Ultrasound-Assisted Synthesis of 1-*N*-β-D-Glucopyranosyl-1*H*-1,2,3-triazole Benzoheterocycles and their Anti-Inflammatory Activities

Gilson B. da Silva,^a Bruna M. Guimarães,^a Shalom P. O. Assis,^b Vera L. M. Lima^b and Ronaldo N. de Oliveira^{*,a}

^aDepartamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife-PE, Brazil

^bDepartamento de Bioquímica, Laboratório de Química e Metabolismo de Lipídeos e Lipoproteínas, Universidade Federal Rural de Pernambuco, 50670-901 Recife-PE, Brazil

Neste trabalho, a preparação de vários glicosídeos triazólicos a partir da reação entre a azida de 2,3,4,6-tetra-O-acetil- β -D-glicopiranosila e alcinos terminais foi desenvolvida em moderados a excelentes rendimentos (63-99%). Em todas as etapas de reação foi aplicada a energia de ultrassom para aumentar a reatividade química. Adicionalmente, os compostos conjugados com benzoeterociclos revelaram potente atividade anti-inflamatória.

In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity.

Keywords: triazole, click chemistry, ultrasound, anti-inflammatory activity, carbohydrate, benzoheterocycle

Introduction

Much modern research in organic synthesis has promoted the development of new methodologies and their optimization. Over the past decade, one fast-growing area in organic chemistry has been the synthesis of compounds employing ultrasound irradiation.¹ In recent years, sonochemistry has been applied to accelerate a large number of organic reactions and enhance their chemical yields.² The use of this technology in organic synthesis has been reported in a variety of areas, for instance heterocycles³ and carbohydrates,^{4,5} and the latter represent a vast field for the exploration of chemical reactivity.

A research area in carbohydrate chemistry has been centered on the need to induce the formation of glycoside linkages towards the glycoconjugate mimics.⁶ A diversity of carbohydrate structures is conjugated with heterocyclic moieties, e.g., via the aglycon part which promotes the formation of small molecules that show some biological activity. Hybrid compounds are often a prerequisite for biological activity and can influence drug design and discovery of new chemical entities (NCEs) based on sugar scaffolds.⁷ Glucopyranosyl triazoles have shown biological activities such as enzyme inhibition,⁸ and as antitumor,⁹ antiviral¹⁰ and anti-tuberculosis agents.¹¹ For anti-inflammatory activity, the literature describes a few examples based on carbohydrates.¹² In this context, glycocompounds with a benzoheterocyclic aglycon to evaluate their anti-inflammatory activities were selected.

The 1,2,3-triazoles linked to carbohydrate scaffolds have been synthesized employing a copper-based catalyst.¹³ The effect of ultrasound on carbohydrate chemistry^{4,5,14} and specifically on the click chemistry in the synthesis of 1,2,3-triazoles has been reported very recently.^{15,16}

Motivated by our recent projects involving the synthesis¹⁷ and biological activities ^{12,18} of a series of new 1,2,3-triazole derivatives, our group became interested in *N*-glycosyl-1,2,3-triazoles formed from 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl azide and terminal alkynes via 1,3-dipolar cycloaddition reaction using the application of

^{*}e-mail: ronaldonoliveira@dcm.ufrpe.br

ultrasound energy. Our strategy to obtain these compounds containing a 1,2,3-triazole moiety was developed using only ultrasound irradiation in four steps, as shown in Scheme 1.

Results and Discussion

Firstly, our attention was focused on the preparation of the starting materials, namely 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl azide **1** and terminal alkynes **2c-g**. In order to simplify the synthesis of **1** a three-step procedure employing ultrasound irradiation was performed. Compound **1** was prepared from D-glucose under modified conditions using ultrasonic energy in the acetylation¹⁹ (Ac₂O, 3.5 mol% I₂, ultrasound, 20 min), bromination²⁰ (HBr/AcOH, ultrasound, 50 min) and azidation²¹ (acetone/H₂O/NaN₃, ultrasound, 40 min). After these three steps, compound **1** was obtained with overall yields of 61%. Comparatively, the results without ultrasound energy are overall lower yields and longer-time processes to obtain the azide-tagged sugar **1** (Table 1).

Our research group has been interested in the synthesis of benzoheterocyclic derivatives,^{17,22} and recently, developed a stereoselective functionalization of unsaturated carbohydrates using palladium reagents that resulted in an efficient strategy for constructing allylic *N*- and *S*-benzoheterocycles linked to carbohydrate moieties.²²

To continue along this line, compounds 2c-g were prepared through a reaction between propargyl bromide and benzoheterocycles in the presence of K₂CO₃ under sonication conditions were synthesized, as shown in Table 2. This protocol furnished the desired compounds in 45-77%. In comparison, the reactions using the silent conditions afforded the same compounds 2c-g with similar yields, albeit after 20-24 h.

To begin our study towards producing glucopyranosyl 1,2,3-triazoles (Scheme 2), the Sharpless protocol²⁸ was

Benzoheterocycles

Scheme 1. Strategy to obtain 1,2,3-triazolyl sugars in four-steps from D-glucose and benzoheterocycles using ultrasound irradiation

Table 1. Synthesis of 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (1)

Stan	Method A - Ultrasound		Method B - Silent condition		
Step	time / min	Yield / %	time / min	Yield ^b / %	
Acetylation	20	95ª	60	82	
Bromination	50	70 ^a	240	63	
Azidation	40	92 ^b	360	91	
Total (three steps)	110	61	660	47	

^aYields of crude materials: no secondary spots were observed by TLC. ^bIsolated yield after column chromatography.

applied to promote the reaction between 1 equiv. of 1 and 1.2 equiv. of 2a using 20 mol% CuSO₄·H₂O, 40 mol% sodium ascorbate in 50% tert-BuOH:H₂O at ambient temperature, but a very low level of conversion was observed (thin layer chromatography (TLC) analysis), even after 12 h stirring. Field and co-workers13 also described similar results when employing this protocol in the synthesis of α - and β-D-glucopyranosyl triazoles via CuAAC click chemistry. Based on our recent results,¹⁷ however, the protocol was changed to 10 mol% CuI in dichloromethane, and a partial conversion (examined by TLC) was observed after 24 h. Fortunately, after adding 10 mol% of triethylamine, the reaction was completed in 20 h. The total conversion obtained by using a base (Et₃N) can be explained via deprotonation of the transient π -complex (RC=CH|CuL_p) to form the copper-acetylide, as reported in the literature.²⁹ In order to obtain a shorter reaction time, the ultrasound energy at room temperature was applied, and 1,2,3-triazole-sugars 3a were obtained in 20 min in 79% yield (Table 3, entry 1). This

Table 2. Synthesis of propargyl N- and S-benzoheterocycles (2c-g)

shorter time, under these conditions, can be accounted for by the sonocatalysis in 1,3-dipolar cycloaddition reaction.^{3,15,30} Driowya *et al.*¹⁶ recently described the synthesis of **3a** in 77% yield, for 20 min under ultrasound irradiation using 2 equiv. of CuI and 2 equiv. of DIEA (*N*,*N*-diisopropylethylamine). Hence, comparatively, our procedure appeared more efficient because employing catalytic amounts of copper(I) iodide and triethylamine.

