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Abstract

This paper deals with edge-clique graphs and with
the A-coloring problem when restricted to this class.

A characterization of edge-clique graphs of out-
erplanar graphs is given; a complete description of
edge-clique graphs of threshold graphs is presented
and a linear time algorithm for A-coloring the edge-
clique graph of a threshold graph is provided.

A survey on the A-coloring problem, when re-
stricted to edge-clique graphs, is reported.

keywords: edge-clique graphs, A-coloring, out-
erplanar graphs, threshold graphs.

1 Introduction

The edge-clique graph K.(G) of a graph G is a
graph whose vertices correspond to the edges of G
and two vertices are adjacent whenever the corre-
sponding edges of G belong to a common clique.

Edge-clique graphs appeared implicitly in liter-
ature in 1978 in a paper by Kou, Stockmeyer and
Wong concerning keyword conflicts [19], but the first
systematic paper dealing with them is due to Albert-
son and Collins and was published in 1984 [1].

In [1] edge-clique graphs are inspired by the graph
representing the incidence system arisen by the fol-
lowing formulation of the four color theorem: the
edges of a triangulation of the plane can be 3-colored
such that the edges incident with every triangle are
colored distinctly.

The fact that edge-clique graphs were born by
a problem, perhaps the most famous, in the field
of graph coloring [18], suggested us to explore, re-
stricted to edge-clique graphs, a very actual coloring
problem related to the design of wireless communi-
cation systems: the A-coloring problem.

The A-coloring problem consists in an assignment
of colors from the integer set (0..A) to the vertices of
a graph G such that vertices at distance at most two
get different colors and adjacent vertices get colors
which are at least two apart. The aim is to minimize
A

This problem was born in the context of mobile
computing (see, for instance [12, 14, 16]). The task
is to assign radio frequencies to transmitters at dif-
ferent locations without causing interference. This
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situation is modeled by a graph, whose vertices are
the radio transmitters/receivers, and the adjacen-
cies indicate possible communications and, hence,
interference. The aim is to minimize the frequency
bandwidth, i.e. \.

In the general case, the A-coloring problem is NP-
complete, as the most common problem of the vertex
coloring problem is. Therefore it is interesting to
investigate special classes of graphs for which it is
possible to find either tight bounds for the number
of necessary colors or approximating solutions.

This paper deals with the A-coloring problem re-
stricted to edge-clique graphs. Namely, a linear time
algorithm for A-coloring the edge-clique graph of a
threshold graph is provided. Moreover, we charac-
terize edge-clique graphs of outerplanar graphs as
particular outerplanar graphs, so the same results
concerning the A-coloring problem of outerplanar
graphs [7] hold for their edge-clique graphs.

The paper is organized as follows.

In the next section terminology and definitions
useful in the rest of the paper are recalled.

Edge-clique graphs are closely examined in Sec-
tion 3 and their main properties are pointed out.

Section 4 characterizes edge-clique graphs of out-
erplanar graphs and shows that edge-clique graphs
of outerplanar graphs are particular triangulated
outerplanar graphs.

Section 5 surveys most of the known results con-
cerning A-coloring problem and discusses those con-
cerning edge-clique graphs of different classes of
graphs.

Finally, in Section 6, an algorithm for A-coloring
the edge-clique graph of a threshold graph is pre-
sented and the proofs of its correctness and linearity
are provided.
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2 Background

In all this paper we consider only finite, simple,
loopless graphs G = (V, E), where V is the vertex
set and F is the edge set of G for references see the
book [5], when another one is not explicitly cited.

A vertex x € V is called universal (isolated) if it is

adjacent to all other vertices of V' (no vertex in V);
if z is an universal (isolated) vertex, then its degree

is deg(z) = |V] =1 (deg(z) = 0).

A graph G = ({v1,v2,...v,},0) is a null graph
if its edge set is empty, independently by the di-
mension of the vertex set, i.e. if all its vertices are
isolated.

A graph G is planar if it can be drawn in the
plane without crossings. Such a drawing is called
embedding. A graph is outerplanar if it can be em-
bedded in the plane so that every vertex lies on the
boundary of the outer face.

