Contributions of Jayme Luiz Szwarcfiter to Graph Theory and
Computer Science

Claudio Leonardo Lucchesi *
Institute of Computing, UNICAMP,
C. P. 6176, 13083-970 Campinas, SP, Brazil
lucchesi@ic.unicampbr

Abstract

This is an account of Jayme’s contributions to
Graph Theory and Computer Science. Due to restric-
tions in length, it is not possible to provide an in-depth
coverage of every aspect of Jayme’s extensive scientific
activities. Thus, I describe in detail only some of his
principal contributions, touch upon some and merely
list the other articles.

I found it easier to write the article in the first per-
son, as though it is an account of a previously given
lecture.

Mucho gusto en conocerlo

According to Marisa Gutierrez, this is the way peo-
ple say “nice to meet you” in Argentina.

The first time I heard of Jayme was back in 1974.
At that time I was a graduate student at the Univer-
sity of Waterloo, in Canada. In those days I used to
become quite upset with the general lack of knowledge
about Brazil. The standard joke among the Brazilian
students was that every foreigner thought that Buenos
Aires was the capital of our country.

A friend of mine came by my office and showed me
a copy of one of Jayme’s articles, a joint paper with
Donald Knuth [30]. A very nice paper. However, my
friend’s intention was not to contribute to my edu-
cation, but to irritate me with the title page of the
article. It showed Jayme’s name, followed by the af-
filiation, and I quote: Universidade Federal do Rio de
Janeiro, Argentina.

T must say that the elegance and simplicity of the
paper was worth the irritation. There was also the
added pleasure of seeing a Brazilian publishing a paper
with Knuth. As you know, Knuth is one of the most

*Supported by a grant from ¢NPq. Supported by the program
PRONEX/CNPq (664107/1997-4).

illustrious researchers in Computer Science. Almost
20 years later, in 1992, Knuth wrote a book entitled
Literate Programming [29]. Chapter 3 of this book
contains a reproduction of the original article.

This paper was one of Jayme’s first contributions to
make Bravzil better known abroad. Since then, Jayme
has produced a significant number of papers, some of
which, like the paper mentioned above, are milestones
in the history of Brazilian science. Jayme’s activity
has also helped to foster the integration of the scien-
tific community in our country. He also has an impor-
tant role in the integration of the Latin American sci-
entific communities, through collaboration with many
researchers from different countries. And that includes
colleagues from Argentina, of course.

Exercise 1 Determine the list of Latin American re-
searchers who are coauthors of Knuth.

A Universidade do Brasil

As many of you know, the Universidade Federal do
Rio de Janeiro is actually the Universidade do Brasil.
Jayme participated in the creation of the three depart-
ments in that University where most of the research
in Computer Science and Graph Theory takes place:
(i) the Nicleo de Computagao Eletrdnica, created in
1970, (ii) the Department of Computer Science, cre-
ated in 1971, part of the Institute of Mathematics, and
(iii) the Systems Engineering and Computer Science
Program, created in 1971.

Jayme taught the first Computer Science under-
graduate course at the Universidade do Brasil, “In-
troduction to Computing”, to undergradute Physics
students, back in 1971.

He has supervised 17 Master’s students and 16
Ph.D. students, from several regions of Brazil and
Latin America, who are today university professors in
these regions.

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Claudio Leonardo Lucchesi

Jayme’s influence extends to more than one gener-
ation of students and was enhanced by two textbooks,
one on Data Structures [55], a joint work with Lilian
Markenson, the other on Graphs and Algorithms [42].

He has also written three comprehensive surveys:
(i) a joint work with Monica Villanueva, a survey
on chordal graphs [60], (ii) a joint work with Celina
Figueiredo, a survey on matchings in graphs [20], and

(iii) a survey on clique graphs [50].

Theorems x algorithms

Jayme’s work seems to be characterized by the
search of mathematical properties that help in deter-
mining efficient algorithms for solving problems, or
that help in showing that the problem is probably
computationally intractable. That is clearly the case
of most of his papers, particularly the aforementioned
paper with Knuth [30].

There are occasions, however, in which the opposite
direction seems to have been followed. There is a very
nice little note that he published [46], on the closure
of a graph, as defined by Bondy and Chvatal in [9],
in the search of sufficient conditions for a graph to
be Hamiltonian. Whenever one reads that note, it
immediately comes to mind the similarity involving
the technique used by the closure algorithm and the
technique used to enumerate the topological sorting
arrangements in [30]. Indeed, Jayme calls the reader’s
attention to that similarity at the end of the note, and
takes advantage of that similarity in order to define a
duality that relates mathematically the two situations,
so obviously similar from the algorithmic point of view.

Having studied the many facets of his work, it is
unclear to me whether Jayme views his mathematical
activity as a vehicle for finding efficient algorithms or
he uses the search for efficient algorithms as a means
for discovering nice mathematical properties! It might
be both. But, whatever his guiding principle might
be, it is clear that these two aspects of his work enrich
each other.

Let us examine now some of Jayme’s work. The
standard definitions in graph theory and in algorithm
complexity may be found in classical books such as [10]
and [21].

Topological sorting
Let us now take a look at the joint work with

Knuth [30] on topological sorting arrangements, men-
tioned at the beginning of this lecture.

10

A topological sorting of a directed graph G is an
enumeration T' := (vq,vs,- -+ ,v,) of the n vertices of
G such that for each edge (v;,v;) of G, i < j.

The authors give a very nice backtracking algorithm
for generating all topological sortings of a directed
graph. There are two fundamental ideas behind the al-
gorithm. The first observation is that any subsequence
S = (v1,v2, -+ ,v.) (0 <r < n) of consecutive terms
of T is a topological sorting of G[S], the subgraph of
G spanned by the vertices in S. The second observa-
tion is that vertex v,4; must be a source of G — S, the
subgraph of G spanned by the vertices not in S; that
is, v,41 must have in-degree zero in G — S.

With these two observations in mind, it is easy to
understand the algorithm for enumerating all topolog-
ical sortings of G. The algorithm is recursive. It re-
ceives (i) a sequence S := (vy,v2,- -+ ,v,) (0 <7 < n)
that is a topological sorting of G[S], (ii) a vector d on
n entries such that for each vertex v of G, the entry
d[v] is equal to zero if v lies in S, otherwise d[v] is the
in-degree of v in G — S, and (iii) a linked list L of
vertices of G — S that have in-degree zero in G — S.

The initial call to this algorithm passes as argu-
ments the empty sequence S, the vector d of in-degrees
of each vertex in GG, and the list of sources of G.

