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Abstract
A pitch model is proposed which is supported by a vec-

tor representation of tones. First, an algorithm capable of
performing the vector addition of the spectral components
of two-tone harmonic complexes is introduced which ini-
tially converts the amplitude, frequency, and phase (AFP)
parameters into coordinates of the here introduced quo-
tient, distance in octaves, and loudness (QOL) tone space.
As QOL is isomorphic to the hue, saturation, and value
(HSV) color space, a transformation from QOL to the red,
green, and blue (RGB) vector space can be formulated so
that the vector addition of two pure tones is conceived
by analogy with color mixing operations. Since the QOL
to RGB transformation is invertible, the resulting RGB
vector sum can be transformed back to QOL. Then, by
converting QOL coordinates back to AFP parameters, a
tone is found whose frequency supposedly corresponds to
the pitch evoked by the original two-tone complex. As
for complexes having more than two components, the al-
gorithm is to be sequentially applied to pairs of vectors
in such a way that initially the first two vector tones are
added together, then the resulting vector is added to the
third vector tone, and so on.

Keywords: pitch computation, vector representation
of tones, two-tone complexes, missing undamental.

1. INTRODUCTION
Seebeck [21] proposed a relationship between pitch

and periodicity after having observed that the wave-
form’s repetition period could be perceived as pitch even
if there is no spectral component at the corresponding

frequency—a consideration which gave rise to the con-
cept of “missing fundamental”. Later on, a dispute began
between Seebeck and Ohm [16], who believed that to a
perceived pitch there corresponds the frequency of a non-
null spectral component. Some years later, von Helmholtz
[31] presented arguments in favor of Ohm’s view, when
he further conjectured about a possible analogy between
the phenomena of mixed colors and those of compound
musical tones. Incidentally, this latter hypothesis is taken
as the starting point of the present study which is con-
cerned with applying the mathematics of colors to pitch
computation.

This paper assumes that three-dimensional vectors are
an appropriate representation of tones since they have
means of adding them in a convenient way. Indeed, the
addition of pure tones as vectors does not yield a “com-
plex” [10], such as occurs in the addition of pure tones
as sinusoids, but it just yields a single pure tone. Fur-
thermore, taking into account that a complex is always
characterized by one definite pitch [19], it is hypothesized
here that the addition of tones as vectors can find a result-
ing tone whose frequency corresponds to such definite
pitch. This tone is called here the vector addition tone,
while its frequency is referred to as the computed pitch.

Since the formalization of tones as vectors requires
some key properties of two-tone harmonic complexes,
Section 2 first reviews the calculation of the period of
these complexes, then it describes how the two spectral
components can have their loudnesses compared one to
the other, so as to demonstrate that for every frequency
ratio there is a corresponding proportion between the am-
plitudes at which the components have the same loudness.
This basic property is described as a theorem—the equi-



Aluizio Arcela The Computation of Pitch with Vectors

librium theorem—from which a loudness scale is derived
for pure tones. Finally, it describes how to find a measure
of the symmetry of the second-derivative’s zero-crossing
pattern, which acts as a magnitude coefficient in the vec-
tor addition operation.

Section 3 introduces the vector representation of tones
in two subsections. In the first one, it defines the quotient,
distance in octaves, and loudness (QOL) space for rep-
resenting tones in a three-dimensional system. Any pure
tone expressed in amplitude, frequency, and phase (AFP)
parameters can be represented in the QOL space. In the
second subsection, by taking into account that the QOL’s
mathematical structure is isomorphic to that of the hue,
saturation, and value (HSV) color space [30], it shows
that QOL tones can be converted to red, green, and blue
(RGB) colors, so that any pure tone can be expressed as a
RGB vector.

Section 4 details how to compute the overall vector
addition tone for harmonic complexes by first describing
the algorithm for the vector addition of two tones. This
also includes the inverse transformations which are to be
applied initially from RGB back to QOL, and then from
QOL back to AFP. Next, it shows how the final pitch
is computed for harmonic complexes having more than
two components by adding vector pairs across the com-
ponents.

Section 5 first shows how pitch is related to fre-
quency ratios in two-tone harmonic complexes, a descrip-
tion based on the geometric properties of the vector repre-
sentation of tones. Subsequently, it describes how phase
relationships affect the pitch of these complexes.