A graph I = (Vi, Ey), where V; C V and E; =
E N (Vr x Vp) is said to be induced by Vi. A graph
I induced by the subset V; C V is called:

e complete or clique if any two distinct vertices in
V are adjacent in G}

e stable or independent if no two vertices in V; are
adjacent in G.

We call ¢(G) the number of maximal cliques in a
graph G.

A graph G is said to be split if there is a partition
V = Vi U Vg of its vertices such that the induced
subgraphs K and S are complete and stable, respec-
tively.

For any graph G, let N(x) be the set of x’s adja-
cent vertices. Then, the vicinal preorder < on V is
defined as follows: x <y iff N(z) —y C N(y) — =.

A graph G = (V,E) is a threshold graph if and
only if it is a split graph and all its vertices are in
vicinal preorder (see Fig. 9.a).

Let F be a family of subsets of some sets. The in-
tersection graph of F' is a graph whose vertices are
associated to the subsets of F', two vertices being
adjacent if the corresponding pair of subsets inter-
sect.

A graph K (G) is said the clique graph of the graph
G, if it is the intersection graph of the maximal
cliques of G (see Fig. 1), [4, 22, 23].

A graph K .(G) is said the edge-clique graph of
the graph G, if its vertices are the edges of G and
two vertices in K.(G) are joined by an edge if the
corresponding edges in G are contained in the same
clique (see Fig. 2), [1].
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Figure 1: a. A graph G; b. its clique graph K(G).

From 1984 to nowadays much work has been done
on edge-clique graphs; a not exhaustive list of papers
is [9, 10, 11, 13, 21, 25, 26]. In the next section we
summarize some results on edge-clique graphs useful
for the rest of the paper.

3 Edge-clique graphs

From the definition of edge-clique graph the fol-
lowing two facts hold:

Fact 3.1 If G is a clique, its edge-clique graph
K.(G) is a clique, too.

Fact 3.2 If G is either a path, or a bipartite graph,
or an hexagonal or squared tiling, or a cycle with at
least 4 wvertices, then its edge-clique graph K.(G) is
a null graph.

Notice that, in Fact 3.2, cycles with 3 vertices
are omitted because they are cliques. Furthermore,
they are the only fixed point with respect to K.
transformation.

Theorem 3.3 [25] The edge-clique graph K.(G) of
a chordal (strongly chordal) graph G is still chordal
(strongly chordal).

Observe that non-isomorphic graphs may have
isomorphic edge-clique graphs, as shown in Fig. 2
[9].

Theorem 3.4 [1] If G is a planar graph and it con-
tains cliques of dimension not greater than 3, then
its edge-clique graph K.(G) is planar.

The hypothesis that cliques with more than 3 ver-
tices do not exist is substantial for Theorem 3.4. In-
deed, if cliques of dimension 4 are present in GG, not
only K.(G) is not planar anymore, but it may also
be very complicated, as shown in Fig. 3.a and 3.b.
Cliques of higher dimension cannot be in G since are
not planar. Finally we have to underline that the
converse of Theorem 3.4 does not hold, see Petersen
graph (Fig. 3.c) as an example.
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Figure 2: Edge-clique graphs of non isomorphic
graphs can be isomorphic: a. Gi; b. Ga; c.

K. (G1) = K.(G2).

Fact 3.5 [1] If in G there is a clique of dimension
k in its edge-clique graph K.(G) there is a clique of
dimension (’;) Viceversa holds.

From the previous fact, it follows that cliques in
an edge-clique graph can have only dimension equal
to a binomial coefficient, then cliques of dimension
2,4,5,7,8,9, ...cannot be in. Consequently, since
K.(G) cannot have cliques of dimension 2, then
K?(G) cannot have cliques neither of dimension 2
nor of dimension 1, while K7 (G) = K/~ '(G) for
r > 3.

Summarizing;:

Corollary 3.6 ¢(G) > q(K.(Q)).

It is to notice that Fact 3.5 implies that two differ-
ent cliques in K. (G) may share a number of vertices
equal to a binomial coefficient. Let us consider in
G two cliques of dimension h and k, respectively,
sharing t vertices. These vertices induce a clique
in G, hence in K.(G) the two cliques become two
cliques of dimension (g) and (g), and they share (;)
vertices.

