
Coordinating Mobile Agents
through the Broadcast Channel

Vera Nagamuta1 and Markus Endler2

1Instituto de Matemática e Estatística
Universidade de São Paulo

Rua do Matão, 1010
05509-900 São Paulo, Brazil

nagamuta@ime.usp.br

2Departamento de Informática
PUC Rio

Rua Marquês de São Vicente, 225 – Gávea
22453-900 Rio de Janeiro, Brazil

endler@inf.puc-rio.br

Abstract

In distributed applications based on mobile agents, coordi-
nation and synchronization of the actions executed by a
team of mobile agents are difficult tasks. The main diffi-
culty comes from the fact that coordination requires the
agents to interact with each other in spite of their dynami-
cally changing locations.

In this paper we present a mechanism for coordinating
mobile agents which handles the problem of locating and
addressing members in a group of mobile agents. This
mechanism, which we called Broadcast Channel, imple-
ments reliable broadcasts of messages to a group of mo-
bile agents, independently of their current locations.

Keywords: mobile agent, coordination, broadcast

1 Introduction

Much work has been done in the design and implementa-
tion of execution environments for mobile agents [24, 15,
23, 1], but until now only few environments provide
higher-level services that give support for the coordination
among mobile agents. In our research we focus on exactly
this problem: How to support coordination for groups
(teams) of mobile agents. This problem is complex mainly
due to the lack of a fixed address (location) of the agents.

Coordination is mainly required for distributed programs
consisting of a team of cooperating agents, where each
agent is responsible for performing part of a common,
global task. Teams of mobile agents are likely to become
the means to implement several distributed and networked
applications in the future [11]. For example, one possible
application is the search for some information in the net-
work, to be performed in parallel by a group of agents and

which are supposed not to visit a same host more than
once. Another application could be a network manage-
ment task, where a set of agents is in charge of executing a
system-wide, consistent reconfiguration of software mod-
ules of a distributed program.

Some coordination models for mobile agents have been
proposed [15, 3, 7, 6], and have been classified by Cabri et
al[5], but all of them require either spatial or temporal
coupling.

The main contribution of our work is a new approach for
achieving coordination among mobile agents, which is
based on a mechanism which we called Broadcast Chan-
nel. The main characteristic of our approach is that loca-
tion management is entirely separated from the applica-
tion-specific inter-agent communications. With our ap-
proach, it is possible to program communications among
agents without worrying about their current locations. In-
stead, it is the mechanism’s responsibility to keep track of
the current location of agents and to guarantee that the
broadcast messages are delivered to all agents in the team.
Thus, our mechanism facilitates the programming of coor-
dinated activities (e.g. migrations) within teams of mobile
agents.

The remainder of the paper is organized as follows: in sec-
tion 2 we discuss some group communication systems and
compare them with our mechanism. In section 3, we pre-
sent some coordination models proposed for mobile
agents. In section 4, we present our coordination mecha-
nism, its basic elements and functioning, and section 5
presents an informal description of the protocol used to
implement our mechanism. In section 6, we give an exam-
ple showing how to use our mechanism to achieve mutual
exclusion among a set of agents. Section 7 discusses re-
sults of some performance tests performed with our proto-

63

type implementation. Finally, in section 8 we make some
concluding remarks.

2 Related Work

Since the early 80’s much effort has been invested in the
development of many sorts of group communication
mechanisms and services for distributed systems, because
it was recognized that they are a fundamental building
block for many distributed protocols. Among many devel-
oped group communication protocols and tools, the best-
known are probably the early Isis [4], Horus [21] and
Transis [2], and the more recent ORB-based systems, such
as Orbix+Isis [12], Electra [18] and OGS [10]. Most of
these works were focused on reliability and fault-toler-
ance, but reliable group communication is also a funda-
mental service for coordination and consensus protocols.

As for Mobile Agents, only few works have incorporated
group communication mechanisms into the agent pro-
gramming environments. To our knowledge, only Tacoma
[14, 13] and Concordia [25] provide some support for
group communication in a mobile agent environment.

Project Tacoma focuses on operating system support for
mobile agents. Its execution environment consists of a Tcl
interpreter that uses the Horus library. The advantage of
the approach is that Horus’s robustness and rich function-
ality is made available to mobile agent systems. The draw-
back is a lack of an integrated language model which ex-
poses the agent programmer to the details of the Horus en-
vironment.

Concordia does not actually support group communication
in the traditional sense, but instead provides a base class
called AgentGroupImpl which can be extended by the ap-
plication programmer with application-specific group op-
erations. Invocations of these operations by mobile agents
are then forwarded to a group daemon executing at a spe-
cific host. Subclasses of AgentGroupImpl are thus imple-
mented as a centralized agent that is used for storing data
sent by the group of migrating agents, but which is unable
to deliver messages to the agents asynchronously.

