Generating Permutations and Combinations in Lexicographical Order

Alon Itai
Computer Science Department
Technion Haifa Israel

Abstract

We consider producing permutations and combina-
tions in lexicographical order. Except for the array
that holds the combinatorial object, we require only
O(1) extra storage. The production of the next item
requires O(1) amortized time.

Keywords: Permutations, combinations, amortized
complexity.

1 Introduction

Let n and p < n be integers, and let N denote
{1,...,n}. A p-combination is a subset of N of size p.
A p-combination, o, may be represented by a boolean
array of size n, i.e., o; = 1 if and only if i € 0. A
permutation m over N can also be represented by an
array of n distinct integers, w1 ---m, € N. An array
a=ay---ay is lezicographically less than b= by --- b,
if for some i: a; < b; and for all j < i, a; < b;. A
permutation (combination) 7 is lexicographically less
than o if the array that represents 7 is lexicograph-
ically less than the one that represents o. Thus the
permutations are ordered

12---n <g
<r
<r nn-1)---21;

12---(n—=2)n(n—1)

and the p-combinations are ordered

00---011---1 <z 00---01011---1
— ~——
P p—1
<r
<r 11---100---0.
—

p

We consider producing permutations of N and p-
combinations in lexicographical order. Producing the
next object might require O(n) time: consider the con-
secutive permutations In(n — 1)---2 and 2134 ---n,

since these two permutations differ in all positions,
given the first permutation Q(n) time is required to
produce the second one. We show algorithms whose
amortized time complexity is O(1), i.e., the time re-
quired to produce m consecutive objects is O(n +m).

While previous algorithms required auxiliary data
structures of size 6(n), our algorithms require at most
O(1) additional space. Thus our data structure is im-
plicit [4]. An algorithm for generating combinatorial
objects is memoryless if its input is a single object with
no additional structure and its output is the next ob-
ject according to some prespecified order. In our case,
an algorithm is memoryless if its input consists of no
data other than the array required to store the per-
mutation or combination.

We present a memoryless algorithm to produce per-
mutations. While, for combinations, our algorithm re-
quires retaining in addition to the combination two
integer variables. Moreover, these modest extra space
requirements cannot be improved without sacrificing
time—we show that every memoryless algorithm for
producing p-combinations requires non-constant time.

1.1 Previous research

There is a considerable body of research in con-
structing combinatorial objects. Knuth and Szwarc-
fiter [3] produce all topological sortings, Squire [5] gen-
erated all acyclic orientations of an undirected graph,
and Szwarcfiter and Chaty [6] generated all kernels of
a directed graph with no directed cycles.

Walsh [7] presents two non-recursive algorithms to
produce all well-formed parenthesis strings. The first
generates each string in O(n) worst-case time and re-
quires space for only O(1) extra integer variables, and
the other generates each string in O(1) worst-case time
and uses O(n) extra space. Thus he too shows a
time/space tradeoff.

Ehrlich [2] and [1] generate permutations and com-
binations in O(1) worst time complexity. They both
use O(n) time and the objects are not generated in
lexicographic order.

65

Generating Permutations and _
Combinations in Lexicographical Order

Alon Itai

2 Permutations

The lexicographically first permutation is
12---n

and the last is
nn—1---1.

Let 7 - - m;_1% denote the set of all permutations
of N whose prefix is 71 - - - m;—1. In the lexicographical
order these permutations appear consecutively, i.e., if
ml,m? € m--mx and 7! <p o <z w2 then o €
Y e 1%,

The first permutation, w!, of my -+ m;_1* satisfies
< mk. The last one, 72, satisfies 72 >

. > m2. Let m be the permutation immediately
following m2. The permutation 72 cannot belong to
ik, I w1 > 7r,2 then 72 is the last per-
mutation of 7y ---m_o*. Hence m & my---m_o*.
If, however, m;_1 < m; then exchanging m;, 1 and m;
yields a lexicographically larger permutation. Thus

7 € m---mi_o%, and is the first permutation of

71 - - - Ti_o% which is lexicographically larger than 2.