The correlation between the chromatic number of
a graph G and the chromatic number of its edge-
clique graph follows the same rule of the correlation
between the corresponding cliques of these graphs.

Theorem 3.7 [1] The chromatic number of an
edge-clique graph K.(G) has as upper bound the
value (X(QG)), where x(G) is the chromatic number

of G.
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Figure 3: a. A planar graph G with some cliques of
dimension 4; b. its (not planar) edge-clique graph
K.(G). For the sake of clearness, the edges of the
cliques — represented by ovals — are not drawn; c.
Petersen graph.

From Theorem 3.7 it is possible to derive that if
in G there are not cliques of dimension greater than
3:

o V(K.(G)) £ \(G);
o X(K.(G)) < x(G) if x(G) is even (see Fig. 4).

a b

Figure 4: a. A graph G with x(G) = 4; b. Its K.(G)
with x(K.(G)) = 3.

4 Edge-clique graph of an outerplanar
graph

In this section we study the edge-clique graph of
an outerplanar graph.

First, we recall a characterization of outerplanar
graphs:

Theorem 4.1 [5] A graph is outerplanar if and
only if it contains no subgraph homeomorphic to K,
or Ks 3 by a homeomorphism that contracts degree-2
vertices.

As consequence of Theorem 4.1, a triangle is the
biggest clique an outerplanar graph can contain as
subgraph. From Theorem 3.4 and from the fact that
an outerplanar graph is K, free, we deduce that its
edge-clique graph is planar. Here we prove that it
remains an outerplanar graph and we characterize
its special structure.
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Lemma 4.2 Let G be an outerplanar graph and let
K.(QG) be its edge-clique graph. Then, two triangles
in K. can share at most one vertex (see Fig. 5.a).

Proof: Let us suppose by contradiction that two
triangles sharing an edge exist in K.(G), then in
G the corresponding triangles would share a pair of
edges, i.e. they would be the same triangle, against
the initial hypothesis that G is simple (see Fig. 5.b).

Lemma 4.3 Given an outerplanar graph G, its
edge-clique graph K.(G) does not contain cycles
longer than three.

Proof: Let us suppose, by contradiction, that a k-
cycle, k > 3, exists in K,(G). This implies that in G
there is a wheel of k triangles, each one sharing an
edge with its neighbors contradicting the fact that
G is outerplanar (see Fig.5.c). 0

'z\ @ @

Figure 5: Some combinations of triangles: a. the
only allowed combination in edge-clique graph of an
outerplanar graph; b. and c. forbidden combina-
tions in edge-clique graph of an outerplanar graph.

Definition 4.4 A tree of triangles is a simple graph
in which:

e cvery edge is involved in exactly one triangle (three
vertices and three edges);

e two triangles can share only one vertexr and each
vertex belongs to at most two triangles;

e the clique graph of a tree of triangles is a tree (see
Fig. 6).

Figure 6: A tree of triangles.

It is straightforward to see that:

Fact 4.5 A tree of triangles is an outerplanar graph
and each vertex has degree either 2 or 4.

Theorem 4.6 Let H = K.(G). Then G is an out-
erplanar graph G if and only if H is the disjoint
union of isolated vertices, isolated triangles and trees
of triangles.

Proof: In view of Fact 3.5, cliques of dimension 2
and 3 in G become isolated vertices and triangles, re-
spectively, in K.(G). Theorem 4.1 guarantees that
cliques of dimension 4 cannot exist.

Lemma 4.2 and Lemma 4.3 specify that groups
of connected triangles in K.(G) can only constitute
trees of triangles.

The converse is straightforward. 0

Theorem 4.7 Given an outerplanar graph G, its
edge-clique graph K.(G) is an outerplanar graph.

Proof: The statement descends from Theorem 4.6
and Fact 4.5. 0

5 The A-coloring problem

The radio frequency assignment problem consists
in assigning radio frequencies to transmitters at dif-
ferent locations without causing interference. This
situation can be modeled by a graph, whose ver-
tices are the radio transmitters/receivers, and the
adjacencies indicate possible communications and,
hence, interference. On this model, the radio fre-
quency assignment problem is then transformed into
a coloring problem, where colors represent possible
frequencies.