After optimization of the conditions, our group decided to apply our protocol to obtain *N*-glycosyl-1,2,3-triazoles **3a-g** using various terminal alkynes (Scheme 2). Ultrasound-assisted reaction of **1** with various functionalized alkynes **2a-g** afforded the corresponding β -glucopyranosyl triazole derivatives **3a-g** in moderate to excellent yields (63-96%) within short reaction times (Scheme 2 and Table 3).

Compounds 3a,³¹ 3c³² and 3d³³ were recently reported in the literature. Compounds 3a and 3c were prepared via the click chemistry procedure under conventional conditions.^{31,32}

Product	Method A - Ultrasound		Method B - Silent condition		Melting point / °C
	time / min	Yield ^a / %	time / min	Yield ^a / %	- (from Reference)
2c ^b	10	55	1440 (24 h)	55	141-43 (149) ²³
2d	20	76	1200 (20 h)	79	oil (38-40) ²⁴
2e	60	77	1380 (23 h)	83	40-42 (46) ²⁵
2f	60	45	1440 (24 h)	71	128-131 (153) ²⁶
2g	60	60	1320 (22 h)	51	47-48 (51)27

^aIsolated yield after column chromatography. ^bIn this case, the reaction was performed without addition of K₂CO₃.

Scheme 2. Synthesis of N-glucosyl-1,2,3-triazoles under ultrasound activation.

entry	Product	Reaction time / min	Melting point / °C (from Reference)	$\left[\alpha\right]_{D}{}^{a}$	Yield ^b / % (from Reference)
1	$AcO \rightarrow O N \rightarrow OAc$ (3a)	20	189-193 (195-198) ³⁰	-19.0	79
2	$AcO \rightarrow N \rightarrow N$ $AcO \rightarrow N \rightarrow CH_2CH_2CH_3$ $(3b)$	30	153-155	-32.8	96
3	Aco Aco Aco Aco Aco Aco Aco Aco Aco Aco	20	204-205 (203-204) ³¹	-22.0	63
4	AcO AcO AcO N N N N N N N N N N N N N N N N N N N	30	182-184	-21.5	88 (78)°
5	Aco N N Aco N N Aco N N OAc S (3e)	25	152-153	-17.7	69
6	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ OAc \\ (3f) \\ H \end{array}$	20	156-158	-20.8	95
7	Aco O O O O O O O O O O O O O O O O O O O	20	161-162	-25.7	88

Table 3. Ultrasound-assisted synthesis of N-glucosyl-1,2,3-triazoles (3a-g)

 $^{a}c = 0.01 \text{ g mL}^{-1}$ in CH₂Cl₂. ^bAfter chromatography column. ^cTwo isomers: 1,4 and 1,5.³³

The compound **3d** was obtained via a thermal cycloaddition reaction along with its 1,5-isomer and separated by column chromatography.³³ When applying our click protocol, compound **3d** was synthesized in 88% isolated yield (Table 3, entry 4). To our knowledge, compounds **3b**, **3e**, **3f** and **3g** have not been previously described.

The structures of the compounds **3a-g** were analyzed using ¹H and ¹³C nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) or elemental analysis. The appearance of a singlet in ¹H NMR spectrum data in the region between 7.5 and 7.9 ppm was assigned to $H_{5^{-}}$ (methine proton) of the triazolyl ring. In order to ascertain the preferential conformations in the 1,2,3-triazole-sugars **3a-g**, our study was decided on the base of the proton coupling constants (*J*) in the glucopyranose ring. The ¹H and ¹³C NMR spectra were in concordance with the proposed structure. The methylene protons (–CH₂–Het) in **3c**, **3e**-**g** do not appear as a singlet, but as a double doublet, the non-equivalence between hydrogen atoms is a case of diastereotopic geminal protons. The ¹H NMR spectra of compounds **3a-g** showed the anomeric proton (H₁) as a doublet in the range δ 5.81-5.93 ppm and J_{H1,H2} 8.8-9.2 Hz. This vicinal coupling indicates a 1,2-*trans* relationship and a β -anomeric configuration. Large vicinal coupling constants were observed for protons H₂, H₃ and H₄ (9.2-10.0 Hz) that appeared in the δ 5.17-5.55 ppm region. These results are in agreement with a *trans* diaxial relationship between H₁/H₂, H₂/H₃, H₃/H₄ and H₄/H₅, suggesting that all hydrogens are in axial position in a ⁴C₁ conformation for the β -D-glucopyranosyl ring. The proton H₅ is located upfield (ca 4 ppm) and the multiplicity appears as ddd due to H₅ coupling with protons H₄ ($J_{5,4}$ 8.4-10.0 Hz), H₆ ($J_{5,6}$ 3.6-5.0 Hz) and H₆ ($J_{5,6}$ 1.6-2.8 Hz), as expected for D-series sugar compounds **3a-g**. The relations between H₁, H₂, H₃ and H₄ were shown using a H,H-correlation spectrum (COSY). Nuclear Overhauser effect (NOE) contact between H_{1ax} with H_{3ax} and H_{5ax} was observed employing H,H-nuclear Overhauser effect spectroscopy (NOESY) experiment.

Furthermore, a spatial NOE contact between H_5 and H_2 or H_1 was detected, these results confirmed the exclusive formation of 1,4-regioisomer. For the experiment of nuclear Overhauser effect difference spectroscopy (NOE DIFF), the proton H_5 ($H_{triazole}$) for irradiation in compounds **3b** and **3e**, such as representative sampling, was chosen. These experiments can be monitored by increasing the H_1 or H_2 signals. When performing the experiments in CDCl₃ or DMSO- d_6 , a more accurate analysis of the NOE DIFF spectrum revealed solvent effects on the population distribution of rotamers of the *N*-glucosyl-1,2,3-triazole series, as shown in Figure 1.

