate different subsets of objects from the remaining 
98 wood samples. In this case, 150 subsets with 57 
samples each were generated. The proposed active search 
method was then applied to each of these subsets in order 
to find the wood sample with the largest pulp yield in 
each subset.

Software

The electronic descriptors in the QSAR case study 
were calculated in the Gaussian 03 package software.18 All 
the other calculations were carried out using the Matlab 
R2012b software.19
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Results and Discussion

Simulated example

Figure 4 presents the results obtained in the simulated 
example with 150 objects described by (x1, x2) pairs 
generated in a random manner. For better visualization, 
the corresponding y-values were normalized in the [0, 1] 
range, with 0 and 1 corresponding to the minimal and 
maximal values in the simulated data set, respectively. 
The results were obtained by using K = 1, 5 and 10 nearest 
neighbours in equation 7, as well as all the objects already 
selected, i.e., with K = n. As shown in Figure 4, the active 
search method arrived at the object with the maximal 
y-value after evaluating n = 98 objects (K = 1), n = 16 
objects (K = 5) and n = 17 objects (with either K = 10 
or all objects, since the same curve was obtained in both 
cases), including the first 10 objects selected by the KS 
algorithm. The poor result obtained with K = 1 can be 
ascribed to an inadequate estimation of the y-values: the 
estimate is simply set to y-value of the closest neighbour 
of the object under consideration. The results for K = 5, 10  
and all objects were very similar. Therefore, using all 

objects can be considered a suitable option in this case, 
since it does not require the choice of a particular value 
for K.

Figure 5 compares the active search results (using all 
selected objects in the y-estimation procedure) with those 
obtained by using the KS algorithm alone. As can be seen 
in Figure 5a, the maximal y-value is only achieved by KS 
after the evaluation of n = 42 objects. An interpretation of 
these results can be provided on the basis of the remaining 
graphs in Figure 5. The 150 objects involved in this example 
are indicated in Figure 5b over a contour plot of the function 
associated to the y-values. The initial 10 objects selected by 
KS are plotted with markers connected by straight lines. As 
can be seen, this initial selection favoured an exploration of 
the x-space, with objects spread over the entire x1-x2 plane. 
Figure 5c illustrates the first improvement provided by the 
active search after the KS initialization. As can be seen, 
after selecting 2 additional objects, an object with a larger  
y-value was found. This improvement corresponds to 
the first step in Figure 5a. In contrast, the KS algorithm 
continued to favour the selection of objects that are not 
close to each other, as shown in Figure 5d, which prevented 
the selection of objects close to the best one already found. 
The object with the largest y-value was found by the active 
search method after the evaluation of n = 17 objects, as 
shown in Figure 5e. For comparison, Figure 5f shows that 
KS still did not exploit the region associated to the larger 
y-values.

Actual data sets

Figures 6a and 6b present the active search results 
obtained with the QSAR and eucalyptus wood data sets, 

Figure 3. (a) Original; and (b) derivative near-infrared (NIR) diffuse reflectance spectra of the 100 eucalyptus wood samples employed in the study.

Figure 4. Active search results in the simulated example (the same curve 
was obtained for K = 10 and all objects).
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respectively. In each case, the plots represent the average 
values for the 150 subsets generated by the subsampling 
procedure, as described in the Experimental section. As 
in the simulated case study, the y-values were normalized 

in the [0, 1] range and the results were obtained by using 
K = 1, 5, 10, as well as all the objects already selected, 
i.e., K = n. Again, the use of K = 1 yielded the slowest 
convergence to the maximal y-value, which indicates that 

Figure 5. Active search (all objects) and Kennard-Stone (KS) results in the simulated example. (a) Largest value of y (normalized) obtained after analyzing 
n objects; (b) contour plot of y-values with indication of the overall dataset (asterisk markers) and the 10 initial objects selected by the KS algorithm 
(markers connected by straight lines). The markers are connected by straight lines following the order in which they were selected. The blue square marker 
indicates the last selected object. (c), (d), (e), (f) Objects selected by the KS and active search algorithms with n = 12 and n = 17.
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larger values of K are required for an appropriate estimation 
of y within the proposed active search algorithm. The 
results for K = 5, 10 and all objects were similar, with a 
slight advantage of using all objects in the QSAR data set 
(Figure 6a). It is worth recalling that using all objects is 
a convenient option for the analyst, since the choice of 
particular value of K is not required.

Finally, Figure 7 compares the active search results 
(all objects) with those obtained by using KS alone. As 
can be seen, the active search method provided a faster 
convergence to the maximal y-value in both data sets, as 
compared to the KS algorithm.

Conclusions

This paper proposed an active search method, which 
can be used to find objects with optimal or near-optimal 
y-property values with reduced experimental workload. 
The proposed method is based on the K-nearest neighbour 
regression technique, which does not involve assumptions 
on the linearity of the x-y relationship and is not adversely 
affected by multicollinearity problems among the 
x-variables. The number K of nearest neighbours employed 
in the estimation of the y-property is a design parameter 
that needs to be chosen by the analyst. However, the tests 
carried out in the present work suggest that this choice 
is not a critical factor for the application of the proposed 
method. Indeed, good results were also obtained by using 
a simpler version of the KNNR technique, in which all the 
objects already selected are employed in the estimation of y.

Examples were presented with simulated data, as well 
as actual QSAR and NIR spectrometry datasets. In all these 
cases, the active search yielded results closer to the maximal 
y-value compared to the classical KS algorithm for object 
selection. These results indicate that the proposed method 
is indeed of value to reduce the number of y-property 
determinations in the search for the optimal object.

Future improvements of the proposed method could be 
concerned with the calculation of confidence intervals for 
the estimated values ŷ. Such confidence intervals may be of 
value to establish a stopping criterion for the active search.
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