In the A-coloring problem [16] 'close’ transmitters
must receive different frequencies and ’very close’
transmitters must receive frequencies that are at
least two apart. The aim is to minimize the number
of used frequencies. In terms of graphs, two vertices
are 'very close’ if they are adjacent, while they are
‘close’ if lie at distance two in the graph.

More formally:

Definition 5.1 [3] A A-coloring of a graph G is a
function f from the vertex set V(G) to the set of all
nonnegative integers such that

1 1f(@) ~ ()] = 2 if dlw,y) = 1 and

2 [1(x) - F@)l > 1 if d(zy) = 2.

The A-number of G (simply A\(G) or X for short,
when no confusion arises) is the smallest number of
colors necessary to A-color G minus one, i.e. the
biggest used color in any optimal A-coloring.
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The A-coloring problem has been very studied in
the last decade, for its interesting applications in
the field of mobile computing, so many results are
present in the literature. Namely, for some classes
of graphs — such as paths, cycles, tilings, wheels
and k-partite graphs — tight bounds for the number
of colors necessary for a A-coloring are known and
such a coloring can be computed efficiently. Never-
theless, in general both determining the minimum
number of necessary colors [16] and determining if
this number is < k for every fixed k > 4 [14] is NP-
complete. Therefore, for many classes of graphs —
such as chordal graphs [24], interval graphs [12], un-
igraphs [8] — approximate bounds have been looked
for.

In Table 1 most of the known results related to A-
coloring of specific classes of graphs are summarized.

In this paper we investigate on A\-coloring of edge-
clique graphs. First, we can observe that a trans-
lation of Theorem 3.7 for A does not hold. Indeed,
MG) = MK(G))when G is a triangle, as it is the
fixed point for the K, operator. On the contrary,
AMG) < MK(@)) for any G clique of dimension
greater than 3. Finally, A(G) > A(K.(G)) when-
ever (G is a non trivial graph with no cliques (e.g.
G is a simple cycle). Hence, it seems not possible
to derive general bounds on \; on the contrary, we
have to handle the A-coloring problem separately on
each class of graphs.

Looking at the table and considering Theorem 3.3
it is easy to assert that results concerning the A-
coloring problem on chordal and strongly chordal
graphs hold for K.(G), too. From the other hand,
the edge-clique graph of a clique is still a clique (see
Fact 3.1) and for it we can compute an optimal A-
coloring. In the previous section we have proven
that the edge-clique graph of an outerplanar graph
is outerplanar; it follows that the results given in [7]
hold. More in general, results on A-coloring are ex-
tended to edge-clique graphs for all classes of graphs
C such that if G is in C so is its edge-clique graphs.
Concerning planar graphs, the results on A-coloring
planar graphs can be applied to edge-clique graphs
of planar graphs without cliques of dimension 4 (see
Theorem 3.4). Nothing we are able to say about
edge-clique graphs of planar graphs with cliques of
dimension 4 (cf. Fig. 3).

The edge-clique graph of a path, of a cycle with
more than 3 vertices, of a hexagonal or squared
tiling, of a tree and of a bipartite graph is a set of
isolated vertices (see Fact 3.2), and hence it makes
no sense to study the A-coloring of such a graph
because one color is trivially sufficient.
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The edge-clique graph of a triangular tiling is a
subgraph of a triangular tiling (see Fig. 8), then
for it we can consider the bound relative to trian-
gular tiling, even if it is not tight. In fact, using
techniques similar to those in [6], it is possible to
show that 6 < A < 7 (see Fig. 8.Db). It remains
an open problem to understand which is the exact
value of A. Concluding, for almost all the classes for
which bounds on A are known, it is possible to de-
termine bounds on A for their edge-clique graph. In
Section 6 we take a step forward on completing Ta-
ble 1 providing a linear time algorithm computing a
A-coloring of the edge-clique graph of a threshold
graph.

6 J\-coloring the edge-clique graph
of a threshold graph

In this section we completely describe the edge-
clique graph K.(G) of a threshold graph G, and then
we study the A-coloring problem on K.(G), provid-
ing a linear time algorithm that A-colors K.(G).