Srivastava and co-workers³⁴ described *ab initio* (HF/6-31G* method) molecular orbital calculations in vacuum of a glucosyl-triazole linked to 1,2,4-oxadiazole moiety, indicating a more stable B-type conformer. Through H₁ irradiations, the authors also observed a NOE contact of 6% between H₁ and H₅. in DMSO-*d*₆. In our case, the NOE-DIFF experiment indicates that the conformer A-type is preferred in CDCl₃ for compound **3b** (ca. 5% to H₂ and < 1.0% to H₁, Figure 1). On the other hand, in DMSO-*d*₆, the experiments revealed a substantial increase

of conformer B-type, displaying a rotational equilibrium of N-glucosyl-1,2,3-triazoles between the conformer A- and B-types. These results are consistent with polarity parameters involving hydrogen-bond donating solvents.35 Probably, this tendency can be explained in terms of H₅. acidity³⁶ allowing an intramolecular CH-O hydrogen bond formation between H_{s} , and the endocyclic oxygen of glucopyranose, as shown in Figure 1 (structure A-type). In this case, as expected, the less polar CDCl₂ favored the conformer A-type, whereas the more polar DMSO- d_{ϵ} destabilized the intramolecular hydrogen-bond, thus increasing the conformer B-type. These are interesting results that can play important roles in biological activities through conformational stabilization. Further investigation of the correlation of conformational behavior and biological activity of 1,2,3-triazole-carbohydrates is currently under way in our laboratory.

Having synthesized and characterized 1,2,3-triazolesugars **3a-g**, and considering the results of Shafi *et al.*³⁷ related to the anti-inflammatory activity of benzothiazole-2-thio-linked 1,2,3-triazoles, the benzoheterocyclic series **3d-g** was selected to have studies their acute antiinflammatory activity profiles, the results are summarized in Table 4 and Figure 2. The above compounds exhibited moderate to good anti-inflammatory activity with the percentage inhibition of edema formation ranging from 49.2 to 64.7%, while the reference drug ASA and ibuprofen both showed 77% inhibition (Table 4).

Compound **3d** showed moderate activity (49.2%). It was observed that when the thiomethyl group ($Y=SCH_2-$) was introduced in the structure, the activity increased from 55 to 65% (Figure 2). Our results are in agreement with the

Figure 1. Solvent effect observed on the conformational equilibrium of 3b and 3e.

Figure 2. Structure and anti-inflammatory activity of 1-N-β-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles 3d-g.

Table 4. Acute anti-inflammatory activity for the benzoheterocyclic glucosyl 1,2,3-triazoles 3d-g

Compound	Dose / (mg kg ⁻¹)	Mean ± standard deviation / g	Edema inhibition / %
Control (saline 0.9%)	_	0.1512	_
ASA	250	$0.0347^{a} \pm 0.001$	77.0
Ibuprofen	250	$0.0347^{\rm b} \pm 0.007$	77.0
CMC	-	$0.1412^{\text{b}} \pm 0.040$	6.7
3d	250	$0.0767^{a} \pm 0.001$	49.2
3e	250	$0.0667^{a} \pm 0.001$	55.8
3f	250	$0.0633^{a} \pm 0.002$	58.0
3g	250	$0.0533^{a} \pm 0.002$	64.7

Significant differences: ${}^{a}p < 0.001$; ${}^{b}p < 0.05$.

literature, that recently related that the anti-inflammatory activity was increased when 2-mercapto benzothiazole was linked to 1,2,3-triazole.³⁷

In particular, the substitution at the third position of benzoheterocyclic, when X = S, NH or O, shows growth in anti-inflammatory activity for **3e** (55.8%), **3f** (58.0%) and **3g** (64.7%), respectively (Figure 2). The potency for acute anti-inflammatory activity was optimized in compound **3g**, which exhibited a higher diversity of atoms (N, S and O) at the benzoheterocyclic site and showed a relativity similar profile when compared with the positive controls, ibuprofen and acetylsalicylic acid.

Conclusion

In summary, regioselectively 1,4-disubstituted N- β -D-glucopyranosyl-1,2,3-triazoles **3a-g** were synthesized under ultrasound irradiation in moderate to excellent yields of 63 to 99% at short reaction time of 20-30 min using catalytic amounts of CuI and Et₃N at room temperature. The compounds containing the benzoheterocyclic moieties showed moderate to good acute anti-inflammatory activity. The current results demonstrate that these glycoconjugates represent a promising starting point for further design of potential anti-inflammatory drugs.

Experimental

All organic solvents were analytical grade (Vetec, Brazil). All reactions were monitored by TLC analysis on GF-254 (Merck-Darmstadt, Germany). Reactions were carried out in a USC-1400A Ultracleaner ultrasound cleaning bath with an operating frequency of 40 kHz. Column chromatography was performed on Merck silica gel 60 (Darmstadt, Germany). Melting points were determined in a PFM II BioSan apparatus and are uncorrected. Optical rotations were measured in a Krüss Model P1000 polarimeter. ¹H (300 or 400 MHz), ¹³C NMR (75 or 100 MHz), COSY, NOESY and NOE-DIFF spectra were obtained with Varian Unity Plus spectrometers in CDCl₂ or DMSO- d_6 . Elemental analysis were carried out in a CA EA1110 CHNS-O analyzer, and HRMS analysis were recorded with a Shimadzu Liquid Chrom MS LCMS-IT-TOF using acetonitrile or methanol as the solvent. IR spectra were recorded on a IFS66 Bruker spectrophotometer using KBr discs.

Acute anti-inflammatory activity

Bio-activity tests were performed by the following procedure of Winter *et al.*,³⁸ on groups of 10 Swiss white mice. The acute anti-inflammatory activity used 250 mg kg⁻¹ of the compounds which had been evaluated by the carrageenan-induced paw edema method. The control group received 1% carboxymethylcellulose. Two positive and negative anti-inflammatory tests were performed on three animal groups by oral administration of aspirin, ibuprofen and aqueous saline solution, respectively. The results for the compounds are expressed as mean ± standard deviation using the paired student-*t* test. In all cases, p < 0.001 was used as the criterion for statistical significance.

Supplementary Information

Supplementary information (spectral data and figures containing IR, ¹H and ¹³C NMR) are available free of charge at http://jbcs.sbq.org.br as a PDF file.

Acknowledgements

The authors are grateful to FACEPE (PPP-0776.1.06/08), FACEPE-PRONEM (1232.1.06/10) and INCT_if for financial support. Our thanks are also to Analytical Centers CENAPESQ-UFRPE for facilities installation and DQF-UFPE for obtaining the spectral data. We also thank Professor Patrick Rollin (ICOA-Université d'Orleans) for his kind suggestions.