The algorithm then recursively extends the se-
quence received, in all possible ways. For this, it must
extend the sequence with a source of G — S: it does
that by extracting from the list L its first element, say
v. It is then easy to update vector d, by subtracting
one from d[w], for each vertex w such that (v,w) is
an edge of GG. For each such w, if the new value of
d[w] is zero then w is added at the end of list L. The
algorithm is then ready to call itself recursively. On
the return from the recursive call, vector d is restored
to its original value, by adding one to d(w), for each
edge (v, w) in G. Each vertex added at the end of L,
in the set of sources of G — S — v that are not sources
of G— S, is removed from L. Vertex v is removed from
S and added back to the end of list L. The algorithm
then proceeds with the next source of G — S, until
the complete list L is scanned and the first vertex v
is again the first vertex in the list. At this point, the
algorithm returns.

Whenever the algorithm completes a sequence of
length n, it prints the sequence as output. So after
the return to the first call to the algorithm, the com-
plete enumeration of all topological sortings has been
printed.

Every effort is made in order to avoid any unnec-
essary searching in the graph. The list L is a very
efficient way of having the sources ready for use, with-

Cldudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

out the need to scan vector d. The first vertex v in
L is added to S and removed from L. This requires
constant time. Vector d is then updated in time linear
with respect to the out-degree of v in G. So too is list
L, which must now contain the sources of G — S — v.
On the return from the recursive call, a reverse pro-
cedure, also linear in the out-degree of v, restores the
initial values for L and d, except that v is now at the
end of L.

It is thus easy to see that the time required for each
topological sorting is linear on the size of G. Therefore,
the algorithm has complexity O((m+mn)a), where m is
the number of edges of G and « the number of distinct
topological sorting arrangements of G.

The authors even have a very elegant way of avoid-
ing repeating the printing of the common prefix S, for
each topological sorting arrangement that starts with
S. For example, in an acyclic directed graph on 5
vertices, the output could look like this:

1 2 3 4 5
4 3 5
3 2 4 5
2 1 3 4 5
4 3 5
31 4 5
3 1 2 4 5
1 4 5

By the way:

Exercise 2 Reconstruct graph G, given the topologi-
cal sortings of G.

The closure of a graph

Adrian Bondy and Vagek Chvatal proved the fol-
lowing nice result [9]:

Theorem 1 Let G be a simple graph on n vertices,
v and w two nonadjacent vertices of G such that the
sum d(v) + d(w) of the degrees of v and w in G is at
least n. Then, G is Hamiltonian if and only if G+ vw
is Hamiltonian.

The proof of this result is an application of the pigeon-
hole principle. If G is Hamiltonian then clearly so is
G + vw. For the converse, get a Hamiltonian circuit
C of G +vw. If C does not use edge vw, then it is a
Hamiltonian circuit of G itself. If C uses edge vw, then
C — vw has a path P := (v = vy, v9,- -+ ,v, = w) that
is a Hamiltonian path in G; moreover, by the pigeon-
hole principle, there exists ¢ such that 1 <i <n —1,

v; is adjacent to w and v;41 is adjacent to v. In that
case, (U = V1,011, Vit2, " ,Un = W, 05, Vie1, - ,U1)
is a Hamiltonian circuit of G.

We may repeatedly add edges satisfying the in-
equality stated in the assertion of the Theorem, until
addition is no longer possible, thereby getting a se-
quence of graphs G = Go,G1,--- , G, = ¢(G) such
that either each graph in the sequence is Hamiltonian
or no graph in the sequence is. Moreover, although
the sequence is not unique, the last graph ¢(G) of the
sequence, called the closure of G, is unique. If ¢(G) is
the complete graph, clearly a Hamiltonian graph, then
G is also Hamiltonian.

It is not difficult to have a polynomial algorithm of
complexity O(n*) steps, which computes ¢(G), given
G: for each pair {v,w} of vertices of GG, determine
whether v and w are nonadjacent and d(v)+d(w) > n.
If v and w pass both tests, add vw to G and repeat
the algorithm. This verification may be done in time
O(1) for each pair, whence the determination of the
next graph in the sequence takes O(n?). The length
of the sequence is O(n?), therefore the algorithm has
complexity O(n*).

Let us now see how Jayme was able to reduce the
complexity to O(n?) in [46], by making the computa-
tion of each new graph in the sequence linear. In the
initialization phase, compute the adjacency matrix A
of G, and the deficiency matrix D, an n X n matrix
such that for each pair {v, w} of distinct nonadjacent
vertices of G, D[v,w] := max{0,n — (d[v] + d[w])}.
Compute also a list L of pairs {v,w} of nonadjacent
vertices v and w of G such that D[v,w] = 0. All this
can be clearly done in time O(n?).

Let me now describe one step of the iteration phase,
in which a new graph in the sequence is obtained in
time O(n), or, alternatively, the algorithm concludes
that G = ¢(G) in time O(1).

If the list L is empty then G = ¢(G). If L is
nonempty, remove from it a pair {v,w}, add vw to G.
Update A in time O(1). For each vertex z of G—v—w
such that z is not adjacent to v and D[v,z] > 0, sub-
tract one from Dv,z]. If D[v,x] becomes equal to
zero, add the pair {v,z} to the list L. Repeat this,
with w in the role of v. One step of the iteration
phase can certainly be done in time O(n). Therefore,
the computation of ¢(G) can be done in time O(n?).

The similarity between the idea of having a defi-
ciency matrix dynamically computed in this algorithm
and the idea of having an in-degree vector dynami-
cally computed in the algorithm of topological sorting
enumeration prompted Jayme to observe a duality in-
volving the two problems, which T will describe in a

11

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Claudio Leonardo Lucchesi

moment.

The line graph L(G) of G is the intersection graph
of the edges of G. That is, the set of vertices of L(G)
is the set of edges of G and two vertices e; and ey
of L(G) are adjacent if and only if edges e; and es
are adjacent in G. Jayme expressed the duality in the
following statement:

Theorem 2 Let G be an undirected graph. Then ¢(G)
is complete if and only if there is an acyclic orientation
of the line graph L(G) of the complement G of G in
which the in-degree of each verter {v,w} of L(G) is at
least the deficiency D[v,w] of the pair {v,w} in G.

Hamiltonian paths in grid graphs

Speaking of Hamiltonian paths and circuits, let
me talk now about another very important result of
Jayme, in a joint work with Alon Itai and Christos
Papadimitriou [26].

Let G* denote the infinite graph whose vertices
are the points in the plane having integral coordinates
and in which two vertices are adjacent if and only if
the Euclidean distance between them is equal to one.

A grid graph is a finite vertex-induced subgraph of
G*°. Thus, a grid graph is completely specified by its
set of vertices. For each vertex v, let v, and v, denote
the coordinates of v. The parity of v is the parity of
the sum v, + v, of its coordinates. Thus, v is even if
vy + vy is even, and is odd otherwise. All grid graphs
are bipartite, with the edges connecting an even vertex
to an odd vertex.