Let us consider the edge-clique graph K.(G) =
(V',E") of a threshold graph G = (Vkx U Vs, E). As
G is defined and from Fact 3.5, K.(G) contains a
clique K’ of dimension (‘VQ"l).

For what concerns the edges between K and S,
consider the general vertex v; € Vg and its neigh-
borhood N(v;) = u1,uz, ... Ugeg(v,) € Vi (see Fig.
7.a). The subgraph induced in G by {v;} UN(v;) is
a clique of dimension deg(v;) + 1. Therefore, such
a clique corresponds to a clique K/ in K.(G) of di-
mension (*/(J)F1) . This clique has deg(v;) vertices
outside K’, while shares all its other vertices with
K’ (see Fig. 7.b).

The previous reasonings must be replicated for
each vertex in Vg (see Fig. 9). It follows that K.(G)
is constituted by:

e a clique K’ of dimension (‘VQK |) (coming out
from K in G);

e |Vs| cliques K| of dimension (deg“;)ﬂ , 0=
1,2,...,|Vs| (coming out from each {v; }UN (v;)
in G).

Cerioli and Szwarcfiter [11] show that this is also
a sufficient condition, i.e. if K.(G) has these prop-
erties, then G is a threshold graph.

Observation 6.1 As a threshold graph is defined,
it must be (K{NK') 2 (K3NK') 2 ... 2 (K[gNK').
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|| | Classes of Graphs | Bounds on \ | Complexity ||
v/ | Paths A=2,3or 4 [16] P [16
v | Cycles A =4 [16] P [16
v/ | Cliques A=2A—2[16] P [16]
v/ | Hexagonal Tiling A=5 2, 6] P [2, 6]
v/ | Squared Tiling A=6[2,6 P[2,6
Triangular Tiling A=81[2,6 P 2,6
v/ | Trees A=A+1or A+2/[16] P [12]
% | Threshold A <2A [8] P [§]
* Outerplanar:
A>8 A< A+2
4<ALT A<11
A=3 A<A+5
A = 3 triangle free A<A+41(7
Strongly Chordal A < 2A [12]
Unigraphs O(A) [8]
v/ | Bipartite A= 06(A?) [3] NP-complete [3]
Planar A< 2A 425 [17] NP-complete
A< 5A 490 [20] 3, 15]
v/ | Chordal A< 2(A+3)7 [24] NP-complete [3
Split A= 0(A®) [3] NP-complete [3

Table 1: Some known results about A-coloring of specific classes of graphs. Symbol 4/ at the beginning of
a line indicates that the A-coloring problem on edge-clique graphs of the corresponding graphs is solved;
symbol x refers to results on edge-clique graphs achieved in the present paper.

a

Figure 7: a. triangular tiling; b.its edge-clique graph.
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Figure 8 How {v;} UN(v;) in G becomes in K.(G).

Now we describe a new algorithm to A-color an
edge-clique graph K.(G) of a threshold graph G by
giving first an high level view and then all the de-
tails.

For our aim it is not restrictive to suppose that
each vertex v; € Vg has degree deg(v;) > 2. Indeed,
if deg(v;) = 1 for some v; € Vg, the unique edge e;
incident to v; in G produces a clique of dimension 1,
i.e. an isolated vertex, in K,(G). The A-coloring of
this vertex does not increase the value of A\. Under
this assumption and from Observation 6.1 it follows
that all vertices in Kg N K’ are universal vertices,
i.e. they are connected to all vertices in the graph;
then, each vertex of K.(G) must receive a different
color.

Let S be V! — K’'. As an edge-clique graph is
defined, degree of each vertex in K’ is never less than
degree of any vertex in S’. Hence, it is possible to
sort all vertices of K.(G) according to their degree.
From now on let us call z1, s, ...,z x| vertices in
K’ and wy,ws,...wg| vertices in S’, so that the
higher is their degree, the smaller is their index.

The algorithm labels vertices in K.(G) one by
one, starting from vertices in K’ and going on with
vertices in |S’]. K’ is A-colored with the first |K’|
even colors [16], starting from the universal vertices
to vertex z|g/. The A-coloring of vertices in S’
works clique by clique, moving from vertices in K |’ Vel
to vertices in K7, and requires a final adjustment
phase in order to improve the A-coloring.
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Figure 9: a. A threshold graph G; b. its edge-clique
graph K.(G). For sake of clearness, the edges in the
cliques are not drawn.