References

- Mason, T. J.; Lorimer, J. P.; Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002.
- Barros, C. J. P.; de Freitas, J. J. R.; de Oliveira, R. N.; de Freitas Filho, J. R.; *J. Chil. Chem. Soc.* 2011, *56*, 721; Duarte, A.; Cunico, W.; Pereira, C. M. P.; Flores, A. F. C.; Freitag, R. A.; Ultrason. Sonochem. 2010, *17*, 281; Lepore, S. D.; He, Y.; *J. Org. Chem.* 2003, *68*, 8261; Li, J.-T.; Meng, X.-T.; Zhai, X.-L.; Ultrason. Sonochem. 2009, *16*, 590.
- 3. Cella, R.; Stefani, H. A.; Tetrahedron 2009, 65, 2619.
- 4. Kardos, N.; Luche, J.-L.; Carbohydr. Res. 2001, 332, 115.
- Neves Filho, R. A. W.; de Oliveira, R. N.; Application of Ultrasound Irradiation in Carbohydrate Synthesis; Org. Chem. Highlights 2009, July 25, http://www.organic-chemistry.org/ Highlights/2009/25July.shtm, accessed in November 2012.
- Wang, P. G.; Bertozzi, C. R.; *Glycochemistry: Principles, Synthesis, and Applications*; Marcel Dekker, Inc.: New York, USA, 2001.
- Le, G. T.; Abbenante, G.; Becker, B.; Grathwohl, M.; Halliday, J.; Tometzki, G.; Zuegg, J.; Meutermans, W.; *Drug Discovery Today* 2003, 8, 701.
- Goyard, D.; Baron, M.; Skourti, P. V.; Chajistamatiou, A. S.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Praly, J.-P.; Vidal, S.; *Carbohydr. Res.* 2012, *364*, 28; Anand, N.; Jaiswal, N.; Pandey, S. K.; Srivastava, A. K.; Tripathi, R. P.; *Carbohydr. Res.* 2011, *346*, 16.
- Hager, C.; Miethchen, R.; Reinke, H.; J. Fluorine Chem. 2000, 104, 135.
- da Silva, F. C.; Cecília, M. B. V. S.; Frugulhetti, I. I. P.; Castro, H. C.; Souza, S. L. O.; Souza, T. M. L.; Rodrigues, D. I. Q.; Souza, A. M. T.; Abreu, P. A.; Passamani, F.; Rodrigues, C. R.; Ferreira, V. F.; *Eur. J. Med. Chem.* **2009**, *44*, 373.
- Kumar, K. K.; Seenivasan, S. P.; Kumar, V.; Das, T. M.; Carbohydr. Res. 2011, 346 2084.
- Assis, S. P. O.; da Silva, M. T.; de Oliveira, R. N.; Lima, V. L. M.; *The Scientific World Journal* **2012**, ID 925925, DOI: 10.1100/2012/925925; El-Gazzar, A.-R. B. A.; Hafez, H. N.; Abbas, H.-A. S.; *Eur. J. Med. Chem.* **2009**, *44*, 4249.
- 13. Goyard, D.; Praly, J.-P.; Vidal, S.; Carbohydr. Res. 2012, 362,

79; Hradilová, L.; Polákova, M.; Dvo áková, B.; Hajdúch, M.;
Petruš, L.; *Carbohydr. Res.* 2012, *361*, 1; Dedola, S.; Hughes,
D. L.; Nepogodiev, S. A.; Rejzek, M.; Field, R. A.; *Carbohydr. Res.* 2010, *345*, 1123; Kumar, R.; Maulik, P. R.; Misra, A. K.; *Glycoconjugate J.* 2008, *25*, 595; Dedola, S.; Nepogodiev, S. A.;
Field, R. A.; *Org. Biomol. Chem.* 2007, *5*, 1006; de Oliveira,
R. N.; Sinou, D.; Srivastava, R. M.; *Synthesis* 2006, 467.

- Deng, S.; Gangadharmath, U.; Chang, C.-W. T.; J. Org. Chem. 2006, 71, 5179; Parvathy, K. S.; Srinivas, P.; Ultrason. Sonochem. 2008, 15, 571.
- For reviews click chemistry combined with ultrasound, see: da Silva, M. T.; de Oliveira, R. N.; Valença, W. O.; Barbosa, F. C. G.; da Silva, M. G.; Camara, C. A.; *J. Braz. Chem. Soc.* 2012, 23, 1839; Sreedhar, B.; Reddy, P. S.; Synth. Commun. 2007, 37, 805; Cintas, P.; Palmisano, G.; Cravotto, G.; Ultrason. Sonochem. 2011, 18, 836; Jiang, Y.; Chen, X.; Qu, L.; Wang, J.; Yuan, J.; Chen, S.; Li, X.; Qu, C.; Ultrason. Sonochem. 2011, 18, 527; Cravotto, G.; Fokin, V. V.; Garella, D.; Binello, A.; Boffa, L.; Barge, A.; J. Comb. Chem. 2010, 12, 13; Dondoni, A.; Chem. Asian J. 2007, 2, 700; Santoyo-Gonzalez, F.; Hernandez-Mateo, F.; Chem. Soc. Rev. 2009, 38, 3449; Aragão-Leoneti, V.; Campo, V. L.; Gomes, A. S.; Field, R. A.; Carvalho, I.; Tetrahedron 2010, 66, 9475; Dondoni, A.; Org. Biomol. Chem. 2010, 8, 3366.
- Stefani, H. A.; Silva, N. C. S.; Manarin, F.; Lüdtke, D. S.; Zukerman-Schpector, J.; Madureira, L. S.; Tiekink, E. R. T. *Tetrahedron Lett.* **2012**, *53*, 1742; Driowya, M.; Puissant, A.; Robert, G.; Auberger, P.; Benhida, R.; Bougrin, K.; Ultrason. Sonochem. **2012**, *19*, 1132.
- Nascimento, W. S.; Camara, C. A.; de Oliveira, R. N.; Synthesis
 2011, 20, 3220; Barbosa, F. C. G.; de Oliveira, R. N.; *J. Braz. Chem. Soc.* 2011, 22, 592.
- da Silva Jr., E. N.; de Melo, I. M. M.; Diogo, E. B. T.; Costa,
 V. A.; de Souza Filho, J. D.; Valença, W. O.; Camara, C. A.;
 de Oliveira, R. N.; Araújo, A. S.; Emery, F. S.; Santos, M. R.;
 Simone, C. A.; Menna-Barreto, R. F. S.; Castro, S. L.; *Eur. J. Med. Chem.* 2012, *52*, 304.
- Mukhopadhyay, B.; Kartha, K. P.; Russel, D.A.; Field, R. A.; J. Org. Chem. 2004, 69, 7758.
- Misra, A. K.; Tiwari, P.; Kamlesh, S.; Madhusudan, S. K.; Carbohydr. Res. 2005, 340, 325.
- Butera, A. P.; de Souza Filho, J. D.; Carvalho, D. T.; Figueiredo, R. C.; de Faria, L. C. A.; Nunes, M. A.; Prado, M. A. F.; Alves, R. J.; de Andrade, M. H. G.; Silva, K. T. S.; *Quim. Nova* 2007, *30*, 1267; Sureshbabu, V. V.; Venkataramanarao, R.; Hemantha, H. P.; *Int. J. Pept. Res. Ther.* 2008, *14*, 34.
- de Oliveira, R. N.; Mendonça Jr., F. J. B.; Sinou, D.; de Melo, S. J.; Srivastava, R. M.; *Synlett* **2006**, 3049; de Oliveira, R. N.; do Nascimento, W. S.; da Silva, G. R.; Silva, T. M. S.; *Orbital Elec. J. Chem.* **2012**, *4*, 118.
- 23. Asano, K.; Matsubara, S.; Heterocycles 2010, 80, 989.