Section 6 ends the paper with a discussion on the con-
ditions necessary for the pitch of a complex being equal
to the frequency (F0) of the fundamental, along with the
pitch computation of ten selected complexes having more
than two components. They are presented in a sequence
which intends to illustrate the main points of the men-
tioned conditions, being the first three complexes taken
from the literature so as to compare the results found
in this study with those of some important pitch models
(e.g., [5, 6, 8, 17, 18, 29, 32]) either from the “temporal”
view, which is based on the “autocorrelation” hypothesis
raised by Licklider [13], or from the “pattern matching”
models which was first described by de Boer [6]. The re-
sults found with vector addition tones show that the pitch
of harmonic complexes corresponds to the frequency of
the fundamental only in some special cases.

2. KEY PROPERTIES OF TWO-TONE
HARMONIC COMPLEXES

Some concepts introduced in this paper are derived
from two-tone harmonic complexes. In this way, a math-

ematical description of these complexes is given be-
low by using a terminology as close as possible to that
found in the literature related to such class of complexes
[7, 10, 11, 25]. A few terms are introduced, however, as
a consequence of considering other aspects of two-tone
complexes, as the equilibrium (Section 2.2) and the sym-
metry of the second derivative with respect to time (Sec-
tion 2.3).

The lower component x(t) and the upper component
y(t) of a two-tone harmonic complex are according to

x(t) = ax sin (2πfxt+ px) (1)

and
y(t) = ay sin (2πfyt+ py) , (2)

where ax and ay are amplitudes; fx and fy are frequen-
cies; and px and py are phase angles (in radians; when
expressed in degrees, they are represented as [px] and
[py]). The addition of these components together defines
the class of two-tone harmonic complexes c(t), or m:n-
complexes for short, that is,

c(t) = x(t) + y(t). (3)

 t  t  +  τ  c 

x(t ): Lower component

( c )

( b )

( a )

y(t ): Upper component

c(t ): Two-tone complex

time

Figure 1. Sinusoid addition of lower and upper components of a
two-tone harmonic complex.

There are three properties of m:n-complexes which are
relevant to the present theory, as described below in Sec-
tions 2.1-2.3.

2.1. THE PERIOD OF m:n-COMPLEXES
The first relevant property of am:n-complex is that its

period is calculable. That is to say, since the ratio between
its component frequencies can be written as

fx

fy
=
m

n
, (4)

where m and n are integers such that m ≤ n and
gcd(m,n) = 1, the period of the complex is measurable,
as illustrated in Figure 1 for a 4: 5-complex. In this way,
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one period τc of a m:n-complex comprises m periods of
x(t) against n periods of y(t), that is,

τc =
m

fx
=

n

fy
. (5)

Therefore, to find the period of a m:n-complex from
Equation (5), it is first necessary to find one of the num-
bersm or n, which can be done by means of the equations

m = num
[
F

(
fx

fy

)]
(6)

and

n = den
[
F

(
fx

fy

)]
, (7)

where F is a method for converting a decimal number to
a common fraction reduced to lowest terms, that is, the
method F gives two integers, being the first one collected
by the method num while the second one is collected by
the method den. These two numbers are referred to here
as reduced harmonic numbers.

As studied in Sections 2.2 and 2.3, the focus here is
that the period τc is a length of time along which the
waveform of a m:n-complex (1) has a well-defined num-
ber of peaks, and (2) the symmetry of the zero-crossing
pattern of its second derivative with respect to time af-
fects the amplitude of the vector addition tone, as studied
in Section 4.

2.2. THE EQUILIBRIUM THEOREM
The second relevant property is related to the num-

ber of maxima a m:n-complex has within one period τc.
Since this number is exclusively either m or n, a m:n-
complex may be said to have two states: the low state,
when there are m maxima within the period τc, and the
high state, when there are n maxima. In this way, there is
a border separating the low from the high state, which is
referred to here as the equilibrium of the m:n-complex.

One way of counting the number of maxima is by
means of the waveform inflection points, for any maxi-
mum occurs in a curve segment having a down concavity.
Since the inflection points, that is, the points where the
concavity changes from up to down, occur at values of t
where the second derivative of c(t) with respect to time is
null, this second derivative must be taken and then its zero
crossings must be found so as to determine the number of
times the concavity of the complex’s waveform changes
from up to down.

All possible waveforms for a m:n-complex at a given
phase relationship can be obtained by holding ax constant
while allowing ay to vary from a small value up to be
equal to ax, as shown in Figure 2 for one period of a 4: 5-
complex with phases px = py = π/2. The waveforms
in the upper half-surface are in the low state, all of them

having four maxima, that is, m peaks, whereas the wave-
forms in the bottom half-surface are in the high state, all
of them having five maxima, that is, n peaks. At the bor-
der between these states, the waveform is in equilibrium,
as shown by the thick waveform drawing.