Compared with these works, the Broadcast Channel is
based on message diffusion, which has the advantage of
allowing asynchronous delivery of messages to the group
members (the agents). Moreover, the mechanism guaran-
tees delivery of messages to all group members in the
same order, even if some agents are temporarily non-
available due to a migration. Our mechanism is also seam-
lessly integrated into the mobile agent execution model of
ASDK (Aglets Software Development Kit [17]). More-
over, it handles all issues related to agent location tran-

sparently to the the programmer, so that he (or she) can fo-
cus on the application-specific interaction protocols in the
agent groups.

Actually, in our work, as well as in Tacoma and Concor-
dia, the main goal has been to support agent cooperation
rather than enhancing fault-tolerance. In the next section
we present some coordination models for mobile agents,
showing the advantages and drawbacks of each of them
before presenting our mechanism.

3 Coordination Models for Mobile
Agents

Cabri, Leonardi and Zambonelli [5, 6] presented a taxon-
omy of coordination models for mobile agents based on
spatial and temporal coupling, and defined four categories
of coordination models:

• Direct Coordination.
In this model, the mobile agents send messages directly
to each other. This model requires spatial coupling, be-
cause the sender must know the receiver’s identity and
temporal coupling, because the receiver must be active
during the communication.

This interaction mechanism has been incorporated in
most programming systems for mobile agents, such as
Sumatra [1] and AgentTcl [15]. In spite of its useful-
ness, it is not well suited for coordinating mobile
agents, mainly because it is based on peer-to-peer com-
munication, requires the applications to track the cur-
rent location of agents, and usually does not give sup-
port for deferred message delivery, e.g. when the mes-
sage destination is not currently reachable.

• Meeting-oriented Coordination.
In the meeting-oriented models, mobile agents interact
through meetings points, i.e. the place where a meeting
can occur. In this model, the agents must enter a given
meeting point in order to communicate and synchronize
with other agents. Meetings points impose a locality
constraint, since only local agents can participate in the
meeting.

This model solves the problem of locating agents, found
in direct coordination, but requires agents to know the
meeting point. Moreover, it requires synchronization
among the agents, e.g. they must be colocated at the
meeting point during at a certain period of time in order
to be able to interact with each other. Examples of sys-
tems based on this coordination model are Ara [20] and
MOLE [3].

Coordinating Mobile Agents Vera Nagamuta
through the Broadcast Channel Markus Endler

64

• Blackboard-based coordination.
In this model, the agents interact through shared mes-
sage repositories at each place, called blackboards, i.e.
the sender puts a message on the blackboard and the re-
ceiver can either read or retrieve the message from the
blackboard.

The main advantage of this model is the temporal un-
coupling: messages are left on the blackboard no matter
where the corresponding receivers are or when they will
read the message. The drawback of backboard systems
is the spatial coupling: the agents have to visit the cor-
rect place and agree on common messages types and
formats. Ambit [7] is an example of a system using the
blackboard-based coordination.

• Linda-like Coordination.
Linda-like coordination is also based on a shared name-
space, but unlike blackboards, it uses an associative tu-
ple space where information is organized as tuples and
can be accessed and retrieved through pattern-match-
ing.

The main advantage of the Linda-like coordination is its
temporal uncoupling and partial spatial uncoupling. Al-
though it does not require agent synchronization (e.g.
meeting at a certain place), the patterns used to access
the tuple space embody some implicit knowledge of the
peer agent’s interaction requirements. MARS [6] imple-
ments a variant of the Linda-based coordination, called
reactive blackboard, where changes to the tuple space
can be automatically mirrored on several places.

Each of the above coordination models requires some
form of temporal or spatial coupling among agents, and
most of them do not handle the problem of locating the
peer agent or the shared data space required for interac-
tion. In our work we follow an approach to mobile agent
coordination based on message broadcasts within groups
of agents. In this approach, spatial coupling is present only
as the requirement to be member of the group, and there is
no temporal coupling, meaning that all broadcast mes-
sages will eventually be delivered in the same order to all
group members.

4 Coordination via the Broadcast
Channel

The choice of message broadcasting as the primary means
for coordinating mobile agents was motivated by our un-
derstanding that many synchronization and consensus al-
gorithms are based on message diffusion. The main idea
was to design a mechanism supporting message diffusion

within groups of migrating elements, e.g. the mobile
agents. We called this mechanism Broadcast Channel
[19].

One of the components of the Broadcast Channel is an
element called Broadcast Proxy (or simply Proxy), which
executes at a fixed address and acts as main representative
of the group. It is responsible for processing broadcast re-
quest issued by agents and making sure that all members
of the group do in fact receive the broadcasted message.
Thus, for each team of cooperating agents a Proxy must
have been instantiated at some place.