- 24. Bognar, B.; Kalai, T.; Hideg, K.; Synthesis 2008, 15, 2439.
- 25. Ueno, Y.; Okawara, M.; J. Am. Chem. Soc., 1979, 101, 1893.
- 26. Sasaki, T.; Shimizu, I.; Heterocycles 1984, 22, 1225.
- 27. Ray, S.; Ghosh, S.; Ganguly, N.; Synth. Commun. 2006, 36, 1447.
- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.; Angew. Chem., Int. Ed. 2002, 41, 2596.
- Meldal, M.; Tornøe, C. W.; *Chem. Rev.* 2008, *108*, 2952; Himo,
 F.; Lovell, T.; Hilgraf, R.; Rostvtsev, V. V.; Noodleman, L.;
 Sharpless, K. B.; Folkin, V. V.; *J. Am. Chem. Soc.* 2005, *127*, 210.
- Thompson, L. H.; Doraiswamy, L. K.; *Ind. Eng. Chem. Res.* 1999, 38, 1215.
- Kumar, R.; Maulik, P. R.; Misra, A. K.; *Glycoconjugate J.* 2008, 25, 595.
- Sirion, U.; Lee, J. H.; Bae, Y. J.; Kim, H. J.; Lee, B. S.; Chi, D. Y.; *Bull. Korean Chem. Soc.* 2010, *31*, 1843.

- El Moncef, A.; El Hadrami, E. M.; Ben-Tama, A.; de Arellano, C. R.; Zaballos-Garcia, E.; Stiriba, S.-E.; *J. Mol. Struct.* 2009, 929, 6.
- 34. dos Anjos, J. V. ; Neves Filho, R. A. W.; Nascimento, S. C.; Srivastava, R.M.; de Melo, S. J.; Sinou, D.; *Eur. J. Med. Chem.* 2009, 44, 3571.
- Testoni, F. M.; Ribeiro, E. A.; Giusti, L. A.; Machado, V. G.; Spectrochim. Acta, Part A 2009, 71, 1704.
- Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R.; J. Am. Chem. Soc. 2004, 126, 15366.
- 37. Shafi, S.; Alam, M. M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A. M.; Pallu, R.; Alam, M. S.; *Eur. J. Med. Chem.* **2012**, *49*, 324.
- Winter, C. A.; Risley, E. A.; Nuss, G. W.; Proc. Soc. Exp. Biol. Med. 1962, 111, 544.

Submitted: December 5, 2012 Published online: May 21, 2013

5

Ultrasound-Assisted Synthesis of 1-*N*-β-D-Glucopyranosyl-1*H*-1,2,3-triazole Benzoheterocycles and their Anti-Inflammatory Activities

Gilson B. da Silva,^a Bruna M. Guimarães,^a Shalom P. O. Assis,^b Vera L. M. Lima^b and Ronaldo N. de Oliveira^{*,a}

^aDepartamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife-PE, Brazil

^bDepartamento de Bioquímica, Laboratório de Química e Metabolismo de Lipídeos e Lipoproteínas, Universidade Federal Rural de Pernambuco, 50670-901 Recife-PE, Brazil

Synthesis of 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide (1)

A 25 mL round flask was charged with D-glucose (5.0 g, 27.8 mmol), Ac₂O (25 mL) and 3.5 mol% I₂ (0.25 g, 1 mmol) in one portion. The reaction mixture was irradiated in the water bath of the ultrasonic cleaner at ambient temperature (30 °C) for 20 min. The resulting mixture was washed with 20% sodium thiosulfate $(Na_2S_2O_2)$ and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL). After drying over anhydrous sodium sulfate, the solvent was removed under vacuum. The peracetylated D-glucose was obtained as a colorless solid 95% (10.3 g) which was used without any purification. In the next step, HBr-AcOH (prepared by mixing 13 mL of 48% HBr with 24 mL of Ac₂O at 0 °C) was slowly added to a stirred solution of peracetylated D-glucose (5.0 g, 12.8 mmol) in 30 mL of CH₂Cl₂ at 0 °C. The reaction mixture was irradiated with ultrasound for 50 min at 25-30 °C. The crude material was washed successively with cold water and a cooled saturated aqueous solution of NaHCO₃. After drying the organic layers over Na₂SO₄, the solvent was removed under vacuum. The glucopyranosyl bromide was obtained as a colorless solid 70% (3.68 g) which was used in the next step without any purification. To a solution of the above bromide (2.0 g, 4.87 mmol) in acetone (20 mL), sodium azide (0.5 g, 7.69 mmol) and water (5 mL) were added. The reaction mixture was irradiated for 40 min at room temperature, and then extracted with CH_2Cl_2 (3 × 30 mL). After work-up, the solvent was removed and the crude mixture was crystallized from isopropanol to afford 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide (1) in 92% yield (1.68 g); mp 110-112 °C (lit. 125-126 °C);¹ [α]_D²⁶ -22 (*c*0.5, CH₂Cl₂) (lit. -29; *c* 2.0 in CHCl₃);¹ IR (KBr) v_{max}/cm⁻¹ 2118 (N₃), 1755 (C=O), 1372, 1240, 1058, 1038; ¹H NMR (300 MHz, CDCl₃) δ 5.21 (dd, 1H, *J* 9.0, 9.6 Hz, H-3), 5.09 (dd, 1H, *J* 9.9, 9.6 Hz, H-4), 4.95 (dd, 1H, *J* 9.0, 9.0 Hz, H-2), 4.64 (d, 1H, *J* 9.0 Hz, H-1), 4.27 (dd, 1H, *J* 4.8, 12.6 Hz, H-6'), 4.16 (dd, 1H, *J* 2.4, 12.6 Hz, H-6), 3.79 (ddd, 1H, *J* 2.4, 4.8, 9.9 Hz, H-5), 2.09, 2.07, 2.02, 2.00 (4 × CH₃CO); ¹³C NMR (75 MHz, CDCl₃) δ 170.6, 170.1, 169.3, 169.2, 87.9, 74.0, 72.6, 70.6, 67.8, 61.6, 20.7, 20.5.