Denote by R(m,n) the grid graph whose set of ver-
ticesis {v:1<wv, <m, 1<, <n}. A rectangular
graph G is a grid graph that is isomorphic to R(m,n),
for some integers m and n, called the dimensions of
G. Note that the dimensions of a rectangular graph
completely specify the graph, up to isomorphism.

Let s and ¢ be distinct vertices of a grid graph G.
The Hamilton path problem (G, s,t) consists in deter-
mining whether there is in G' a Hamiltonian path from
s to t.

The problem of determining whether or not an in-
stance (G, s,t) of a Hamilton path problem has a solu-
tion is NP-complete. This result was proved by Jayme
and his coauthors in the paper I just mentioned. This
result is the most important known NP-complete re-
striction of the Traveling Salesman Problem. Indeed,
the book The Traveling Salesman Problem [31], edited
by Lawler et al., contains a chapter written by D. S.
Johnson and Papadimitriou where the authors men-

12

tion the importance of the NP-completeness result and
transcribe its proof as originally published in [26].

The proof of the NP-completeness is too technical
to be presented here. But it uses grid graphs G that
have “holes”, that is, G — G is not connected. In
the paper, the authors indicate that it is not known
whether or not the Hamilton path problem is NP-
complete for grid graphs without holes.

The paper also presents a very nice positive result
for rectangular graphs: for every rectangular graph
G := R(m,n), there is an algorithm of complex-
ity O(mn) that either determines that the instance
(G, s,t) of the Hamilton path problem has no solution
or determines a solution. As usual, the algorithm is a
by-product of the proof of theorems. I will not present
the details here, but let me at least tell you the char-
acterization of the instances that do have a solution.

Consider a rectangular graph G of dimensions m
and n. We have seen that @ is bipartite. If m and n
are both odd, then the number mn of the vertices of
G is odd, one of the parts of the bipartition has one
vertex more than the other part. In that case, every
Hamiltonian path in G must start and end in vertices
that lie in the majoritarian part. On the other hand,
if at least one of m and n is even, then G has an even
number of vertices, and each part of the bipartition of
G has precisely half of the vertices of G. In that case,
every Hamiltonian path has its origin and terminus in
distinct parts of the bipartition.

Without loss of generality, let us assume that G =
R(m,n), m > n. A necessary condition for (G, s,t) to
have a solution is that the parities of s and ¢ coincide
if and only if (i) mn is odd and (ii) each of s and ¢
is even. The authors call this the color compatibility
condition of the (G, s,t) problem.

The color compatibility condition is not sufficient in
general. Tt is sufficient for “large” rectangles, in which
both dimensions are at least four. It is also sufficient
for rectangles in which m is odd and n = 3. (Under
the hypothesis that m > n.)

The problems appear when either n < 2 or when
n = 3 and m is even. If n = 1 then the problem has a
solution if and only if

{se,t.} = {1,m}. (1)
If n = 2 then the problem has a solution if and only if
Sy =t, € {1,m}. (2)

The description of the necessary and sufficient condi-
tion for the case in which n = 3 and m is even is more
elaborate: we have seen that the color compatibility
condition implies that in this case one of s and ¢ must

Claudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

be even, the other odd. Adjust notation so that s is
odd and ¢ is even. The additional condition is then
the following:

Under the hypothesis that m is even, n = 3, s is odd
and ¢t is even, the instance (G,s,t) has a solution if
and only if
sg >ty — 1, with equality only if ¢, # 2. (3)

In sum, the color compatibility condition is necessary.
Assume that m > n. The condition is sufficient for
the cases in which n > 4. It is also sufficient for the
case in which n = 3 and m is odd. For the cases in
which (i) n = 1, or (ii) n = 2, or (iii) n = 3 and m
is even, the condition has the additional requirement
of (1), (2) and (3) , respectively.

As T said, there are too many details to describe the
proof and the algorithm here. The following exercises
may prompt you to try to prove the result.

Exercise 3 Assume that s,,t, < m — 2. Let G' :=
R(m — 2,n). Show that if the problem (G',s,t) has a
solution then so too does (G,s,t). Prove also that if
n =3 and (G, s,t) has a solution then (G',s,t) has a
solution.

Exercise 4 Prove that the additional conditions (1),
(2) and (3) are necessary for small rectangles.

Optimal multiway search trees

The most popular data structure used in large
databases is the B-tree, or a variation thereof. B-trees
were invented by Bayer and McCreight in 1971 [5], in
order to minimize the number of input operations in
secondary storage. In fact, in the worst case this num-
ber is the height of the tree, and a B-tree may hold
millions of keys with a height equal to three. This
means that in order to find a key in a database of that
size it suffices to perform at most three input opera-
tions from disk.

I am now going to describe a solution found by
Jayme to an open problem posed by McCreight him-
self. That solution was published in 1984 [43]. I shall
also describe some related work published in that same
paper. For this, we need some definitions.

Let E := (e1, - ,e,) be a sequence of elements
called keys. Associated with each key e; there is its
size s; and its value, an integer y;. We assume that
Y1 <y2 < - < Yn.

A multiway search tree for E is an ordered rooted
tree T such that each key e in F is assigned to exactly

one node z(e) of T, while each node z keeps a subset
E(z) of keys that satisfies the following properties:

(i) E(z) is empty if and only if z is a leaf of T'.
(i) Each non-leaf z of T has exactly |E(z)| + 1 sons.

(iii) If y is the k-th son of z in the ordering of T' and
e; is an arbitrary key of E(y) then exactly k — 1
keys e; of E(x) satisfy the inequality y; < y;.

The n + 1 leaves of T are called gaps and denoted
9091, - s gn. Each gap g; corresponds to the interval
I ={y : vy <y < yiy1}, where yo := —oo and
Ynt1 1= +00.

Let be a node of T'. The size s(x) of x is the sum
of the sizes of the keys of E(x). The height h(z) of =
is the number of nodes in the path from the root to
2. The height of T is the maximum height of the non-
leaves of T'. The space of T is the number of non-leaf
nodes.

Let L be any integer. We say that T has page limit
L if s(z) < L, for each node z of T'.

Let L, and Ls be integers such that 0 < L; < L.
A weak B-tree of limits (L1, Ly) is a multiway search
tree T of page limit L, such that:

(i) s(z) > Ly, for each non-leaf node = of T distinct
from the root of T'.

(ii) All leaves of T have the same height.

A B-tree is a weak B-tree of limits ([L2/2], L»).

Suppose that there are associated with each key e;
a probability p; and with each interval I; a probability
¢; such that Y0\ pi+ >0 ¢ = 1.