The Proxy is similar to the AgentGroup of Concordia [9],
but it differs in that it has the additional function of broad-
casting messages to the group members and holding a lo-
cal copy of the messages until all agents have sent ac-
knowledged its receipt.

Location management, i.e. tracking the agent’s locations,
is also responsibility of the Broadcast Channel, and is
done as follows. Each of the places in this system is asso-
ciated with a domain, and within each domain there is a
specific place, called reference place. While this reference
place maintains the information about the current location
(e.g. a place) of every mobile agents in that domain, the
Proxy only keeps track of the current domain where each
mobile agent is currently located. Thus, the reference
places act as intermediates between the Proxy and the mo-
bile agents for locating and delivering broadcast mes-
sages. The main reason for using such an architecture with
this number of levels was our understanding that it is a
good trade-off between the overhead of message forward-
ing (by the intermediates) and the costs of handling loca-
tion updates due to agent migrations.

In order to perform its intended task, the Broadcast Chan-
nel requires an agent deployment infra-structure, and
makes the following assumptions about the execution en-
vironment:

1 there is no loss or corruption of agent-to-agent mes-
sages;

2 agents within a group start migrating only after the
Broadcast Channel (representing the group) has been
properly instantiated and configured;

3 only static groups are supported, i.e. mobile agents
cannot enter or leave a group dynamically;

4 all components that implement the Broadcast Chan-
nel are trustful and always available, i.e. there are no
failures of hosts or problems with the agent infra-
structure;

Vera Nagamuta Coordinating Mobile Agents
Markus Endler through the Broadcast Channel

65

5 agents migrate only to place that are within a regis-
tered domain and migration takes a finite time;

6 agents can migrate arbitrarily often, but eventually
each agent must stay a sufficient long period of time
at a place;

7 message transmissions can have an arbitrary, but fi-
nite duration.

If all of the above assumptions about the execution envi-
ronment are met, the Broadcast Channel guarantees that
all broadcast messages are eventually delivered to all
group members, and that delivery is in total order.

4.1 Basic Concepts and Architecture

The Broadcast Channel implementation is based on the
following elements:

• place: corresponds to the execution environment for
mobile agents. While executing at a place, an agent
may: (a) interact with other agents at the same place;
(b) send messages to agents at other places or (c) re-
quest to be dispatched to another place. Each place
must be assigned to a single host, but a host can have
several places.

• domain: is a set of places with a singular repre-
sentative, called reference place.

• reference place: is the representative of the domain. It
is a place with the following additional functions: (a)
hold references and forward messages to mobile agents
within the domain; (b) update the reference to an agent
when it changes place, and (c) interact with other refer-
ence places when agent migrates to another domain.

• Proxy: is a singular element with a fixed address, which
is known by all reference places and mobile agents par-
ticipating in a group. The Proxy maintains information
about the reference places, the mobile agents that are
members of the group and the domains where they are
currently located. Its main responsibilities include: (a)
broadcast of messages received from an agent that is
member of the group, (b) receive and keep track of ac-
knowledgements for each broadcasted message, (c)
maintain an updated record of agent locations (in terms
of domains) and (d) re-transmit messages when inter-
domain migration is notified.

• message: is the communication object of this mecha-
nism. Each message has a unique identifier given by
the Proxy, and is composed of a ������� component,
used by the communication protocols within the Broad-

cast Channel, and the ���� component, which carries
application-specific data.

Figure 1 depicts the architecture of the Broadcast Chan-
nel. Each rectangle represents a domain (D1 , D2‘, ..., Dn)
with the corresponding reference places
(RP1 , RP2 , …RPn), represented by hachured rectangles, a
set of places (P1 , P2 , … , Pj), represented by white rec-
tangles and a set of mobile agents represented by circles.
We assume that all the mobile agents in this figure are al-
ready registered with the Proxy. Arrow ➀ shows a mobile
agent MA1 sending a message to the Proxy. In ➁, this
message is broadcasted by the Proxy to the reference
places. In ➂, each reference place is sending the message
to places (within its domain) holding some agent, and in
➃, the places are forwarding the message to the mobile
agents. In ➄, the mobile agents are sending na acknow-
ledgment to the Proxy.

The choice of this architecture has two main advantages.
First, by managing location information at two levels (at
the Proxy and at each of the reference places) most of the
updates related to agent migrations can be handled by the
local reference places and need not be send to the Proxy.
Only in the case of an inter-domain migration, the refer-
ence place of the involved domains exchange some infor-
mation and the Proxy is notified about this migration,
making it possible for it to update its information about
the agent location, and to retransmit non-acknowledged
messages to the new reference place.