Synthesis of propargylated *N*- and *S*-benzoheterocycles (2c-g)

1 mmol of K_2CO_3 and 1 mmol of the benzoheterocycle were suspended in anhydrous DMF (3 mL), and 1.5 equiv. propargyl bromide was added. The mixture was sonicated for a specific reaction time (10-60 min). Then, the mixture was extracted with 50% CH₂Cl₂/water (3 × 15 mL). The combined organic layers were dried over sodium sulfate anhydrous and concentrated under reduced pressure to afford the corresponding propargylated benzoheterocycles **2c-g**.

2-(2-Propyn-1-yl)-1*H*-isoindole-1,3-(2*H*)-dione (2c)

mp 141-143 °C (lit. 149 °C);² IR (KBr) ν_{max} /cm⁻¹ 3293, 2965, 2115, 1769, 1715, 1469, 1429; ¹H NMR (300 MHz, CDCl₃) δ 2.23 (t, 1H, *J* 2.4 Hz), 4.45 (d, 2H, *J* 2.4 Hz), 7.74 (m, 2H, phthalimide), 7.88 (m, 2H, phthalimide); ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 134.2, 131.9, 123.6, 77.1, 71.5, 26.9.

1-(2-Propyn-1-yl)-1*H*-benzimidazole (**2d**)

Oil (lit. 38-40 °C);³ IR (KBr) ν_{max} /cm⁻¹ 3176, 3099, 2113, 1500, 1458, 1288, 752; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H, N=CH), 7.85 (dd, 1H, *J* 1.6, 6.4 Hz), 7.52 (dd, 1H,

^{*}e-mail: ronaldonoliveira@dcm.ufrpe.br

J 1.6, 6.4 Hz), 7.39-7.32 (m, 2H), 4.99 (d, 2H, J 2.8 Hz, CH₂-Het), 2.52 (t, 1H, J 2.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 142.1, 134.5, 123.7, 123.1, 120.0, 109.9, 75.6, 75.2, 34.9.

2-(2-Propyn-1-ylthio)-benzothiazole (2e)

mp 40-42 °C (lit. 46 °C);⁴ IR (KBr) $v_{max}/cm^{-1} 3272, 2965, 2121, 1453, 1425, 1390, 1000, 765; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 7.91 (ddd, 1H, *J* 0.6, 1.5, 8.1 Hz), 7.76 (ddd, 1H, *J* 0.6, 1.5, 8.1 Hz), 7.44 (dd, 1H, *J* 1.5, 7.5 Hz), 7.32 (ddd, 1H, *J* 1.5, 7.5, 7.5 Hz), 2.30 (t, 1H, *J* 2.4), 4.14 (d, 2H, *J* 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 164.6 (C=N), 153.0 (C_{Ar}–N), 135.4 (C_{Ar}–NH), 126.1, 124.5, 121.8, 121.1, 78.3 (C=C), 72.3 (HC=), 21.5 (CH₂).

2-(2-Propyn-1-ylthio)-1H-benzimidazole (2f)

mp 128-130 °C (lit. 153 °C);⁵ IR (KBr) v_{max} /cm⁻¹ 3272, 2977, 2121, 1655, 1454, 1426, 1391; ¹H NMR (300 MHz, DMSO- d_{δ}) δ 8.06 (dd, 1H, J 1.5, 8.1 Hz), 7.90 (dd, 1H, J 0.6, 8.1 Hz), 7.50 (ddd, 1H, J 1.5, 7.8, 7.8 Hz), 7.39 (ddd, 1H, J 1.5, 8.1, 8.1, 8.1 Hz), 4.25 (d, 2H, J 2.4 Hz), 3.26 (t, 1H, J 2.4); ¹³C NMR (75 MHz, CDCl₃) δ 165.1 (C=N), 152.6 (C_{Ar}-N), 134.9 (C_{Ar}-NH), 126.5, 124.7, 122.0, 121.4, 79.4 (C=C), 74.7 (HC=), 21.1 (CH₂).

2-(2-Propyn-1-ylthio)-benzoxazole (2g)

mp 47-48 °C (lit. 51 °C);⁶ IR (KBr) $v_{max}/cm^{-1} 3264, 2970, 2125, 1504, 1452, 1235, 1132, 738; ¹H NMR (300 MHz, DMSO-$ *d_o*) δ 7.71-7.65 (m, 2H), 7.39-7.31 (m, 2H), 4.22 (d, 2H,*J*3.6 Hz), 3.32 (t, 1H,*J*3.0 Hz); ¹³C NMR (75 MHz, DMSO-*d_o*) δ 162.8 (C=N), 151.4 (C_{Ar}–O), 141.2 (C_{Ar}–N), 124.8, 124.6, 118.5 (β-C_{Ar}–N), 110.4 (β-C_{Ar}–N), 79.3 (C=C), 74.6 (HC=), 20.3 (CH₂).

Synthesis of N-glucosyl-1,2,3-triazoles (3a-g)

A solution of 10 mol% Et₃N (0.032 mmol, ca. 1 drop) and 10 mol% copper iodide (0.032 mmol) in CH₂Cl₂ (2 mL) were successively added to a mixture of the corresponding alkyne **2a-g** (0.32 mmol, 1.2 equiv.) and the azidosugar **1** (100 mg, 0.268 mmol, 1 equiv.) in CH₂Cl₂ (2 mL). The mixture was irradiated for 20-30 min at room temperature with ultrasound energy, under thin layer chromatographic (TLC) monitoring of the progress of the reaction. After dilution with cold water, the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL), followed by washing the organic layers were dried over anhydrous Na₂SO₄, filtered and the solvent evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel using cyclohexane:EtOAc as eluent, which after

work-up furnished compounds **3a-g** as colourless solids. The final product was crystallized from methylene chloride/ cyclohexane.