In a search for a value y, p; is the probability that
y = y; and ¢; is the probability that y € I;. The
cost for determining whether a given value y is the
value associated with some key is equal to h(z(e;)) if
y = y; for some key e;; otherwise, the cost is h(g;) — 1,
where y € I;. As you see, the cost is the number
of input operations from disk that are necessary in
order to have the answer to the problem “does there
exist a key e; such that y = y;7”. Taking into account
the probabilities mentioned earlier, we deduce that the
average search cost of T', or simply, the cost of T', is
the sum

n n
> pib(z(e)) + > ai(h(gi) = 1).
i=1 i=0
One of the problems is to minimize the cost of a

tree, given the limit L, in the generic case of multiway

13

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Claudio Leonardo Lucchesi

trees, or the limits (L, Lo), in the case of a weak B-
tree.

There is a particular case of the problem that is
solvable in polynomial time, using standard dynamic
programming techniques. It is the case in which the
sizes of the keys are equal (see [22, 25]).

In the paper I mentioned, Jayme showed that the
general problem of optimizing the cost of a tree, given
the keys, the probabilities and the page limit, is NP-
hard. More precisely, he proved the following result:

Theorem 3 Deciding whether there exists a multiway
search tree for E having limit L and cost at most C
is NP-complete. It remains so even if all gap prob-
abilities are equal to zero and each key probability is
proportional to the size of the key.

He also proved another similar result in that paper,
which implies the previous one:

Theorem 4 Deciding whether there exists a weak B-
tree for E having limits (L1, L2) and cost at most C
is NP-complete. It remains so even if all gap prob-
abilities are equal to zero and each key probability is
proportional to the size of the key.

Both proofs use a reduction of the partition prob-
lem, an NP-complete problem [21]. Given a set A :=
{ai,as, -+ ,a,} of integers, the partition problem con-
sists in determining whether or not there exists a par-
tition of A in two blocks such that the sums of the
elements in each block coincide.

Jayme also gave pseudo-polynomial algorithms for
the problems considered in Theorems 3 and 4, using
dynamic programming. His algorithm determines a
cost optimal multiway tree in time O(n3L) and a cost
optimal weak B-tree in time O(n’Ls). He also gave
polynomial algorithms for minimizing either the height
or the space of a multiway tree.

Let us get now to the problem posed by McCreight
and solved by Jayme. The problem is the following:
given a sequence E, and limits (L, Lo), give an effi-
cient algorithm for determining a weak B-tree that has
height two, precisely M keys in the root and minimum
root size. As usual, we are assuming that 0 < Ly < Ls.
We are also assuming that Y s; > Ly, otherwise there
is no reason for a tree of height two.

Let us first show how Jayme solved a simpler prob-
lem: solve McCreight’s problem relaxing the condition
on the number of keys in the root. That is, the root
may have any number of keys, subject to the upper
limit condition on its size.

Here is a description of the very elegant solu-
tion for this simpler problem. Define a complete,

14

acyclic directed graph D on the set {vo,v1, -+ ,Upt1}
of vertices, in which for every pair (i,7) such that
0<i<j<n+1,anedge leaves vertex v;, enters ver-
tex v; and the cost of that edge is d[i, j], defined as
follows:

sj, if Ly < Z sp < Lo
i<k<j
oo, otherwise,

di.) =

where sp4+1 := 0.

Let the cost of a directed path P be the sum of the
costs of its edges. For each directed path P from vy
t0 vp41 of cost at most Lo, the set of vertices V(P)
gives a (possibly not optimal) solution to the simplified
problem: the set of keys in the root is precisely the set
{e;:v; € V(P)—vg—vpt1} and the size of the root is
the cost of P. If, in addition, the cost of P is minimum,
then the tree has minimum root size.

Thus, Jayme reduced the simplified version of the
problem to that of finding in D a path of minimum cost
from vg to v, 1. A straightforward implementation of
aminimum cost path algorithm in D takes time O(n?).
Well, Jayme discovered a structure in the costs in the
graph that allowed him to decrease the complexity of
the algorithm to O(nlogn).

Let us now see how to solve the original problem,
in which we would like to have not only minimum root
size, but also precisely M keys in the root. The solu-
tion described here seems simpler than that originally
given by Jayme in the paper, but is somewhat equiv-
alent. In terms of the complete acyclic directed graph
D defined above, the problem is equivalent to that of
finding in D, among all directed paths of length M +1
from vy to v,41, one that has minimum cost.

So it is easy to solve: define an (n 4+ 1) x (n + 1)
matrix A, initialized with oo everywhere, except at
entry A[0,0], which is initialized with zero. Then,

forr=1,--- . M+1
fori=0,---,n
forj=i+1,---,n+1
let A[j, 7] := min{ A[j, r], Alé,r — 1] + d[i, j]}.

Of course, Ai,r] is the cost of the minimum cost path
from vy to v; that has length r. In particular, if
Aln+ 1,M + 1] < Lo, then Aln + 1, M + 1] is the
size of the root of a weak B-tree for F with limits
(L1, Ly) having precisely M keys in the root and min-
imum root size. A straightforward implementation of
this algorithm takes time O(n?M). Jayme was able to
lower the complexity to O(nM logn).

Cldudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Iterated clique graphs with increasing
diameters

Let us now examine a result proved by Jayme and
Claudson Bornstein [12]. The result answered a ques-
tion that had been open for 12 years, it was posed in
two articles and also in the book Graph Dynamics, by
E. Prisner [35].

Let G be a graph. A clique of G is a set of pairwise
adjacent vertices of G. A clique of G is maximal if it
is not a proper subset of some other clique of G. The
cligue graph K(G) of G is the intersection graph of
the family of maximal cliques of G. That is, the set
of vertices of K (G) is the set of maximal cliques of G,
and two vertices ky and ko of K(G) are adjacent if and
only if the cliques ky and ko of G intersect.

For each nonnegative integer i, define K¢(G) := G if
i =0 and K{(Q) := K(K'"'(Q)), if i > 0. Likewise,
for each nonnegative integer i, define L{(G) := G if
i =0 and LY(G) := L(L"Y(@Q)), if i > 0, where L(G)
denotes the line graph of G. For each vertex k of
K (G), and each positive integer i, the i-th inverse im-
age K~i(k) of k is the clique k of G if i = 1, otherwise
it is UveK—l(k)Kf(ifl)(’U).

The diameter diam(G) of G is the maximum dis-
tance between any two vertices of G. That is, if d(v, w)
denotes the distance between v and w in G, then
diam(G) := max{d(v,w) : v,w € V(G)}. A pair of
vertices of G is diametrical if their distance is equal to
the diameter of G.

Hedman [24] showed that

diam(G) — 1 < diam(K (G)) < diam(G) + 1.

The proof of the above inequalities is not difficult. In
fact, if you want to warm up for this subject, here is
a nice problem:

Exercise 5 Let G be a connected graph with at least
one edge. Let F be a family of nonnull cliques of G
such that for every edge e of G, both ends of e lie
in some member of F. Let I denote the intersection
graph of G induced by F, that is the set of vertices of
I is F, two vertices fi1 and fy of I are adjacent if and
only if the cliques f1 and fy of G intersect. Prove that

diam(G) — 1 < diam(7I) < diam(G) + 1.