Second, this architecture decentralizes the task of message
broadcasting, by delegating part of the work to the refer-
ence place in each domain.

5 Informal Description of the Protocol
and Messages

The protocol used to implement the Broadcast Channel is
based on a set of control messages exchanged among its
elements (see Table 1).

The protocol also defines messages for the registration and
de-registration of agents. In order to be able to use the
Broadcast Channel, the agent must first register itself with
some Proxy at creation time. This is done by sending a
registration message (�	
����
��
	��) directly to the
Proxy. The Proxy announces the new agent registered to
all reference places.

Coordinating Mobile Agents Vera Nagamuta
through the Broadcast Channel Markus Endler

66

Figure 1: System Architecture

In order to ensure the reliable delivery of a message, the
Proxy assigns it a unique identifier MessageID (e.g. a se-
quence number), which is also used to implement total or-
dering. Mobile agents handle the messages according to
the MessageID and are able to detect missing or dupli-
cated messages.

When an agent moves to another place it may not receive
some messages which were sent during its migration, and
which then have to be re-sent to the agent. For this, both
the Proxy and reference place store all sent messages until
all agents (members of the group) acknowledge their re-
ceipt, by sending message ���������������� to the
Proxy. When all acknowledgments for a message have ar-
rived, the Proxy removes the corresponding entry from its
records and sends a request to reference places to remove
the message also from their messages queues.

5.1 Intra- and Inter-domain Migrations

There are two cases of migration: intra-domain and inter-
domain migrations. In both cases it is necessary to update
the information about the current location of the migrated
agent, and to re-send messages.

Before a migration, the agent sends a
���
���������

���� to the place where it is currently executing and dis-
patches itself to another place. When it reaches the new
place, it sends an ������� message indicating the refer-
ence place of the domain where it came from, the identi-
fier of the last handled message, and identifiers of mes-
sages not handled yet (called message repository). The
first argument is used to identify if the migration was in-
tra- or inter-domain, while the second and third are used to
identify which messages must be re-sent to the agent.

After receiving message ������� the place sends a �	
�

����
 message (with the same arguments of �������
plus its own identifier) to the reference place of the do-
main.

Through the message �	
����
, the reference place is
able to determine if the migration was intra- or inter-do-
main. In the first case, the reference place updates the
agent’s address locally, checks which of the messages
have not been received by the agent (comparing its local
message queue and the received message repository) and
eventually re-sends messages to the agent. Thus, in the
case of intra-domain migration, the Proxy does not receive
any notification.

Inter-domain migration requires more interactions among
the reference places and the Proxy, and in this case the
Proxy is also responsible for the message retransmissions.
When an agent moves from the domain with reference
place RP1 to domain with reference place RP2, the RP1

must delete its information about the agent. For this pur-
pose, RP2 sends a �	�	
����
 message to inform RP1

that the agent is leaving its previous domain. RP2 also lo-
cally registers the agent as pertaining to its domain and
notifies the Proxy about the migration through a �����	
message carrying its own identification (i.e. the new refer-
ence place address). With this message, the Proxy will up-
date also its registry about the agent’s location (i.e. its cur-
rent domain), check for non acknowledged messages and
re-send them to the new reference place.

Table 1 summarizes all control messages mentioned
above, indicating the transmitted arguments and its pur-
pose, where MA stands for Mobile Agent, RP for refer-
ence place and P for place.

AM2

RP2 RPn

MA2

Proxy

3

2

MA3

RP1

MA6

3

MA1

D1 D2 Dn

MA5

22

3

1

. . .
4

4
4

4

5

5

5

4

Vera Nagamuta Coordinating Mobile Agents
Markus Endler through the Broadcast Channel

67

Table 1: Broadcast Channel Control Messages

5.2 A Migration Scenario

In order to illustrate how the Broadcast Channel handles
message retransmissions caused by inter- and intra-do-
main migrations, Figure 2 shows a scenario from the mo-
ment a broadcast message is sent to a mobile agent, until
the acknowledgment from the agent is received by the
Proxy. For the sake of simplicity, this scenario assumes a
group with a single mobile agent.

For this scenario, we assume the existence of two domains
D1 and D2, where the first has reference place RP1 e and
places P1 and P2, and the second has reference place RP2

and places respectively P3 and P4.

Suppose that the mobile agent (��) is initially located at
place P1, has not received any messages before the Proxy
“broadcasts” message m1, and that before it receives this
message from P1 it migrates to place P2 (intra-domain mi-
gration – ➀). When RP1 receives the �	
����

(ID,RP1,P2,empty) message, it identifies that the migration
is intra-domain (comparing the first argument) and that
the agent did not receive any message yet (since the last
argument, is empty) and then, re-sends m1.