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-phenyl-1H-1',2',3'-triazole (**3a**)

Solid; mp 189-193 °C; $[\alpha]_{D}^{26}$ –19 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H, H_{triazole}), 7.83 (d, 2H, *J* 7.2 Hz, H_{arom}), 7.42 (dd, 2H, *J* 7.2, 8.0 Hz, H_{arom}), 7.34 (dd, 1H, *J* 7.2, 7.6 Hz, H_{arom}), 5.93 (d, 1H, *J* 9.2 Hz, H-1), 5.26-5.52 (3 × dd, 3H, *J* 9.2, 9.2, 9.6 Hz, H-2, H-3, H-4), 4.32 (dd, 1H, *J* 4.8, 12.8 Hz, H-6a), 4.16 (dd, 1H, *J* 2.0, 12.4 Hz, H-6b), 4.04 (ddd, 1H, *J* 2.0, 4.2, 10.0 Hz, H-5), 2.08 (s, 3H, CH₃CO), 2.07 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 1.87 (s, 3H, CH₃CO).

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-propyl-1H-1',2',3'-triazole (**3b**)

Yellow solid; mp 153-155 °C; $[\alpha]_{D}^{26}$ –33 (*c*1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3483, 3074, 2960, 2872, 1739, 1558, 1368, 1217, 1039, 928; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H, H_{triazole}), 5.83 (d, 1H, J 8.8 Hz, H-1), 5.43-5.35 (m, 2H, H-2, H-3), 5.21 (dd, 1H, J 9.2, 9.6 Hz, H-4), 4.26 (dd, 1H, J 4.8, 12.8 Hz, H-6a), 4.10 (br d, 1H, J 12.8 Hz, H-6b), 3.99 (ddd, 1H, J 1.6, 4.4, 10.0 Hz, H-5), 2.65 (t, 2H, J 7.6 Hz, CH₂-Het), 2.03 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.81 (s, 3H, CH₃CO), 1.98 (s, 3H, CH₃CO), 1.65 (m, 2H, CH₂), 0.91 (t, 3H, J 7.2 Hz, CH₂); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 170.4, 169.8, 169.3, 168.8, 148.8 (C-4'), 118.8 (C-5'), 85.5 (C-1), 74.9, 72.4, 70.1, 67.7, 61.5, 27.4 (CH₂-Het), 22.3 (CH₂), 20.5, 20.4, 20.4, 20.0, 13.5 (5 × CH₃); anal. calcd. for $C_{19}H_{27}N_3O_9 \cdot (1/2 \times H_2O)$ C, 50.56; H, 6.28; found: C, 50.91; H, 6.57. HRMS $[(C_{10}H_{27}N_{3}O_{0}) + H]$ calcd.: 442.1826; found: 442.1759.

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-(methyl-1*H*-isoindole-1,3-(2*H*)-dione)-1*H*-1',2',3'-triazole (**3c**)

Solid; mp 131-134 °C; $[\alpha]_{D}^{26}$ -22 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (m, 2H, phthalimide), 7.82 (s, 1H, H_{triazole}), 7.72-7.70 (m, 2H, phthalimide), 5.83 (d, 1H, *J* 8.8 Hz, H-1), 5.42-5.35 (m, 2H, H-2, H-3), 5.20 (dd, 1H, *J* 9.6, 10.0 Hz, H-4), 5.00 (2 × d, 2H, *J* 15.2 Hz, CH₂-Het), 4.27 (dd, 1H, *J* 4.8, 12.8 Hz, H-6a), 4.11 (dd, 1H, *J* 2.0, 12.8 Hz, H-6b), 3.96 (ddd, 1H, *J* 2.4, 4.8, 10.0 Hz, H-5), 2.07 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 1.83 (s, 3H, CH₃CO).

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(*N*-methyl-1*H*-benzimidazol-1-yl)-1*H*-1',2',3'-triazole (**3d**)

Solid; mp 182-184 °C; $[\alpha]_D^{26}$ -21 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H, H_{triazole}), 7.647.25 (m, 5H, H_{arom}), 5.81 (d, 1H, *J* 8.8 Hz, H-1), 5.48 (s, 2H, CH₂-Het), 5.40-5.29 (m, 2H, H-2, H-3), 5.17 (dd, 1H, (dd, 1H, *J* 9.6, 9.6 Hz, H-4), 4.25 (dd, 1H, *J* 4.6,12.6 Hz, H-6a), 4.09 (br d, 1H, *J* 12.6 Hz, H-6b), 3.96 (br dd, 1H, *J* 3.6, 10.0 Hz, H-5), 2.03 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.99 (s, 3H, CH₃CO), 1.78 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.8, 169.2, 168.8, 161.4 (C=N), 143.4 (C-4' and C_{Ar}-N), 123.4, 122.3, 120.8 (C-5' and C_{Ar}-N), 109.7 (C_{Ar}-N), 85.8 (C-1), 75.2, 72.3, 70.3, 67.5, 61.4, 20.6, 20.6, 20.5, 20.5, 20.4 (CH₂-Het and 4 × CH₃CO); anal. calcd. for C₂₄H₂₇N₅O₉: C, 54.44; H, 5.14; found: C, 54.71; H, 5.47.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzothiazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3e**)

Solid; mp 152-153 °C; $[\alpha]_{D}^{26}$ –18 (*c*1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3467, 3111, 3069, 2954, 1759, 1429, 1369, 945; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.84 (m, 2H, H_{arom}, H_{triazole}), 7.70 (d, 1H, J 8.0 Hz, H_{arom}), 7.37 (dd, 1H, J7.6, 7.6 Hz, H_{arom}), 7.24 (dd, 1H, J7.6, 8.0 Hz, H_{arom}), 5.82 (d, 1H, J 8.8 Hz, H-1), 5.38 (m, 2H, H-2, H-3), 5.21 (dd, 1H, J 9.6, 9.6 Hz, H-4), 4.64 (2xd, 2H, J 14.4 Hz, CH₂-Het), 4.21 (dd, 1H, J 4.8, 12.4 Hz, H-6a), 4.07 (br d, 1H, 12.4 Hz, H-6b), 3.96 (ddd, 1H, J 2.0, 4.8, 10.0 Hz, H-5), 2.00 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO), 1.95 (s, 3H, CH₃CO), 1.69 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) & 170.2, 169.5, 169.1, 168.5, 165.3 (C=N), 152.8 (C_{Ar}-N), 144.4 (C-4'), 135.2 (C_{Ar}-S), 125.9 (C-5'), 124.2, 121.4, 121.3, 120.9, 85.4 (C-1), 74.8, 72.5, 69.9, 67.5, 61.3, 27.4 (CH₂-Het), 20.4, 20.3, 20.3, 19.8; anal. calcd. for C₂₄H₂₆N₄O₀S₂: C, 49.82; H, 5.19; found: C, 50.20; H, 4.88.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzimidazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3f**)