Prove also that diam(I) = diam(G) + 1 if and only if
there exist two cliques ki and ky in F such that for
each vertex v of k1 and each vertex vy of ks, vertices
v1 and vy are diametrical in G.

Note that the inequality proved by Hedman is a par-
ticular case of Exercise 5. It suffices to define F' to be

the family of maximal cliques of G: graph I will be the
clique graph of GG in that case. Another application of
Exercise 5 is to define F' to be set of pairs of vertices
of G that are adjacent: in that case, graph I will be
the line graph of G. The inequality for line graphs was
proved by Knor et al. [28]

Hedman also described a family of graphs G for
which diam(K (G)) = diam(G)+1, and asked if graphs
G exist with diam(K(G)) = diam(G) + i for each
positive integer ¢ > 2.

The existence of such graphs G for i = 2 was es-
tablished by R. Balakrishnan and P. Paulraja [2] and
independently by C. Peyrat, D. F. Rall and P. J.
Slater [34], who also proved the existence in the cases
i=3and i =4.

Jayme and Claudson were able to prove the exis-
tence of such a G for all positive integers i. In order
to do that, they defined a graph H(d, G), where d is a
positive integer and G is a graph. Graph H(d, G) was
defined as follows: (i) take two copies G' and G” of G;
(i) take a new vertex v, and join it to each vertex of
each of G' and G" by a path of length d. Then, they
showed the following result:

Theorem 5 Let G be a graph whose diameter is at
most 2d, vy and vy two vertices of K'(H(d,G)). If the
inverse i-th images of v1 and vy are contained in G'
and G", respectively, then vy and vs are diametrical
with distance diam(H (d, G)) + 1.

Thus, Hedman’s problem was reduced to finding a
suitable graph G. They were able to use a relatively
complicated argument to show that L{(K,,) is a good
choice. More specifically, they proved the following
result:

Theorem 6 Let i, d and n be positive integers such
that 2d > i4+2,n >4 andi < [n/2] —1. Let G be the
graph H(d, L'(K,)). Then,

diam(K"(G)) = diam(G) + i + 1.

With the above theorem, they solved completely
the question, which had remained open for 12 years.

Clique graphs of directed path graphs
and of rooted path graphs

Let us now examine another important contribu-
tion of Jayme. It is a joint work with Erich Pris-
ner [36]. The paper was selected to be part of the

15

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Claudio Leonardo Lucchesi

Editors’ Choice 1999 of the Discrete Applied Mathe-
matics, an indication that it was one the best articles
published by the periodical in 1999.

In that paper, the authors characterize the clique
graphs of two families of graphs, the directed path
graphs and the rooted path graphs.

A directed path graph (or a DV graph) is the in-
tersection graph of the family of directed paths of a
directed tree. A dually directed path graph (or dually
DV graph) is a graph G that admits a spanning di-
rected tree T such that, for each edge (v, w) of G, T
contains a directed v —w path or a directed w —v path
whose vertices form a clique in G.

In order to describe their characterization of a du-
ally DV graph, we need some definitions.

A family F of sets has the Helly property if, for ev-
ery nonnull subcolletion G of F, either G contains two
disjoint sets or all the sets in G have a common ele-
ment. A graph is clique-Helly if its family of maximal
cliques has the Helly property.

For any graph G, let G’ denote the graph obtained
from G by adding, for each vertex v of GG, a new vertex
v’ and a new edge joining v to v'.

Here is the characterization of dually DV graphs:

Theorem 7 A graph G is a dually DV graph if and
only if G is clique-Helly and K(G') is a DV graph.

The authors also derive an algorithm of complexity
O(|E(G)|*) to determine whether a given graph G is
dually DV.

Let us now describe their characterization of clique
graphs of rooted path graphs. A rooted tree is a di-
rected tree having precisely one vertex with in-degree
zero (a rooted tree is sometimes called a branching).
A rooted path graph (or RDV graph) is the intersection
graph of the family of directed paths of a rooted tree.
A dually rooted path graph (or dually RDV graph) is
a graph G that admits a spanning rooted tree T' such
that, for each edge (v, w) of G, T contains a directed
v — w path or a directed w — v path whose vertices
form a clique in G.

A chordal graph is a graph that contains no induced
cycle of length four or greater. A strong chord of a
cycle of a graph is a chord that joins two vertices of
the cycle with an odd distance in the cycle. A strongly
chordal graph is a graph in which every cycle on six
or more vertices contains a strong chord.

Here is the characterization for dually RDV graphs:

Theorem 8 The following statements are equivalent
for a graph G:

(i) G is a dually RDV graph.

16

(ii) G is clique-Helly and K(G') is an RDV graph.
(iii) G is strongly chordal and K(G") is an RDV graph.

The authors also derive an algorithm O(|V (G)?-38|)
to determine whether or not a given graph G is dually
RDV.

Many other results

We now examine very briefly other results obtained
by Jayme.

Comparability graphs

Let D be an acyclic orientation of a graph G. Then,
D is transitive if, for each pair (u,v) and (v, w) of edges
of D, edge (u,w) also lies in D. A graph is a compa-
rability graph if it admits a transitive orientation.

For any two vertices v and w of D, let (v, w) denote
the set consisting of those vertices that are simultane-
ously descendants of v and ancestors of w. Orientation
D is locally transitive if G[{(v,w)] is transitive, for each
edge (v,w) of D. Graph G is local comparability if it
admits a locally transitive orientation.

A graph G is Pgcomparability if it admits an ori-
entation D such that the restriction of D to the sub-
graph of G spanned by the set of vertices of each path
of length three is transitive.

A circle graph is the intersection graph of chords of
a circle, in which no two chords have a common point
in the circle.

A pair {v,w} of vertices of G is even if every in-
duced path from v to w has even length. A pair {v, w}
is odd if v and w are nonadjacent and each induced
path from v to w has odd length.

There are four papers on this subject that should
be mentioned. In the first one [48], Jayme introduces
the concept of local comparability graphs, as a gen-
eralization of comparability graphs. The class of lo-
cal comparability graphs includes the comparability
graphs and the circle graphs.

The first main result in that paper is that every
local comparability graph is a difference of two com-
parability graphs. The second main result is that the
class of local comparability graphs of dimension 1 is
precisely the class of connected interval graphs that
correspond to a set of totally noncomparable intervals
of the real line. Circle graphs are similarly but less
concisely characterized.

The next three papers show a beautiful evolution
of thought, culminating with a nice characterization

Claudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

of source and sink sets and also a characterization of
even and odd pairs in a comparability graph.