Now let’s assume that meanwhile the agent migrated to
place P3 (in ➁), of domain D2. In this case, RP2 identifies
this migration as inter-domain migration and notifies the
Proxy and RP1. When the Proxy receives message ���

���	 (in ➂), it checks for non-acknowledged messages
(in this case m1), and re-sends it, now to reference place
RP2.

The agent finally receives the message and sends a ����

���� (m1,ID) message to the Proxy. Finally, the agent
moves to place P4, but since the message has been ac-
knowledged, it is not sent again.

6 Example

In this section we give an example showing how the
Broadcast Channel can be used to solve a specific coordi-
nation problem, i.e. mutual exclusion, and describe the de-
velopment steps we followed for the implementation of
this example.

 An example for agent coordination requiring mutual ex-
clusion could be a team of agents in charge of visiting a
set of places, and where one wants to avoid that a place is
visited by more than one agent. In order to achieve this
coordination, before migrating to a new place, agent
would have to notify all other agents about the place it
plans to visit next. Such notifications could be naturally
implemented with the Broadcast Channel.

Yet another example would be if a team of agents (say T1)
is supposed to find any member of another team of agents
(T2), and where at most one pair of different agents should
start an interaction. This sort of restriction may be impor-
tant for applications where inter-team transactions must
only be performed once, and where individual agents have
the autonomy to perform actions without any further
query to a central database.

In order to test our mechanism, we used Lamport’s well-
known mutual exclusion algorithm [16] (based on logic
clocks) and developed a simple agent-based application
program that implements this algorithm using the Broad-
cast Channel. Although Lamport’s algorithm is quite sim-
ple, and despite the fact that several optimizations of it
have been suggested [22, 8], it was well suited for our pur-
pose, since it is based on broadcasts. In Figure 3 is shown
part of the pseudo-code for the agents, structured as state-
ments of the form event =>action.

Msg Type Arguments Origin - Destiny Meaning
REGISTRY_AGENT AgentID,

RefPlaceAddr, PlaceAddr
MA ➝ Proxy Registers a new MA at the Proxy

GOING_TO AgentID MA ➝ RP,
MA ➝ P

Notifies the P or RP where is located
that it is migrating to oder P or RP

ARRIVAL AgentID
oldRefPlaceAddr

msgRep

MA ➝ RP
MA ➝ P

Notifies that MA is entering to
this P or RP

REGISTRY AgentID
oldRefPlaceAddr

newPlaceAddr, msgRep

P ➝ RP Registers the MA in the corresponding
migrations

DEREGISTRY AgentID RP ➝ RP De-registers the MA from the old RP

Coordinating Mobile Agents Vera Nagamuta
through the Broadcast Channel Markus Endler

68

Figure 2: Example of Inter- and Intra-domain Migrations

The main idea of the original algorithm is as follows. Each
of the N process maintains a Lamport timestamp (a
counter) and an array ������ of size N, where element
�������� contains the latest message (either of type �	!,
��" or �	�) received from process �, with the corre-
sponding timestamp of the sender. Whenever a process re-
quires the mutual exclusiveness, it broadcasts a �	! mes-
sage to all processes, including itself. The receipt of this
message is acknowledged by each other process with an
��" message and its local timestamp. Thus, �	!s and
��"s sent from any process are stored in the correspond-
ing entries of ������, at every process.

Whenever a process gives up its right for exclusiveness, it
broadcasts a �	� message with its identifier and current
timestamp, and array ������ at all processes are updated
accordingly. Then, every process checks the elements in
������ to find out which is the pending request with the
oldest (i.e. lowest) timestamp 1, and the corresponding
process takes its exclusive access right. Since all processes
maintain their ������ arrays perfectly synchronized, and
local clocks are updated according to Lamport’s method,
the algorithm in fact implements mutual exclusion.

In order to use Lamport’s algorithm with the Broadcast
Channel we made the following minor adaptations: One
of the Proxy’s arguments is the size N of the group, i.e. the
number of mobile agents participating in the mutual ex-
clusion algorithm. As soon as the Proxy receives N regis-
tration messages from the participants, it broadcasts the
list of all �������s to all agents, which perform an identi-
cal mapping from �������s to ������ indices. After the
initial set-up, all mobile agents use the Broadcast Channel

as the only means of communication with the other
agents. Each broadcast request for the Proxy is a string of
the form ��
�	#$ ��#$���, where �
�	 is either �	!, �	�

or ��" , �� is the agent’s Id and �� is its current times-
tamp. Notice these are the application specific messages,
as opposed to the ������� messages used to control the
mechanism per se. In order to test the mutual exclusion,
we also implemented a stationary %��&�%'�$ �����$,
which logs all accesses to it.