1 2 3 4 5 1

1 2 3 4 1

 t [sec]  t  +  τ  c 

Low state

High state

peak number

Figure 2. The two possible states in a full period τc of a 4: 5-complex
along with the equilibrium waveform (the white line) which is the

boundary between the regions of low and high states.

Phase relationships between px and py do not cause
changes of state. Although they can modify the position
of the inflection points, they cannot change the number
of them. The state can only be changed by amplitude
changes, for there is a well-defined amplitude propor-
tion ax/ay associated to the equilibrium of every m:n-
complex. Such proportion is given by a theorem [1],
which is stated as follows.

Theorem 1 (Equilibrium theorem) A m:n-complex is in
equilibrium if

ax

ay
=

( n
m

)2

. (8)

Proof. Let tµ be a instant such that 0 ≤ tµ < τc at which
the lower tone x(t) is at a maximum, i.e., x(tµ) = ax, as
shown in Figure 1. In terms of periods τx of x(t), it can
be expressed as

tµ = kτx + ∆t, (9)

where k is the number of full periods τx between 0 and
tµ, i.e., k = int(tµ, τx); and ∆t is the amount of time
separating the end of these k successive periods from tµ,
i.e., ∆t = mod(tµ, τx). Therefore, according to Equa-
tions (1) and (5), the phase px needed for the occurrence
of a maximum of x(t) at tµ is such that

m

(
2πtµ
τc

)
+ px = (4k + 1)

π

2
. (10)

When x(t) and y(t) are taken together, there is a par-
ticular relationship between the phases px and py that
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x(t )

y(t )

ax

-ay

kτ
x

∆t

τx 2τx

 t µ  0  τ  c time

Figure 3. The lower and upper components x(t) and y(t) can be
displaced with respect to one another, so that a maximum of one of the

sinusoids occurs at the same instant a minimum of the other also
occurs. More precisely, to every phase px of the lower tone, there is a
phase py of the upper tone where at a given instant tµ a positive peak

of x(t) coincides with a negative peak of y(t). Such
maximum-minimum coincidence inside one complex’s period τc is
shown as occurring at the (k + 1)-th period τx of the lower tone.

causes the positioning of a minimum of y(t) at tµ, i.e.,
y(tµ) = −ay , thus producing a peak and valley opposi-
tion as shown in Figure 1, a fact that simplifies this proof.
In this way, from Equations (2) and (5), it follows that

n

(
2πtµ
τc

)
+ py = (4k + 1)

3π
2
. (11)

Now combining Equations (10) and (11) so as to elimi-
nate tµ/τc gives that the expression

py =
n

m
px + (4k + 1)

(
3m− n

2m

)
π (12)

is the desired relationship between the phases.
As for the amplitudes, three different proportions oc-

curring at instant tµ are compared in Figure 4, where the
more powerful component forces the waveform of the
complex to be in an inflection state in which the num-
ber of maxima is according to its reduced harmonic num-
ber. More precisely, if the second derivative of c(t) at tµ
is negative, as in Figure 4(a), the waveform is concave
downward, and just one single maximum exists for the
length of time whose extent is 1/m times the period τc.
This situation characterizes the low state. By contrast,
if the second derivative is positive, as in Figure 4(c), the
waveform is concave upward, so that two maxima, which
are symmetrical in relation to tµ, replace that single max-
imum of Figure 4(a), thus increasing the overall number
of maxima within the period τc. This puts the waveform
in the high state. Finally, if the second derivative is null,
as in Figure 4(b), the m:n-complex is in equilibrium, for
it has a null curvature at tµ. That is to say, c(tµ) is an
inflection point separating waveforms with just one max-
imum at tµ from waveforms with two maxima around tµ.
In order to find the amplitude proportion ax/ay which is
associated to the equilibrium of a given m:n-complex,
the second derivative c′′(t) is obtained from x′′(t) and

y′′(t) taken separately. From Equations (1) and (2), these
derivatives are expressed as

x′′(t) = −4π2axf
2
x sin(2πfxt+ px), (13)

and
y′′(t) = −4π2ayf

2
y sin(2πfyt+ py), (14)

so that at the instant tµ they are

x′′(tµ) = −4π2axf
2
x sin

(π
2

)
, (15)

and

y′′(tµ) = −4π2ayf
2
y sin

(
3π
2

)
. (16)

 c ( t )

(a). Low state:  c  " ( t  µ ) < 0

 t  µ 

 c ( t )
(b). Equilibrium:  c  " ( t  µ ) = 0

 t  µ 

 c ( t )
(c). High state: c" ( t µ ) > 0

t µ

x (t )
y (t )

ax

a y

 t  µ 

x (t ) y (t )axa y

 t  µ 

x (t )
y (t )

a x
a y

 t  µ 

timetime

Figure 4. Addition of the spectral components of a m: n-complex in
the region of a maximum-minimum coincidence at a time tµ. It is
shown on the left hand side of the figure the waveforms of a pair of

lower and upper components x(t) and y(t) at three different amplitude
proportions corresponding respectively (a) to low state, (b) to the
equilibrium, and (c) to the high state. On the right hand side, the

complex’s waveform segments are shown at different states.