The first of these three papers considers the prob-
lem of determining whether a comparability graph
has a transitive orientation with specified sources and
sinks. It is a joint work with Célia Mello and Celina
Figueiredo [56]. They consider clique partitions of
a comparability graph and determine some necessary
conditions for the existence of a solution to the prob-
lem. This condition turns out to be sufficient for
graphs with at most three maximal cliques. In par-
ticular, if only sources are specified, then the set is a
source set if and only if each pair of vertices in S is
an even pair and each vertex of S is a source of some
transitive orientation.

In the second paper of the series, a new author joins
the team: John Gimbel [19]. The authors find a con-
dition that is necessary and sufficient for the problem
to have a solution. For a specified set S of sources
and a specified set T of sinks, the authors construct
a graph G(S,T) that is trivially obtained from G, S
and T and has size linear on the size of G. Then, they
show that the problem has a solution if and only if
G(S,T) is a comparability graph. So, not only they
solve the problem from a mathematical point of view,
but they also give a polynomial algorithm for deciding
whether the problem has a solution.

Finally, in the third paper of the series [18], they
characterize even and odd pairs in comparability and
in P, -comparability graphs. The characterizations
lead to simple algorithms for deciding whether a given
pair of vertices forms an even or odd pair in these
classes of graphs. The complexities of the proposed
algorithms are O(n +m) for comparability graphs and
O(n%*m) for P, -comparability graphs. The former
represents an improvement over a recent algorithm of
complexity O(nm).

Cliques

There is an enormous number of significant, results
involving cliques. Some of these have already been
described. Here are some more.

Clique graphs free of K3 and K,

This is joint work with Fabio Protti [38]. The authors
characterize the graphs whose clique graphs are free
of triangles in terms of forbidden induced subgraphs:
K 3, the 4-fan and K4. The 4-fan is the graph ob-
tained from the 4-wheel by deleting an edge from the
rim. They give a similar characterization for graphs
whose clique graphs are free of K.

Clique-inverse graphs of bipartite graphs

This is also joint work with Fabio Protti [40]. The au-
thors characterize the families of graphs whose clique
graphs are bipartite, in terms of forbidden configura-
tions: the clique graph of a graph G is bipartite if and
only if G is free of induced subgraphs in the following
list: K 3, the 4-fan, the 4-wheel, Cyp,15 (n > 0). They
also characterize two more classes: (i) those graphs
whose clique graphs are chordal bipartite graphs and
(ii) those graphs whose clique graphs are a tree.

Clique graphs with linear size

Another joint work with Fébio Protti [39]. Let G be
a graph. By examining K(G), the authors describe
some sufficient conditions for the number of maximal
cliques of G to be bounded by O(|V(G)|). These con-
ditions are then applied to analyze the complexity of
recognizing clique-inverse graphs of various classes of
graphs. In some cases, polynomial time algorithms
are obtained, such as in the case of K ~'(K,-free). In
other cases, the bound is used to show that certificates
may be verified in polynomial time, within a proof of
NP-completeness.

Clique-Helly graphs

In this paper [49], Jayme describes a characterization
of clique-Helly graphs, leading to a polynomial time
algorithm for recognizing them.

Clique-complete graphs

This is a joint work with Cldudio Lucchesi and Célia
Mello [32]. At the time, Célia had just completed her
doctoral thesis, under the supervision of Jayme. Some
years prior to that, Célia had written her Master’s
dissertation under my supervision. So, it was a very
pleasant opportunity to be a coauthor with Jayme and
a former student of both of us.

For a natural number n, a graph G is n-convergent
if K™(@) is isomorphic to Ky, the one-vertex graph.
A graph G is convergent if it is n-convergent for some
natural number n. A 2-convergent graph is called
clique-complete. A wuniversal vertex is a vertex ad-
jacent to every vertex of the graph.

The authors describe the family of minimal graphs
which are clique-complete but have no universal ver-
tices. The minimality used there refers to induced
subgraphs. In addition, they show that recognizing
clique-complete graphs is Co-NP complete.

17

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Cldudio Leonardo Lucchesi

Clique convergent graphs

This is a joint work with Claudson Bornstein [11]. The
index of a convergent graph G is the smallest n such
that G is n-convergent, while its Helly defect is the
smallest n such that K™(G) is clique-Helly. H. Bandelt
and E. Prisner [3] proved that the Helly defect of a
chordal graph is at most one and asked whether there
is a graph whose Helly defect exceeds the difference
of its index and diameter by more than one. In this
paper an affirmative constructive answer to the above
question is given: for any arbitrary finite integer n > 0
a graph is exhibited in which the Helly defect exceeds
by n the difference of its index and diameter.

Clique graphs of chordal graphs and of path
graphs

Another joint work with Claudson Bornstein [52],
where the authors characterize the clique graphs of
chordal graphs and the clique graphs of path graphs.

Computing all maximal cliques distributedly

This is joint work with Fabio Protti and Felipe
Franca [37]. The authors present a parallel algorithm
for generating all maximal cliques of a graph. The
time complexity of the algorithm is restricted to the
induced neighborhood of a vertex and the communica-
tion complexity is O(M A), where M is the number of
connections and A the maximum degree in the graph.

Enumeration of maximal cliques of a circle
graph

This is joint work with Magali Barroso [51]. The au-
thors apply the notion of locally edge transitive orien-
tations of an undirected graph and obtain an algorithm
for generating all maximal cliques of a circle graph G
in time O(n(m + «)), where n, m and a are the num-
ber of vertices, edges and maximal cliques of G. In
addition, they show that the actual number of such
cliques can be computed in O(nm) time.

Maximal cliques in circle graphs

This is joint work with Edson Caceres and Siang
Song [14]. A Coarse Grained Multicomputer (CGM)
consists of a set of p processors with O(N/p) local
memory per processor and an arbitrary communica-
tion network (or a shared memory). A cam algo-
rithm consists of alternating local computation and

18

global communication rounds. At each communica-
tion round, each processor sends and receives O(N/p)
data.

In this paper, the authors present a parallel algo-
rithm for finding the maximal cliques of a circle graph
using the ¢GM model. The proposed algorithm re-
quires O(log p) communication rounds. In a regular,
sequential depth search, normally each edge is visited
a constant number of times. The authors devised a
new technique, called the unrestricted depth search, in
which each edge may be visited an unbounded (but
finite) number of times. The authors regard this tech-
nique as the main contribution of the paper. The three
authors also have another paper on unrestricted depth
search in parallel [15].

Edge clique graphs

The edge clique graph K.(G) of a graph G is the
graph whose set of vertices is the set of edges of G,
two vertices of K (G) are adjacent if and only if the
corresponding edges lie in a (common) clique of G.

An edge component of a graph G is a component of
its edge clique graph.

