Acessibilidade / Reportar erro

Symbolic processing in neural networks

In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, through suitable data type coding like in the usual programming languages. We introduce data types and show how to code and keep them inside the information flow of neural nets. Data types and control structures are part of a suitable programming language called NETDEF. Each NETDEF program has a specific neural net that computes it. These nets have a strong modular structure and a synchronization mechanism allowing sequential or parallel execution of subnets, despite the massive parallel feature of neural nets. Each instruction denotes an independent neural net. There are constructors for assignment, conditional and loop instructions. Besides the language core, many other features are possible using the same method.

Neural Networks; Neural Computation; Symbolic Processing; NETDEF


Sociedade Brasileira de Computação Sociedade Brasileira de Computação - UFRGS, Av. Bento Gonçalves 9500, B. Agronomia, Caixa Postal 15064, 91501-970 Porto Alegre, RS - Brazil, Tel. / Fax: (55 51) 316.6835 - Campinas - SP - Brazil
E-mail: jbcs@icmc.sc.usp.br