As the second derivative of c(t) must be null at the instant
tµ, according to Equation (3) the following relation must
hold

c′′(tµ) = x′′(tµ) + y′′(tµ) = 0. (17)

Therefore, from Equations (15) and (16), it follows that

axf
2
x sin

(π
2

)
+ ayf

2
y sin

(
3π
2

)
= 0, (18)

or,
axf

2
x = ayf

2
y , (19)

which can be reduced to Equation (8) by means of Equa-
tion (4), thus ending the proof of Theorem 1.

If besides this condition the components x(t) and y(t)
are in cosine phase, that is, [px] = [py] = 90◦, the
m:n-complex is said to be in entire equilibrium. In this
case, the zero-crossing pattern of its second derivative is
at maximum symmetry, as studied in Section 2.3.
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2.2.1. A loudness scale for pure tones: Theorem 1
gives a way of constructing a loudness scale or, more pre-
cisely, a pitch-strength scale ([28]; [22] ) since it is ap-
plied just for pure tones. Hence, its modeling is done on a
theoretical basis different from that of classical loudness
models—most of them based on the sound pressure level,
as found in [15], [26], [27], and [20].

As inferred from the loudness experiment described
below in which Theorem 1 is applied to different tones,
the expression

i = af2 (20)

derived from Equation (19) establishes a loudness scale
which is assumed to be linear, that is, a tone with i2 units
of loudness where i2 = k i1 is perceived as being k times
louder than a tone having i1 units.

In this way, let T be a sequence of pure tones within
two octaves of the major diatonic scale, such that their
frequencies are, for example, 192, 216, 240, 256, 288,
320, 360, 384, 432, 480, 512, 576, 640, 720, and 768
Hz. If they all have the same amplitude and are gen-
erated at a uniform tone-duration—for instance, 600 ms
for each note, and a sound pressure level of 65 dB SPL
for the first one—they are perceived as having increas-
ing loudness levels. As a consequence of this, increasing
pitch tones are only heard at equal loudness levels when
their amplitudes are gradually decreasing. Here, the con-
cept of equilibrium of m:n-complexes can account for a
melodic loudness equality, since a sequence of increas-
ing pitch tones is heard at equal loudness levels if every
pair of contiguous tones is in equilibrium. That is, by ap-
plying Theorem 1 to the sequence T relatively to the first
tone, the amplitudes will be proportional to (192

192 )2 = 1,
( 192
216 )2 = 0.7901, ( 192

240 )2 = 0.64, ( 192
256 )2 = 0.5625,

( 192
288 )2 = 0.4444, ( 192

320 )2 = 0.36, ( 192
360 )2 = 0.2844,

( 192
384 )2 = 0.25, ( 192

432 )2 = 0.1975, ( 192
480 )2 = 0.16,

( 192
512 )2 = 0.1406, ( 192

576 )2 = 0.1111, ( 192
640 )2 = 0.09,

( 192
720 )2 = 0.071, and ( 192

768 )2 = 0.0625. Under the same
conditions used in the equal amplitude case—a duration
of 600 ms for each note, and a sound pressure level of 65
dB SPL for the first note—the tones are now perceived
as having about the same pitch strength, as demonstrated
experimentally in [2].

The role of the above defined loudness scale for pure
tones is to be one of the three dimensions of the QOL tone
space, according to the description of Section 3.

2.3. THE ZERO-CROSSING PATTERN OF THE SEC-
OND DERIVATIVE

The third and last relevant property of am:n-complex
is that its second derivative c′′(t) has a zero-crossing pat-
tern whose symmetry is a significant piece of information,
as discussed below.