Thus 3, € {n? w2} ={m---m.}, ie,

o< .
2

2

7 =min{m; :j >iand 7; > m_1}. (1)

Since any permutation o € 7r1-~-7ri,27rf’_1* is lex-
icographically greater than 72, the permutation 73
is the minimum permutation of 71 ---m;_om} |, i.e.,
71'?<7Tf’+1 <... <7T:73L.

Given a permutation m = 7y - - - 7, to find the next
permutation 73, we first find the last decreasing sub-
sequence m; > Tiy1 > ... > T, by scanning from
position n; then we find 73 ; by equation (1); swap
positions ¢ — 1 and j. Now 72 > ... > 71']2-71 > 7 >
7rJ2 > > 72. The final sequence is obtained by
reversing 77 - - - 2. See Program 1.

Finding the index i requires #(n —7) time. Likewise
for j. Reversing the sequence also requires 6(n — i)
time. For i =1 or j = 1 the amount of work is there-
fore (n). We next show that the amortized complex-
ity is much lower.

Theorem 2.1 Procedure next_perm() requires O(1)
amortized time.

Proof: Fori=1,...,n—1 let

o — 1 ifm > miga
‘71 0 otherwise.

And define a potential fuction

n—1

®(n) = Zc

66

int n,v[n];
int next_perm()
{
int i, j, k;
for(i=n-1;i>0 && v[i-1]>v[i];i—-)

if(i == 0)
return O;
for(j=i+1; j<n && v[i-11<v[jl; j++)

swap v[i-1] and v[j-1];
reverse v[i..n-1];
return 1;

Program 1

The actual time is ¢ = n — 4 and since 7] < 7, <
...<m, AP = —(n—i—1). Thus the amortized time
is

a=t+Ad=0(1).

O

Note that since two consecutive permutations may

differ by up to n places (e.g. n—1nn—2n—3---1 and

n12---n—1) the worst case time is #(n). Thus in or-

der to achieve O(1) time, we must settle for amortized
complexity.

3 Combinations
3.1 Upper bound

We will use the following notation: 1* will denote
a run (a consecutive block) of k “1”s and 0% a run of
k “0”s. In addition to the boolean array of size n that
represents the p-combination, we keep two counters ¢
and r. The counter 0 < r < p counts the number of
“1”s that follow the last “0”, and the counter 1 < ¢ <
n—p counts the number of consecutive “0”s before the
last run of “1”s, i.e., m = a091".

Let 7 be the current combination: There are two
cases to consider:
Case 1: r > 0, i.e., m ends with a “1”.
Exchange the first “1” of the last run of “1”s with the
last “0” of the last run of “0”s.

a0?1” = a0771'011" ! = 07711017 = /071",

where o/ = 09711, ¢ =1 and 7' =r — 1.
Case 2: r =0, i.e., m ends with a “0”.

Alon Itai

Generating Permutations and
Combinations in Lexicographical Order

int n, v[nl, p, r, q;
/* v contains exactly p ‘‘1"s,
.. 10714 */
int next_comb()

{

int s,lastl, f;

if(r > 0){
v[n-r] = 0;
v[n-r-1] =
r-—;
q=1;
return 1;

}

if(q == n-p)
return O;

lastl = n—-q-1;

for(f = lastl; v[f]l; £--)

v[f++] =

v[f] =

= lastl - £ + 1;
swap v[f+1..f+1+min(s-1,q)] and
v[n-min(s-1,q)..n-1]
q++t;
r = s-1;
return 1;

Program 2

If g = n—p, then # = 170”7 is the last combination.
Otherwise, the next combination is produced by ex-
changing the first “1” of the last run with the “0” on
its left and moving all the remaining “1”s of the last
run all the way right, i.e.,

7 =a01°0" = al0711571 = /071" =/

3

where o/ = al,q¢ =qg+1andr =s—1.
See Program 2.

Theorem 3.1 Procedure next_comb() requires O(1)
amortized time.

Proof: Consider the potential function ® = p—r. Let
r; denote the value of r after the i-th operation.