Characterization of edge clique graphs

This is joint work with Marcia Cerioli [17]. A k-
labeling of a graph G with n vertices is an assignment
of aset l(v) C {1,2,--- ,n} to each vertex v of G, such
that |I(v)] = k and all label sets are distinct. A set S
of vertices is triangular if |S| = (}) for some integer .
Set S of vertices is strongly triangular, with respect to
a 2-labeling [, if | S| = (“(5)‘). The authors show that
a graph @ is an edge clique graph if and only if it has
a 2-labeling that satisfies the following two properties:
(i) every maximal clique is strongly triangular and (ii)
every strongly triangular set is a clique.

Starlike graphs

Denote by N(v) the set of vertices that are adjacent to
v in a graph G and by N[v] the set {v}UN (v). A graph
G is starlike if there exists a partition C, Dy,--- , Dy
(s > 0) of the set of veretices of G such that C' is
a maximal clique and, for v € D;, v € Dj, ¢ # j
implies that {u,v} ¢ E(G), whereas i = j implies
that N[u] = N[v]. It follows that each D; is included
by precisely one maximal clique C;, and D; = C; — C.
If, in addition, CNC; C CNCiyq for 1 < i < s, then
G is a starlike-threshold graph.

A generalized starlike graph is a graph G such that
precisely one of its edge components is a starlike graph,

Claudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

the others complete graphs.

A generalized starlike-threshold graph is a graph G
such that precisely one of its edge components is a
starlike-threshold graph, the others complete graphs.

A split graph is a graph that admits a partition C, I
of its set of vertices such that C' is a clique and I an
independent set of vertices. Thus, a split graph is a
particular case of a starlike graph, in which each D, is
a singleton, for 1 <i <s.

This is also joint work with Mércia Cerioli [16]. In
this paper, the authors show that the class of star-
like (starlike-threshold) graphs contains the class of
edge clique graphs of generalized starlike (starlike-
threshold) graphs. In addition, every starlike (starlike-
threshold) graph which is an edge clique graph is an
edge clique graph of a generalized starlike (starlike-
threshold) graph. They also prove that a starlike-
threshold graph is an edge clique graph if and only if its
maximal cliques and intersections of maximal cliques
are triangular sets.

Directed graphs

Jayme published several papers related to efficient
algorithms for directed graphs. Let us take a brief look
at each one of them.

Enumeration of directed circuits

This is a joint work with P. E. Lauer [54]. The authors
give an O(n + me) algorithm for enumerating all the
directed circuits of a directed graph on m edges, n
vertices and c directed circuits.

Enumeration of Kernels

A kernel N of a directed graph D is an independent
set of vertices of D such that for every w € V(D) — N
there is an edge from w to N. The existence of a kernel
in an directed graph with no odd directed cycles was
proved by M. Richardson [41].

This is a joint work with G. Chaty [53]. The authors
give an algorithm for generating all distinct kernels in
a directed graph D with no odd directed circuits. The
complexity of the algorithm is O(nm(k+1)), where n,
m and k are the number of vertices, edges and kernels
of D. Also, they show that the problem of determining
the number of kernels in a directed graph D is #P-
complete, even if the longest directed circuit of D has
length two.

A minimax equality

The problem of finding the minimum set of vertices
that intersects all circuits in a directed graph is NP-
complete [21]. Jayme published a paper [47] in which
he introduces the class of connectively reducible di-
graphs and shows that it contains two classes known
to admit polynomial solutions: the class of fully re-
ducible subgraphs and the class of cyclically reducible
digraphs. He also describes an algorithm O(n?(n+m))
that recognizes connectively reducible directed graphs
and determines a (minimum) set 7' of vertices that
intersects all directed circuits for those graphs and a
(maximum) vertex-disjoint set of directed circuits hav-
ing cardinality equal to that of 7.

Orientations with single source and sink

This is joint work with Ronaldo Persiano and Antonio
Oliveira [58]. Given an undirected graph G, possibly
with multiple edges, and distinct vertices s and ¢ of G,
the authors consider several orientations D of G. One
of these orientations is acyclic and has s and ¢ as the
only source and sink of D, respectively. They show
that this is possible if and only if graph G + st is 2-
connected. For each of the problems considered, they
use depth-first search to give linear time algorithms
for finding the orientations or determine that they do
not exist.

Generation of acyclic orientations

This is joint work with Valmir C. Barbosa [4]. The
authors describe an algorithm for finding all the
acyclic orientations of a graph G in overall time
O((n+m)a) and delay complexity O(n(n+m)), where
G has n vertices, m edges and « acyclic orientations.
The space required is O(n + m).

Rooted tree structure

A directed graph D = D(V, E) with a given root ver-
tex s is reducible if every depth-first search tree with
root s has the same set B of back edges. Thus, for
a reducible directed graph D, the associated dag (the
subgraph with vertex set V and edge set £ — B) is
uniquely defined. A tree reducible graph is a reducible
subgraph for which the transitive reduction (a small-
est directed graph with the same reachability) of the
associated dag is an arborescence (outdirected tree)
with root s.

In this paper [44], Jayme gives polynomial algo-
rithm for (1) recognizing, (2) finding isomorphisms

19

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Cldudio Leonardo Lucchesi

between, and (3) finding minimum equivalent directed
graphs for, tree reducible graphs.

Split-indifference graphs

This is a joint work with Carmen Ortiz and Nelson
Maculan [33]. An indifference graph is an intersec-
tion graph on a set of unit intervals on the real line.
A split-indifference graph is a split graph that is also
an indifference graph. The authors give the following
characterization of split-indifference graphs:

Theorem 9 A connected graph G is split-indifference
if and only if

(i) G is complete, or

(ii) G is the union of two cliques Gy and G2 such that
G1 - G2 = Kl, or

(iii) G is the union of three cliques G1, G2, G3 such
that G1 — GQ = K1, G2 — G3 = Kl and

V(Gl)mV(Gg) :(Z) or V(Gl)UV(Gg) = V(G)

Using that characterization, they determine the chro-
matic index x'(G) of split-indifference graphs. In or-
der to do that, they construct an edge coloring of Ka,,,
n > 3, using 2n — 1 colors such that Ks, has a perfect
matching without color repetitions.

The resulting algorithm is very simple. It deter-
mines in linear time an optimum edge coloring of a
split indifference graph

Other results

There are many other results that I should describe,
but length restrictions force me to be very concise.

Task scheduling

Jayme has four papers in this area, three of them with
J. Blazewicz and W. Kubiak [6, 7, 8, 45].

Euler tours

A joint work with Edson Céceres, Narsingh Deo and
Shivakumar Sastry [13] describes an alternative imple-
mentation of Atallah and Vishkin’s parallel algorithm
for finding an Euler tour of a graph [1].

20

Search

I should mention here three papers. The first paper is
a joint work with L. B. Wilson, on ternary trees [59].
The second paper is joint work with G. Navarro et al.,
on optimal binary search trees with costs depending
on the access paths [57].