The tone whose frequency is supposed to be the cor-

relate of the pitch of a given m:n-complex—as described
in Sections 3 and 4—has an amplitude which results from
the reciprocal action between the components, so that it
can assume any value from zero to a certain limit, being
a null result only possible with the 1: 1-complex, for if
ax = ay, and py = px ± π, the amplitude of the resulting
sinusoid is zero. For allm:n-complexes in whichm 6= n,
a null amplitude is impossible, unless the amplitudes ax

and ay are both null.
A measure of this reciprocal action between the two

components can be found from the zero-crossing pattern
of c′′(t) along one period τc. Here, it is appropriate to
substitute the time t of Equations (1) and (2) by an angle
α according to

t =
τc
2π
α, (21)

such that they can be rewritten as

x(α) = ax sin (mα+ px) (22)

and
y(α) = ay sin (nα+ py) , (23)

where 0 ≤ α < 2π. In this way, the zero-crossing pattern
can be found from the function c′′(α) = x′′(α) + y′′(α),
i.e.,

x′′(α) = −m2ax sin (mα+ px) (24)

and
y′′(α) = −n2ay sin (nα+ py) . (25)

The symmetry (ξ) of the zero-crossing pattern (℘)
changes according to the phase relationship between px

and py as well as according to the amplitude proportion
ax/ay. As measured by comparing the halves of the zero-
crossing pattern to each other, the symmetry ranges from
0 to 1, that is, from no symmetry to full symmetry, ac-
cording to the Algorithm S below.

2.3.1. Finding the symmetry: The symmetry of the
second-derivative’s zero-crossing pattern is found by the
Algorithm S which is defined as follows.

Algorithm S (Symmetry algorithm). Given two har-
monic tones x(t) and y(t) expressed in AFP quanti-
ties, find the symmetry ξ of the zero-crossing pattern of
c′′(t) = x′′(t) + y′′(t).
step S1. [Find the numbers m and n.] By applying Equa-
tions (6) and (7), obtain the reduced harmonic numbersm
and n.
step S2. [Get the second derivative calculation.] By
adding Equations (24) and (25), find c′′(α) for 0 ≤ α <
2π, as in the example shown in Figure 5;
step S3. [Find the zero-crossings.] Insert oriented zero-
crossing marks, i.e., find all the abscissas where the sec-
ond derivative is null along one period of the complex,
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 c  " ( α ) ( ampl. scale 1:40)
α

2π0
angle  (rd)

Figure 5. Second derivative plot along one period τc of a 4: 5-complex
tone at an amplitude proportion ax/ay = 1.5625 and phases

[px] = 0◦ and [py ] = 216◦. This second derivative waveform is
drawn at a 1: 40 amplitude scale in relation to the corresponding

complex’s waveform.

as in the example of Figure 6. If the zero-crossing refers
to a negative-to-positive crossing, i.e., if the third deriva-
tive is positive at the zero-crossing’s abscissa αi, that is,
if c′′′(αi) > 0, insert an upward arrow, otherwise insert a
downward one;

 c  " ( α ) 2π radians

0.58 1.28 1.97 2.68 3.37 4.07 4.77 5.26 5.47 6.17

α

0

angle (rd)

Figure 6. Placement of marks in the zero-crossing angles so as to be
oriented according to the curve inclination at these positions.

step S4. [Construct a Boolean pattern.] From the zero-
crossing marks, build a Boolean pattern ℘(α) with dark
rectangles for representing negative values (false) of the
second derivative, and light rectangles for representing
positive values (true), as shown in Figure 7;

 c  " ( α )

 ℘ ( α )

0.58 1.28 1.97 2.68 3.37 4.07 4.77 5.26 5.47 6.17

0 2π

α

angle (rd)

Figure 7. Building of a Boolean zero-crossing pattern from the marks
by using dark and light rectangles. A dark rectangle represents a

second derivative waveform segment with up concavity, while a light
one represents a down concavity segment.

step S5. [Extract the half-patterns.] Extract two sections
of the pattern ℘(α), as shown in the example of Figure 8.
For the first one, just take the left half of the pattern ℘(α),
i.e., the sub-pattern ℘L(α) extending from 0 to π radians,
that is,

℘L(α) = sub[℘(α), 0, π], (26)

where sub(℘(α), α1, α2) gives the subpattern of ℘(α) ex-
tending from α1 to α2. For the second one, take the mir-
ror image ℘IR(α) of the right-half of ℘(α) as detailed in

Figure 8, that is,

℘IR(α) = inv{sub[℘(α), π, 2π]}, (27)

which gives the inversion of the right half-pattern of ℘(α).
That is, every angular position α in ℘(α) where π ≤ α ≤
2π becomes 2π − α.

 c  " ( α )

0.58 1.28

0.58 1.28

1.97 2.68

1.97 2.68

0 2π

α

0 π

℘
L
(  α )