For the implementation of this and other examples [19],
we followed the sequence of steps below:

1 Define the application specific messages (in this
case, messages �	!, �	� and ��");

2 Extend the class Agent (of our mechanism API)
with application specific attributes and functions (in
this example we created two kinds of agents: a %��

(����$����� and a %��&�%'�$�����);

3 Extend the class Proxy;

4 Define and create the infrastructure of the Broadcast
Channel (section7) and instantiate the agents devel-
oped in step (2).

Through our implementation of this mutual exclusion ap-
plication, we confirmed that at each moment only one %��

(����$ ����� accessed the %��&�%'�$ �����, and hence
showed that all broadcast messages issued via the Broad-
cast Channel were received and handled correctly.

Vera Nagamuta Coordinating Mobile Agents
Markus Endler through the Broadcast Channel

69

1 In the case of requests with same timestamp, the algorithm gives higher priority for the requests originated from the process with lower process-Id.

Figure 3: Pseudo-code for the agent

7 Prototype Implementation and Tests

The Broadcast Channel was implemented using the
Aglets Software Development Kit (ASDK) [17], an agent
programming environment developed at the IBM Tokyo
Research Laboratory. The main elements of the Broadcast
Channel infra-structure: the Proxy, reference places and
places are all implemented as stationary aglets2 (i.e.
classes Proxy, Place and Reference Place are ex-
tensions of ASDK’s Aglet class 3).

These elements are instantiated, configured and dis-
patched to hosts by an aglet called Infrastructure-
Launcher, which provides a graphical interface to the
user. Through this interface, the user creates the places,
chooses at which host they will execute, defines the do-
mains and the locations of the Proxy and the reference

places. After the set up of the Broadcast Channel configu-
ration is finished, it is expected to remain fixed, i.e. no
places or reference places can be added or removed. Fi-
nally, mobile agents can be instantiated at the various
places and their first action will be their registration with a
Proxy.

In order to use the Broadcast Channel for a specific appli-
cation, classes Proxy and Agent have to be extended by
the programmer, in order to add application-specific at-
tributes and functions.

7.1 Tests

In this section we present the results of some tests that
aimed at measuring the overhead incurred by the Broad-
cast Channel both for stationary agents, and for two pat-

Coordinating Mobile Agents Vera Nagamuta
through the Broadcast Channel Markus Endler

70

2 In ASDK, agents are programmed in Java and are called aglets (agent+applet).

3 The source code of the Broadcast Channel is available at http://www.ime.usp.br/~nagamuta/bchannel.html/.

terns of agent migrations. We called the first ones static
tests and the latter dynamic tests. In all tests, we measured
the time from the moment the Proxy broadcasts a message
until it receives the last acknowledgment for the message.
The tests were run on SparcStations (60-167 MHz) exe-
cuting Solaris 5.7 as clients in our network. It is worth-
while to note that the tests were not aimed at providing a
complete and detailed picture of the mechanism’s per-
formance, but only to identify which factors do most con-
tribute to the mechanism’s overhead.

In the static tests we compared the performance of the
Broadcast Channel with that of a simple ASDK program
which broadcasts messages to a set of stationary agents,
by using ASDK’s message passing facility (method ����

)��*'+�������). We called it direct sending. The goal
with these tests was to assess how much overhead the
message forwarding within Broadcast Channel produces
for different numbers of agents and domains.

Figure 4 represents the result of a static test done with 4
hosts, 9 places and 3 domains (for the Broadcast Chan-
nel).

We considered groups of mobile agents with 3, 6, 12, 24,
36 and 48 agents, and we took the mean value from meas-
ures for 60 broadcasts for each group size.

As expected, and shown in Figure 4 , the time required for
direct sending is lower than the one using Broadcast
Channel, but the second is always less than the double of
the first one.

Figure 4: Static test with 9 places

The same test was done with 2 hosts, 6 places and 4 hosts,
6 places, considering the same number of agents. The re-
sult of the direct sending for these three cases was almost
the same but, as shown in Figure 5 in which we have just
the results for the Broadcast Channel, we can see that the
best performance of the Broadcast Channel is achieved

when we have a greater number of hosts and places. This
is due to the descentralized processing within the Broad-
cast Channel, and the advantages of having less number
of agents per domain.

In the dynamic test we defined a fixed, but arbitrary, itin-
erary for each mobile agent, and compared two different
stay periods (i.e. the period of time each agent stays at a
place). Thus, a short stay period means high migration fre-
quency, and vice-versa. We compared the times required
by the Broadcast Channel to broadcast a number of mes-
sages to different numbers of agents when their stay times
are high and when they are low. In these tests, we used a
single stationary agent whose only task was to peri-
odically request a broadcast to the group of mobile agents.