Case I(r >0): @=p—r, o =p—1" =p—(r —
1). Then A® = & — & = 1. Since in this case the

procedure next_comb only exchanges two positions, the
actual time is ¢t = 1. Hence, the amortized time is
a=1t+AP=0(1).
Case2 (r=0): ®o=p, ¥ =p—(s—1)=p—s+1.
AP =90 —D=(p—s+1)—p=—s+1. In this case,
The actual time t = 1 + min{s, ¢} < 1+ s. Thus, the
amortized time is a =t + A® = O(1).

O

3.2 Lower bounds

First note that the amortized time bound cannot be
replaced by a “worst case” bound since the number of
bits that have to be changed between two consecutive
combinations is 1 4+ min{q,r}. In particular, the com-
bination 0170" P! is followed by 10" "P1P~! which
involves 1+ min{p, n — p} changes. This is maximized
when p =n/2.

Consider a memoryless scheme that operates on m =
a0?1". Tf the sequence ends with a “1” (r > 0), we
must find the first “0” before the the last run of “1”s,
and since we have no extra data we must scan 7 from
its right-hand end until finding a “0”, i.e., scan r “1”s.
If the sequence ends with a “0” (r = 0) then we have
to find the first “1” before the last run of “0”s, i.e., the
time is ¢q. Since there are p “1”s the probability that
the last digit is “1” is p/n, and the probability that
the sequence ends with a “0” is 1 — p/n. The average
time is therefore:

An(p)

P(r > 0)E(r|r > 0) 4+ P(r =0)E(qg|r =0)
PEGr>0)+ (- %)E(qhﬂ =0).

When r > 0 the last digit is “1”7, and we have p—1
other “1”s which are partitioned by the n —p “0”s to
n—p+1 runs (some of which might have zero length).
The average length of such a run is therefore - ;-1%1
Since the last run of “1”s ends with an additional “17,
its average length is 1 + 2= ~1H =

When r = 0 the last dlglt is “0” and the remaining
n—p—1 “0”s are partitioned by the p “1”s to p+1 runs
of “0”s. Their average length is “=2=L The average

p+1
WO o n—p—1 _ n
length of the last run of 07sis 1+ 5= = 5.
p n p n
M) = D (1-2)
(p) nn—p+1+ p+1
p n—p
n—p+1 p+1°

The asymptotic value of A, (p) depends on p. The
first term monotonically increases while the second de-
creases. For p = cn, A,(p) = O(1), for p = /n
or p =n—+n, A,(p) = 6(/n) and for p = 1 or

67

Generating Permutations and
Combinations in Lexicographical Order

Alon Itai

p=mn-—1, A,(p) = 6(n). In general, for a function
1< f(n) <n,and p= f(n) or p=n— f(n), we have
that A,(p) = 0(n/f(n)).

Thus for many values of p the average time required
to produce the next combination is not constant but an
increasing function on n. Hence, for memoryless algo-
rithms the amortized complexity is also non-constant.

References

[1] Nachum Dershowitz. A simplified loop-free
algorithm for generating permutations. BIT,
15(2):158-164, 1975.

[2] Gideon Ehrlich. Loopless algorithms for generat-
ing permutations, combinations, and other com-
binatorial configurations. Journal of the ACM,
20(3):500-513, 1973.

[3] D. E. Knuth and J. L. Szwarcfiter. A struc-
tured program to generate all topological sort-
ing arrangements. Information Processing Let-
ters, 2:153-157, 1974.

[4] J. L. Munro. An implicit data structure for the
dictionary problem that runs in polylog time. In
FOCS, volume 25, pages 369374, 1984.

[5] Matthew B. Squire. Generating the acyclic ori-
entations of a graph. Journal of Algorithms,
26(2):275-290, 1998.

[6] J. L. Szwarcfiter and G. Chaty. Enumerating the
kernels of a directed graph with no odd circuits.
Information Processing Letters, 51:149-153, 1994.

[7] Timothy R. Walsh. Generation of well-formed
parenthesis strings in constant worst-case time.
Journal of Algorithms, pages 165-17, 1998.

68