℘ (  α )

℘
IR

(  α )

0 0.11 0.81 1.02 1.51 2.21 2.91 π

angle (rd)

angle (rd)

Figure 8. Sectioning of the Boolean zero-crossing pattern ℘(α) into
two halves. In order to be compared with the left-half pattern, the
right-half one is inverted by a 180◦ rotation around a vertical axis

passing at 3π/2 rd so that its mirror image is obtained.

step S6. [Take the exclusive-or of the halves.] Find the
symmetry measuring pattern χ(α) given by the Boolean
exclusive-or operation of the patterns ℘L(α) and ℘IR(α),
as in the example shown in Figure 9, i.e.,

χ(α) = ℘L(α)⊕ ℘IR(α). (28)

step S7. [Calculate the symmetry.] Finally, take the aver-
age value ξ of χ(α), i.e.,

ξ =
1
π

J−1∑

j=0

w[χ(α), j], (29)

where w[χ(α), j] is the angular width of the j-th dark
rectangle of the pattern χ(α); and J is the number of dark
rectangles. This ends the symmetry algorithm.

℘
L

(  α )

0.58 1.28 1.97 2.68 π0

℘
IR

(  α )

0.11 0.81 1.02 1.51 2.21 2.91 π

χ(  α ) : symmetry measuring pattern
ξ = 0.566

angle (rd)

Figure 9. Calculation of the symmetry ξ of the pattern ℘(α) from the
average value of the symmetry-measuring pattern χ(α) which is found

after the Boolean exclusive-or operation between of the two
half-patterns ℘L(α) and ℘IR(α) is taken.
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 c  " ( t )

ξ= 1

phases: [p
x
]

[p
y
]

= 90

= 90

°
°

 c  " ( t )

ξ= 0.816

phases: [p
x
]

[p
y
]

= 90

= 123

°
°

 c  " ( t )

ξ= 0.399

phases: [p
x
]

[p
y
]

= 90

= 198

°
°

 c  " ( t )

ξ= 0

phases: [p
x
]

[p
y
]

= 90

= 270

°
°

time

0

(a)

(b)

(c)

(d)  τ  1 

Figure 10. Zero-crossing patterns defined in the second derivative
c′′(t) of a 1: 1-complex having equal-amplitude components for

different phase relationships. (a) The full symmetry (ξ = 1) gives the
greatest resulting amplitude. This occurs when the phases are such that
[px] = [py ] = 90◦. (b) With phases [px] = 90◦, [py] = 123◦, the

resulting amplitude is smaller as a consequence of a smaller symmetry
(ξ = 0.816). (c) With phases [px] = 90◦, [py ] = 198◦, the resulting
amplitude is still smaller, due to a still smaller symmetry (ξ = 0.399).

(d) A null symmetry (ξ = 0) gives a null resulting amplitude.

2.3.2. The symmetry in the 1: 1-complex : The zero-
valued symmetry only occurs in the 1: 1-complex. Al-
though in perceptual terms a 1: 1-complex is considered
more as a single tone than as a complex, it plays a basic
role in theoretical terms, not only for revealing how the
symmetry of the zero-crossing pattern of c′′(t) affects the
resulting loudness, but also for being a kind of unity ele-
ment of the class ofm:n-complexes. Figure 10 shows the
relationship between the pattern symmetry and the ampli-
tude of the resultant sinusoid in a 1: 1-complex.

3. VECTOR REPRESENTATION OF
TONES

The addition of two pure tones according to Equa-
tion (3) results in a different entity because a complex has
properties not present in pure tones. However, as men-
tioned in Section 1, it is hypothesized that a computable
pure tone exists whose frequency corresponds to the pitch
of the complex. This hypothesis leads to the consideration
of a mathematical model whose addition operation when
applied to a pair of sinusoidal tones just yields a single

sinusoidal tone, instead of a superposition of sinusoidal
functions, so that the pitch problem can be formalized in
this way. For this purpose, it is first necessary to arrange
the tones in a three-dimensional mathematical space.

3.1. THE QOL SPACE
One way of organizing spatially the tones is through

the rectangular QOL space shown in Figure 11 where
tones are arranged in pages. More specifically, QOL is a
space of tones having three dimensions, namely quotient,
distance in octaves, and loudness, where all the tones be-
longing to a same page have the same quotient.