Namely, working on vertices in K’ the not used
(odd) colors are put in a queue. Let ¢ be a color in

the queue. If either ¢ — 1 or ¢+ 1 are (even) colors
assigned to a universal vertex, then c is thrown out,

because each vertex w € S’ is adjacent to each uni-
versal vertex and therefore w cannot be labeled with
c. Otherwise, c is assigned to any vertex w € KNS’
such that neither ¢ — 1 nor ¢ 4+ 1 are used to label
some vertex in K/ N K’. If this is not the case, ¢ is
thrown out. After the queue is emptied, new colors
must be used. Of course, if a color c is assigned to a
vertex w € KNS, neither color ¢—1 nor c+1 can be
used in the same clique K, then they are enqueued.
After all vertices of K. (G) have been labeled, queue
may be empty or may be not. If the queue contains
some colors, the adjustment phase must be run, in
order to decrease the number of used colors. In par-
ticular, the algorithm visits all vertices in S’, and
looks for vertices whose colors can be replaced so
that colors in queue are used and the biggest colors
are thrown out.

Now, we trace the details of the previous algo-
rithm.

ALGORITHM A-COL-K.-THRESHOLD

Input: Edge-clique graph K.(G) = (V',E’) of a
threshold graph G = (K U S, E).

Output: A A-coloring for K.(G).

Step 1. A-Color K’
fori=1to |K | do
label x; with (even) color 2i — 2;
if (x; is not universal)
then
enqueue (odd) color 2i — 1;
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Step 2. A-Color S’/
for i = |Vg| downto 1 do

new «— FALSE;
while (3 a vertex w € K] NS’ not labeled
yet) do
if (queue-is-not-empty) and (new=FALSE)
then

dequeue color ¢;
if (¢ is feasible to A-color w)
then label w with color ¢
else throw color ¢ out;

else
consider the first new color c;
if (¢ is feasible to A-color w)
then label w with color ¢
else enqueue color c¢;

new «— TRUE;

Step 3. Adjustment phase (to be run only if
queue is not empty)
while (queue-is-not-empty)do
consider vertex Wemar € S’ having maxi-
mum color ¢,,qz;
dequeue c;
if (Jw € S’ having color ¢, s.t. labeling w
with ¢ and weme, With ¢, provides a feasible
A-coloring)
then
relabel wey,q With color c¢,;
relabel w with color c;
if color ¢4, — 1 18 in queue then throw it
out.

Before presenting the theorem that prove the cor-
rectness and complexity of the previous algorithm,
we want to better clarify Step 2. Namely, boolean
variable new is necessary for correctly labeling one
at a time vertices in clique K/: when queue is empty,
a new color ¢ must be considered and, if it is feasible,
new guarantees that colors ¢ + 2,c+ 4, ... are used
to label next vertices in the same clique K; never-
theless, when the algorithm moves to clique K7,
new switches its values so that colors c+1,c+3,...
are extracted by queue.

Theorem 6.2 Algorithm A-COL-K..-
THRESHOLD correctly computes a A-coloring
of the edge-clique graph K.(G) of a threshold
graph G in O(|V'|) time wusing no more than
V| +|K[g N K'| + [K1 N K| colors.

Proof: As the algorithm is designed, the produced
coloring is a feasible A-coloring.

In order to show that the algorithm uses no more
than [V’ + |K|g N K'| + [K{ N K'| colors, notice
that — as all vertices in K|q N K’ are universal —
no color can be reused, hence algorithm A-COL- K-