Brown solid; mp 156-158 °C; $[\alpha]_D^{26}$ –21 (*c*1, CH₂Cl₂); IR (KBr) ν_{max} /cm⁻¹ 3111, 3069, 2955, 2851, 1741, 1459, 1429, 1369, 1219, 1101, 1064, 946; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, 1H, *J* 8.0 Hz, H_{arom}), 7.85 (s, 1H, H_{triazole}), 7.74 (d, 1H, *J* 7.6 Hz, H_{arom}), 7.44-7.40 (dd, 1H, *J* 1.2, 8.0 Hz, H_{arom}), 7.32-7.28 (m, 1H, H_{arom}), 5.82 (d, 1H, *J* 8.8 Hz, H-1), 5.43-5.34 (m, 2H, H-2, H-3), 5.20 (dd, 1H, *J* 9.2, 9.6 Hz, H-4), 4.68 (2d, 2H, *J* 14.8 Hz, CH₂-Het), 4.25 (dd, 1H, J 4.8, 13.0 Hz, H-6a), 4.10 (dd, 1H, J 1.6, 13.0 Hz, H-6b), 3.97 (ddd, 1H, J 2.8, 5.0, 8.4 Hz, H-5), 2.04 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO), 1.78 (br s, 1H, NH), 1.75 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.8, 169.3, 168.7, 165.4 (C=N), 152.9 (C_{Ar}-N), 144.7 (C-4'), 135.4 (C_{Ar}-NH), 126.03 (C-5'), 124.4, 121.6, 121.3, 121.0, 85.6, 75.0, 72.6, 70.0, 67.6, 61.4, 27.5 (CH₂-Het), 21.5, 20.4, 20.0, 19.8; anal. calcd. for C₂₄H₂₇N₅O₉S: C, 51.33; H, 4.85; found: C, 51.63; H, 4.95.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzoxazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3g**)

Solid; mp 161-162 °C; $[\alpha]_{D}^{26}$ -26 (c1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3087, 2966, 1748, 1500, 1456, 1374, 1222, 1133, 1044, 943; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H, H_{triazole}), 7.64 (d, 1H, J 7.6 Hz, H_{arom}), 7.40 (dd, 1H, J 0.8, 7.6 Hz, H_{arom}), 7.32-7.23 (m, 2H, H_{arom}), 5.83 (d, 1H, J 9.2 Hz, H-1), 5.55-5.35 (m, 2H, H-3, H-4), 5.21 (dd, 1H, J 9.2, 10.0 Hz, H-4), 4.67-4.57 (2xd, 2H, J 14.8 Hz, CH₂-Het), 4.25 (dd, 1H, J 4.8, 12.8 Hz, H-6a), 4.11 (dd, 1H, J 1.6, 12.8 Hz, H-6b), 3.97 (ddd, 1H, J 2.0, 4.8, 10.0 Hz, H-5), 2.05 (s, 3H, CH₂CO), 2.03 (s, 3H, CH₂CO), 2.00 (s, 3H, CH₃CO), 1.75 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) & 170.4, 169.9; 169.3, 168.7, 163.9 (C=N), 152.1 (C_{Ar}-O), 144.3 (C_{4'}), 141.8 (C_{Ar}-N), 124.3, 124.0, 121.3 (C-5'), 118.6, 1010 (C_{Ar}-O), 85.7 (C-1), 75.1, 72.6, 70.1, 67.6, 61.4, 26.6 (CH₂-Het), 20.6, 20.6, 20.5, 20.4; anal. calcd. for $C_{24}H_{26}N_4O_{10}S$: C, 51.24; H, 4.66; found: C, 51.04; H, 4.77.

References

- Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliveira-Campos, A. M. F.; Machalicky, O.; Mendonça, A. J.; *Tetrahedron* 2005, *61*, 8625.
- 2. Asano, K.; Matsubara, S.; Heterocycles 2010, 80, 989.
- 3. Bognar, B.; Kalai, T.; Hideg, K.; Synthesis 2008, 15, 2439.
- 4. Ueno, Y.; Okawara, M.; J. Am. Chem. Soc. 1979, 101, 1893.
- 5. Sasaki, T.; Shimizu, I.; Heterocycles 1984, 22, 1225.
- Ray, S.; Ghosh, S.; Ganguly, N.; Synth. Commun. 2006, 36, 1447.

Figure S1. ¹H NMR (400 MHz) spectrum of 3b in CDCl₃.

Figure S2. ¹³C NMR (100 MHz) spectrum of **3b** in CDCl₃.

Figure S3. ¹H NMR (400 MHz) spectrum of 3e in CDCl₃.

Figure S4. ¹³C NMR (100 MHz) spectrum of 3e in CDCl₃.

Figure S5. ¹H NMR (400 MHz) spectrum of 3f in CDCl₃.

Figure S6. ¹³C NMR (100 MHz) spectrum of 3f in CDCl₃.

Figure S7. ¹H NMR (400 MHz) spectrum of 3g in CDCl₃.

Figure S8. ¹³C NMR (100 MHz) spectrum of 3g in CDCl₃.

Figure S9. H,H-COSY (400 MHz) spectrum of 3e in CDCl₃.

Figure S10. NOESY (400 MHz) spectrum of 3e in CDCl₃.

Figure S11. NOE DIFF (400 MHz) spectrum of 3b in CDCl₃ (H₅, irradiated).

Figure S12. NOE DIFF (400 MHz) spectrum of 3b in DMSO (H₅, irradiated).

Figure S13. NOE DIFF (400 MHz) spectrum of 3e in CDCl₃ (H₅, irradiated).

Figure S14. NOE DIFF (400 MHz) spectrum of 3e in DMSO (H₅, irradiated).

Figure S15. IR spectrum of 3b.

Figure S16. IR spectrum of 3e.

Figure S17. IR spectrum of 3f.

Figure S18. IR spectrum of 3g.