Figure 11. Rectangular QOL organization of tones into pages, each of
them corresponding to a different quotient in the range 1 ≤ q < 2.
Each page is a Cartesian coordinate system of distance in octaves

versus loudness, that is, a rectangle where all tones having the same
quotient are located. (Color online at

http://www.cic.unb.br/docentes/arcela/cpv/f11.eps )

3.1.1. Building QOL from AFP: In order to set
proper limits to the quantities involved in the AFP rep-
resentation of Equations (1) and (2), it is assumed a lin-
ear working of the auditory system, where the frequencies
can have any value in the range of N octaves, i.e., from
fmin to 2Nfmin (for theoretical purposes, N is assumed
to be ten); the amplitudes can assume any value between
zero and the limit given by Equation (35); and the phases,
any value in the range from 0 to 360◦. For each 〈a, f, p〉
triple, that is, for each tone with amplitude a, frequency
f , and phase p, there is a corresponding 〈q, o, l〉 triple in
QOL, and vice versa, so that there is a bijective transfor-
mation between AFP and QOL spaces.

The quotient (q) is a frequency ratio within an octave,
i.e., 1 ≤ q < 2. Specifically, the quotient of a tone is
the ratio between its frequency f and the value obtained
by shifting the lower limit pitch fmin by the number of
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octaves ν existing between fmin and f , i.e.,

q =
f

2νfmin
, (30)

where ν is given by

ν = int
[
log2

(
f

fmin

)]
. (31)

The term “quotient” as employed here has a meaning sim-
ilar to that of “tone chroma” [4] in that both refer to the
tone position within an octave. For example, notes hav-
ing the same name also have the same chroma as well as
the same quotient, regardless of the octave in which they
are located. In color theory, however, the term “chroma”,
which was introduced by Munsell [14], has a meaning that
could result in a conflicting terminology if both tone and
color spaces are used together, as occurs in the present
study. In view of this, the term “chroma” is avoided.

The distance in octaves (o) of a tone is a quantity
given by the number of octaves separating f from fmin

plus a fractional part due to the phase p. Therefore, it lies
in the range 0 ≤ o < 10. This definition of distance in
octaves may be illustrated by means of the helix of pitch
[23] shown in Figure 12, where the integer part is given
by the number of turns from fmin to f , since each turn of
the helix counts as one octave. In Figure 12(a), the helix
is at the normal angular position, that is, its lower end is at
zero radian. A tone in the normal helix is assumed to have
a null phase. Starting at fmin and going up to the higher
frequencies, the helix intersects a certain horizontal cir-
cle (a cross section of the helix’s circumscribed cylinder)
defining the position of frequency f at a point p0. If the
tone has a non-null phase p, as indicated in the same hori-
zontal circle, the whole helix must be rotated by p radians
so as to reach that circle exactly at point p, as shown in
Figure 12(b). In summary, the number of octaves ν gives
the integer part of the distance in octaves, while the dec-
imal part is given by the quotient between the phase and
the maximum possible rotation in the helix, i.e.,

o = ν +
p

2π
. (32)

The concept of distance in octaves is thus like that of
“tone height” found in [4]. However, since the phase is
included, the distance in octaves is based on a continuous
scale, instead of a discrete one.

Finally, the loudness dimension (l) is built in accor-
dance with the definition presented in Section 2.2.1. In
order to be included as one of the dimensions of the QOL
tone space, the loudness must be rescaled to the range
0-100 loudness units. Therefore, it follows from Equa-
tion (20) that

l = 100
(
af2

imax

)
, (33)

where imax is the upper limit of the loudness scale, that is,
a value above which the auditory system loses linearity. It
is given by

imax = amaxf
2
min, (34)

where fmin is the frequency corresponding to the lower
limit of pitch discrimination, and amax is the largest am-
plitude which is supported by the auditory system under
linearity conditions at fmin. If the equilibrium theorem
is taken along the whole audible frequency range rela-
tively to Equation (34), the corresponding amplitude (a)
at a given frequency (f ) is such that

a ≤ imax

f2
. (35)

The loudness unit—or lut for short—for the scale l de-
fined in Equation (33) is derived from the assumption that
a tone with frequency fmin and amplitude amax has a
loudness of 100 luts. That is to say, at five octaves above
fmin, for example, a tone with 100 luts of loudness has
an amplitude equals to (1/1024)amax.
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Figure 12. A geometric interpretation of distance in octaves by means
of the helix of pitch. (a) The whole number of turns separating the

lower limit of pitch fmin from the frequency f of the tone. (b) The
inclusion of phase in the helix of pitch is such that its effect is to rotate

the whole helix by an angle corresponding to its magnitude.