Figure 5: Comparison

The goal of these dynamic tests was to assess how much
the mechanisms performance degrades when the migra-
tion frequency increases. Although we did tests only for
two stay periods (8 and 25 seconds), it was sufficient to
notice that it takes more than the double of time to deliver
(and get acknowledgments for) all messages when a sig-
nificant number of agents (more than 15) are frequently
migrating among six places within three domains (as
shown in Figure 6). The main reason for such increase in
message delivery times is the fact that due to the frequent
migrations, much more messages have to be re-transmit-
ted, either by the Proxy or by the reference places.

We also measured the delivery times for the same two
stay periods (8 and 25 seconds), but with a configuration
of nine places (instead of six places) and three domains.
Figure 7 shows that with this configuration, the increase
of delivery times is much slower. This is probably caused
by the fact that since in this case we have more places per
domain, there is a lower probability of occurrence of the
more costly inter-domain migrations.

Vera Nagamuta Coordinating Mobile Agents
Markus Endler through the Broadcast Channel

71

Figure 6: Dynamic test with 6 places

Figure 7: Dynamic test Figure 7: Dymanic test with 9 places

Based on the results of both sorts of tests, we noticed that
the Broadcast Channel achieves best performance when
the frequency of all agent migrations within a group is
relatively low, and when the probability of inter-domain
migrations is much lower than that of intra-domain migra-
tions.

We are aware that in order to get more accurate informa-
tion about the Broadcast Channel performance, much
more tests would be required. In the future we plan to per-
form also some tests where places and reference places
are shared by more than one Proxy, hoping to identify
places where the mechanism can be optimized.

8 Conclusion

In this paper we presented a coordination mechanism
called Broadcast Channel, which offers an alternative way
to coordinate groups of mobile agents. The main purpose
of the mechanism is to facilitate the task of programming
teams of cooperating mobile agents. The main benefit is
that location management is completely separated from in-

ter-agent communication. We implemented a prototype of
the Broadcast Channel IBM’s Aglets Software Develop-
ment Kit (ASDK) [17].

When comparing our mechanism with other coordination
models for mobile agents (see section 3), we think it has
the following advantages:

• There is no need for the agents participating in a group
to know each other’s identity or current location. In-
stead, all messages are broadcasted to all agents regis-
tered with a Broadcast Channel regardless of their cur-
rent location, and are eventually delivered even if an
agent is migrating between places;

• The mobile agents do not need to be synchronized or be
located at the same place to interact with each other, as
in the meeting-oriented coordination model;

• Because the Broadcast Channel requires only a mes-
sage passing mechanism, it can be implemented on the
top of most mobile agent execution environments,
given that the assumptions listed in section 4 are all sat-
isfied.

The main drawbacks of our mechanism are the following:

• In order to use the Broadcast Channel a mobile agent
must know the address of the Proxy corresponding to
the group of which it should be a member. This infor-
mation must be provided by the user at the agent in-
stantiation;

• Each broadcast request to the Broadcast Channel
causes an additional overhead due to message retrans-
mission, as shown by the static tests. Agent migrations
are the major cause of the overhead produced by the
Broadcast Channel, specially inter-domain migrations,
since they require both more control messages and the
retransmission by a central element.

Despite these problems, we believe the Broadcast Channel
to be an useful tool for developing cooperating teams of
mobile agents, mainly because the programmer has not to
deal with the issue of tracking the agents locations. How-
ever, the Broadcast Channel might be useful mainly for
applications with low performance requirements, where
domains have many places, and where migrations are not
so frequent.

As future steps, we plan to use our mechanism for a real-
world agent-based applications, such as network-wide
software configuration. Moreover, we plan to re-evaluate
our design and protocols, looking for possible optimiza-
tions.

Coordinating Mobile Agents Vera Nagamuta
through the Broadcast Channel Markus Endler

72

Acknowledgement

This project is partially supported by CAPES (Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior)
and FAPESP (Fundação de Amparo à Pesquisa do Estado
de São Paulo) - Grants No. 98/06138-2 (Project SIDAM)
and No. 00/08742-6.

References

[1] A. Acharya, M. Ranganathan and J. Saltz. Sumatra: a
Language for Resource Aware Mobile Programs. Mobile
Object Systems, Lecture Notes in Computer Science,
Spring Velarg(D)(1222):111-130, February 1997.

[2] Y. Amir, D. Dolev, S. Kramer and D. Malki. Transis: A
Communication Subsystem for High Availability. Tech.
Report TR CS91-13, Computer Science Dept., Hebrew
University, Jerusalem, 1991.