THRESHOLD uses at least |V’| colors. Further-
more, the algorithm throws out all (odd) colors close
to colors used to label the universal vertices, i.e.
| K II N K'| colors. Finally, if the current vertex w
cannot be labeled with the dequeued color ¢, we ob-
serve that no other unlabeled vertex w’ can, in view
of Obs. 6.1, and therefore we throw ¢ out. In such a
case, if w € K for some 4, ¢ must be close to a color
used to label a node v € K/ N K’. Tt follows that —
globally — no more than maz;| K/ N K'| = |K{ N K'|
colors can be thrown out. Up to now, no more than
a=|V'|+|K[g N K'| + K] N K| colors are used.
To conclude the proof, we have to show that algo-
rithm A\-COL-K.-THRESHOLD uses no more than
« colors, i.e. that Step 3 always empties queue. If
the number |S| of cliques K] is |S| > 1, then Step
3 always runs successfully, since the colors close to
enqueued colors have been assigned by Step 2 to
vertices in the biggest K!s (i.e. smallest values of
1); therefore, it is always possible to find vertices
w in the smaller K/s willing to swap their colors.
The worst case happens when |S| = 1 and the
unique resulting clique K7 is as bigger as possible.
In this case, |K'| and |K{| are both equal to (|12<|)7
if deg(v1) = | K| — 1, that is the maximum possible.

Observe that K/ can be partitioned into K{ N K’
and K1 NS = 5. As the algorithm works, ex-
actly |K] N K'| colors are thrown out, and in queue
there are |K'| — 1 — |[K] N K'|. A problem arises
if |[K{ N S’| is much bigger than the number of en-
queued colors. Indeed, in this case, the algorithm
would use many odd colors and would enqueue the
corresponding even colors, but these enqueued col-
ors could not be used in any way. As edge-clique
graph of a threshold graph is defined, in this case,
|K{ NS’| is exactly equal to |K’ — K7|, and then
all vertices in S’ can be labeled with enqueued col-
ors, but one; this last vertex uses a new consecutive
color and hence Step 3 does not need to be executed
because queue is empty.

To prove that the time complexity is linear in the
number of vertices of K.(G), let us do the following
considerations. Step 1 and 2 take time proportional
to |K’| and |S’|, respectively, hence O(|V’|) time,
globally. Also Step 3 can be carried on in linear
time, if the data structures are implemented in ap-
propriate way, e.g. with a set of links connecting
each used color ¢ with the vertex labeled ¢ and with
the position (in queue or on vertices of S”) of ¢ — 1
and ¢ + 1. In this way, it is sufficient to visit at
most once all vertices in S, starting from vertices
labeled with smaller colors, and this is equivalent to
visit them following their numbering in decreasing
fashion (from wjg/ to wy).
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Before concluding with an example showin\é
how algorithm A\-COL-K .-THRESHOLD works, we
want to highlight that, for the structure of K.(G),
it always hold: M(Kc(G)) = [V'| + [K[g N K'[ — 1.
This observation implies that, if the e&se statement
in Step 2 is never executed, the algorithm finds the
optimal solution; in any case, it always guarantees
a number of colors linear in the degree of K.(G).

6.1 An example

Let G = (Vkx N Vg, E) be a threshold graph
with |[Vk| = 5 and deg(vy) = deg(vs) = 4 and
deg(vs) = 2 and with the resulting edge-clique graph
depicted in Fig. 10.a. Step 1 of the algorithm la-
bels all vertices in K’ with consecutive even colors,
throw color 1 out and enqueue all other odd colors
from 3 to 2|K’| — 1 (see Fig. 10.a and Fig. 10.b).

Step 2 labels vertices in S’ starting from K%: it
dequeues colors 3 and 5 and assigns them to vertices
in KNS (see Fig. 10.c).

When K is considered, enqueued color 7 is not
feasible; the same holds for colors 9 and 11; therefore
they are thrown out (see Fig. 10.d). Vertices in
K/NS’ are labeled with the next four colors in queue
and queue is empty (see Fig. 10.e).

New colors are used to A-color vertices in K1 NS,
and consequently three close new colors are en-
queued (see Fig. 10. e and 10.f).

Wemax2

g
Figure 10: An example showing how algorithm A-
COL-K .-THRESHOLD works.
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[4] C.F. Bornstein and J.L. Szwarcfiter:

[6] T. Calamoneri and R. Petreschi:

Since queue is not empty, Step 3 must be run: ver-

tex labeled with 26 is selected as we,,q. and vertex

labeled with 13 is selected as w; SO Wemae IS rela-
beled with 13 and w with the first color in queue,
i.e. 21; color 25 is dequeued. Since queue is not
empty, this step is executed again, as shown in Fig.
10.e. At the end of Step 3 maximum used color is
decreased from 26 to 23.
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