The third paper is a joint work with Marina
Moscarini and Rossella Petreschi, Node Searching and
Starlike Graphs. It is a very interesting paper. Let
G be a graph whose vertices are contaminated. As-
signing a searcher to a contaminated vertex makes it
become guarded. Removing the searcher of a guarded
vertex turns it clear. However, a clear vertex becomes
contaminated again if it has a contaminated neigh-
bor. The node-search number of G is the least num-
ber of searchers needed to clear all its vertices. J.
Gustedt [23] has shown that the problem of deter-
mining the node search number of G is NP-hard for
uniform k-starlike graphs. These graphs are gener-
alizations of split graphs, obtained when each vertex
of the independent set of the bipartition of the split
graph is replaced by a k-vertex clique. The authors
describe necessary and sufficient conditions for finding
the node-search number of a uniform k-starlike graph.
The characterization described extends a correspond-
ing result for split graphs by T. Kloks [27]. In addition,
it leads to a new algorithm for finding the node-search
number for graphs of this class.

Acknowledgements 1 would like to thank Celina
M. H. de Figueiredo and Valmir C. Barbosa for having
invited me to write this article. Their kind invitation
gave me the opportunity to really grasp the extent of
Jayme’s work over the years. I hope that this article
will help others to appreciate the breadth of Jayme’s
work.

I would also like to thank Valmir C. Barbosa,
Marcia Cerioli, Celina M. H. de Figueiredo, Sulamita
Klein and U. S. R. Murty for reading an earlier draft
and giving me many helpful suggestions.

References

[1] M. Atallah and U. Vishkin. Finding Euler tours in
parallel. J. Comput. System Sci., 29(3):330-337,
1984.

[2] R. Balakrishnan and P. Paulraja. Self-clique
graphs and diameters of iterated clique graphs.
Utilitas Math., 29:263-268, 1986.

Cldudio Leonardo Lucchesi

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

[3]

[7]

[9]

[10]

H.-J. Bandelt and E. Prisner. Clique graphs
and Helly graphs. J. Combin. Theory Ser. B,
51(1):34 45, 1991.

V. C. Barbosa and J. L. Szwarcfiter. Generating
all the acyclic orientations of an undirected graph.
Inform. Process. Lett., 72(1-2):71-74, 1999.

R. Bayer and E. McCreight. Organization and
maintenance of logic ordered indexes. Acta Infor-
matica, 1:173-189, 1971.

J. Blazewicz, W. Kubiak, H. Rock, and J. Szwarc-
fiter. Minimizing mean flow-time with parallel
processors and resource constraints. Acta In-
form., 24(5):513-524, 1987.

J. Blazewicz, W. Kubiak, and J. Szwarcfiter.
Scheduling unit-time tasks on flow-shops under
resource constraints. Ann. Oper. Res., 16(1-
4):255-266, 1988. Multi-attribute decision mak-
ing via O.R.-based expert systems (Passau, 1986).

J. Blazewicz, W. Kubiak, and J. Szwarcfiter.
Scheduling independent fixed-type tasks. In Ad-
vances in project scheduling, pages 225 236. Else-
vier, Amsterdam, 1989.

J. A. Bondy and V. Chvital. A method in graph
theory. Discrete Math., 15(2):111-135, 1976.

J. A. Bondy and U. S. R. Murty. Graph Theory
with Applications. MacMillan, 1976.

C. F. Bornstein and J. L. Szwarcfiter. On clique
convergent graphs. Graphs Combin., 11(3):213
920, 1995.

C. F. Bornstein and J. L. Szwarcfiter. Iterated
clique graphs with increasing diameters. J. Graph
Theory, 28(3):147 154, 1998.

E. N. Céceres, N. Deo, S. Sastry, and J. L. Szwarc-
fiter. On finding Euler tours in parallel. Parallel
Process. Lett., 3(3):223 231, 1993.

E. N. Caceres, S. W. Song, and J. L. Szwarc-
fiter. A coarse-grained parallel algorithm for
maximal cliques in circle graphs. In V. Alexan-
drov, J. Dongarra, B. Juliano, R. Renner, and
C. Tan, editors, Proceedings of Computational
Science - ICCS 2001 - Part II, volume 2074 of
Lecture Notes in Computer Science, pages 638—
647. Springer, 2001.

[15]

[17]

[18]

E. N. Céceres, S. W. Song, and J. L. Szwarc-
fiter. A parallel unrestricted depth search algo-
rithm. In H. R. Arabnia, editor, Proceedings of
the International Conference on Parallel and Dis-
tributed Processing Techniques and Appl

M. R. Cerioli and J. L. Swzarcfiter. Edge clique
graphs and some classes of chordal graphs. Dis-
crete Mathematics, 242:31-39, 2002.

M. R. Cerioli and J. L. Szwarcfiter. A charac-
terization of edge clique graphs. Ars Combin.,
60:287-292, 2001.

C. M. H. de Figueiredo, J. Gimbel, C. P. Mello,
and J. L. Szwarcfiter. Even and odd pairs in com-
parability and in Pj-comparability graphs. Dis-
crete Appl. Math., 91(1-3):293-297, 1999.

C. M. H. de Figueiredo, J. Gimbel, C. P. Mello,
and J. L. Szwarcfiter. Sources and sinks in com-
parability graphs. Order, 14(1):75-83, 1997.

C. M. H. de Figueiredo and J. L. Szwarcfiter. Em-
parelhamentos em grafos. In Anais do XIX Con-
gresso nacional da Sociedade Brasileira de Com-
putacdo, Jornada de Atualizacdo em Informética,
pages 127 161, 1999. In Portuguese.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company,
1979.

E. N. Gilbert and E. F. Moore. Variable-length
binary encodings. Bell System Tech. J., 38:933
967, 1959.

J. Gustedt. On the pathwidth of chordal graphs.
Discrete Appl. Math., 45(3):233-248, 1993.

B. Hedman. Clique graphs of time graphs. J.
Combin. Theory Ser. B, 37(3):270 278, 1984.

A. Ttai. Optimal alphabetic trees. SIAM J. Com-
put., 5(1):9-18, 1976.

A. Ttai, C. H. Papadimitriou, and J. L. Szwarc-
fiter. Hamilton paths in grid graphs. SIAM J.
Comput., 11(4):676-686, 1982.

T. Kloks.
1994.

Treewidth. Springer-Verlag, Berlin,

M. Knor, L. Niepel, and L. Soltés. Centers in line
graphs. Math. Slovaca, 43(1):11-20, 1993.

21

Contributions of Jayme Luiz Szwarcfiter
to Graph Theory and Computer Science

Cldudio Leonardo Lucchesi

[29] D. E. Knuth. Literate Programming, volume 27
of CSLI Lecture Notes. Center for the Study of
Language and Information, Stanf

22