[3] J. Baumann, F. Hoh, K. Rothermel and M. Strasser.
Mole - Concepts of a mobile agent system. World Wide
Web, 1(3):123-137, 1998.

[4] K. P. Birman and R. V. Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Soci-
ety Press, Los Alamitos, 1994.

[5] G. Cabri, L. Leonardi and F. Zambonelli. How to Coor-
dinate Internet Applications based on Mobile Agents.
IEEE Seventh International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), 104-109, June 1998.

[6] G. Cabri, L. Leonardi and F. Zambonelli. Reactive Tuple
Spaces for Mobile Agents Coordination. In Proc. of the
2. International Workshop on Mobile Agents, LNCS Vol.
1477, pages 237-248, Stuttgart, Germany, September
1998.

[7] L. Cardelli and D. Gordon. Mobile Ambients. In Pro-
ceedings of Foundations of Software Science and Com-
putation Structures (FoSSaCS), LNCS Vol. 1378, pages
140-155, Berlin, Germany, March, 1998.

[8] O. Carvalho and G. Roucariol. On Mutual Exclusion in
Computer Networks. Communications of the ACM,
26(2):146-147, February, 1983.

[9] A. Castillo, M. Kawaguchi, N. Paciorek and D. Wong.
Concordia as Enabling Technology for Cooperative In-
formation Gathering. Proc. of Japanese Society for Arti-
ficial Intelligence Conference, June 1998.

[10] P. Felber. The CORBA Object Group Service: A Service
Approach to Object Groups in CORBA. PhD thesis,
École Polytechnique Fédérale de Lausanne, Switzerland,
1998.

[11] Michael N. Huhns. Agent Teams: Building and Imple-
menting Software. IEEE Internet Computing, 4(1):93-95,
February 2000.

[12] Isis Distributed Systems Inc. and IONA Technologies
Ltd. Orbix+Isis Programmer’s Guide, Document D070-
00, 1995.

[13] Dag Johansen, Keith Marzullo, Fred B. Schneider, Kjetil
Jacobsen and Dmitrii Zagorodnov. NAP: Practical Fault-
Tolerance for Itinerant Computations. In Proc. of the
19th IEEE International Conference on Distributed
Computing Systems (ICDCS’99), May 1999.

[14] Dag Johansen, Fred B. Schneider and Robbert van
Renesse. What TACOMA Taught Us. Mobile Agents
and Process Migration - An edited Collection, Addison
Wesley, 1998.

[15] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla and G. Cy-
benko. Agent TCL: Targeting the Needs of Mobile Com-
puters. IEEE Internet Computing, 1(4):58-66, July 1997.

[16] L. Lamport. Time, Clocks and the Ordering of Events in
a Distributed System. Communications of the ACM,
21(7):558-565, July 1978.

[17] D. B. Lange and M. Oshima. Programming and Deploy-
ing Java Mobile Agents with Aglets, Addison-Wesley,
1998.

[18] Silvano Maffeis. Run-Time Support for Object-Oriented
Distributed Programming. PhD thesis, University of Zu-
rich, 1995.

[19] Vera Nagamuta. Coordenação de Agentes Móveis
através do Canal de Broadcast. Master’s thesis, IME,
University of São Paulo, R. do Matão 1010, 05508-900
São Paulo, Brazil, November 1999.

[20] H. Peine and T. Stolpmann. The Architecture of ARA
Plataform for Mobile Agents. Proceedings of the First
International Workshop on Mobile Agents, LNCS 1219,
Berlin(D), pages 50-61, April 1997.

[21] R. V. Renesse, K. Birman and S. Maffeis. Horus: A
Flexible Group Communication System. Communica-
tions of the ACM, 39(4):76-83, April 1996.

[22] G. Ricart and A. K. Agrawala. An Optimal Algorithm
for Mutual Exclusion in Computer Networks. Communi-
cations of the ACM, 24(1):9-17, January 1981.

[23] K. Rothermel and R. Popescu-Zeletin. Mobile Agents.
First International Workshop on Mobile Agents (MA
’97LNCS), Vol. 1219, Springer-Verlag, Berlin Germany,
1997.

[24] G. Susilo. Infrastructure for Advanced Network Manage-
ment based on Mobile Code. Technical Report SCE-97-
10, Systems and Computer Engineering, Carleton
University, 1997.

[25] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie,
Mike Young and Bill Peet. Concordia: An Infrastructure
for Collaborating Mobile Agents. In Proc. First Interna-
tional Workshop on Mobile Agents 97 (MA’97), Berlin,
LNCS 1219, pages 86-97, Springer-Verlag: Heidelberg,
Germany, April 1997.

Vera Nagamuta Coordinating Mobile Agents
Markus Endler through the Broadcast Channel

73