3.2. THE QOL TO RGB TRANSFORMATION
The addition of two tones seems to be not obvious in

QOL because it does not constitute a vector space. In
other words, two QOL tones 〈q1, o1, l1〉 and 〈q2, o2, l2〉
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cannot be mathematically combined from a coordinate-
by-coordinate addition, for example. However, the QOL
space can be mapped onto the RGB color space—where
the addition operation can be carried out—if, as a first
step, its rectangular organization is converted to a cylin-
drical one. That is, by transforming the quotient q, which
lies in the range 1 ≤ q < 2, into an angle lying in the
range 0 − 360◦, a cylinder of pages is defined according
to Figure 13 as having the same organization as that of the
HSV color space. More specifically, by conveniently po-
sitioning, scaling, and orienting the RGB cube relatively
to the QOL cylinder, a correspondence is established be-
tween quotient and hue, distance in octaves and satura-
tion, and loudness and value. Here the cylinder’s axis
coincides with the achromatic diagonal KW of the cube,
which is aligned with the vertical direction; the radius of
the cylinder’s base is equal to the projection of the vector
Y = R+G on the horizontal plane; and the red page (the
QOL page defined by q = 1) contains the edge KR of
the cube. Although the angular spacing of QOL pages is
continuous, only a discrete set of pages is shown in order
to render the inner side of the volume visible.

The QOL to RGB transformation requires a mapping
of every page of the cylinder into a corresponding verti-
cal triangle enclosed in the RGB cube, referred to here as
sail, which is defined by the points K, W, and the inter-
section point of the corresponding QOL page and one of
the edges RY, YG, GC, CB, BM, or MR, of the cube,
as shown in Figure 14. That is, each tone of a given QOL
page is mapped into a vector of the corresponding RGB
sail. This can be done by taking advantage of the analogy
between QOL and HSV, so that a QOL to HSV transfor-
mation must be carried out first.

3.2.1. The QOL to HSV transformation: As the ge-
ometries of QOL and HSV spaces are coincident, the con-
version of a 〈q, o, l〉 tone to a 〈h, s, v〉 color is according
to

h = 360 (q − 1) , (36)

s =
o

10
, (37)

and

v =
l

100
. (38)

Therefore, the ranges are 0 ≤ h < 360◦, 0 ≤ s ≤ 1, and
0 ≤ v ≤ 1.

3.2.2. The HSV to RGB transformation: A pair of
algorithms allowing forward and inverse transformations
between HSV and RGB color spaces was introduced by
Smith [24]. Such algorithms are based on the “hexcone”
representation of the HSV space which is equivalent to
the cylindrical one. In this way, let Γ(〈h, s, v〉, k) be the

Figure 13. RGB-cube positioning, scaling, and orienting inside the
QOL cylinder in a way that its achromatic diagonal coincides with the
vertical axis of the cylinder. The vertex R of the cube is positioned on
the surface of the cylinder in the same plane as the cylinder [0◦]-page

(the red-page, i.e., where q = 1). In this way, the vertex G is positioned
on the [120◦]-page, where q = 4/3; and the vertex B is positioned on
the [240◦]-page, where q = 5/3. Although the cylinder is shown with
a finite number of pages, the angular spacing is continuous, so that to
any quotient between 1 and 2 there is a corresponding page. (Color

online at http://www.cic.unb.br/docentes/arcela/cpv/f13.eps)

Smith’s HSV to RGB algorithm, where each one of the
coordinates r, g, and b is indexed by k. That is,

r = Γ(〈h, s, v〉, 0), (39)

g = Γ(〈h, s, v〉, 1), (40)

and

b = Γ(〈h, s, v〉, 2). (41)

The convention adopted here in relation to these algo-
rithms is that found in [30] where the hue is taken in de-
grees, that is, from 0 to 360◦, instead of 0 to 1.

3.2.3. Color interpretation of music: A related mat-
ter, although not properly belonging to this paper’s main
subject, refers to applications of the above described tone-
to-color transformation in visual translation of music.
More generally, it refers to any composition that has a
visual counterpart the colors of which are calculated by
applying the method described in Section 3 to the exist-
ing notes. Some of these applications can be accessed at
http://www.cic.unb.br/docentes/arcela/colormusic/.
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Figure 14. (a) RGB cube with its achromatic diagonal (defined by the
vertices K and W, which correspond respectively to the colors black

and white) aligned with the vertical direction. Indication of the vertices
R, G, B, C, M, and Y which correspond respectively to the colors red,
green, blue, cyan, magenta, and yellow. (b) Illustration of some sails as
the result of the transformation of some QOL pages into RGB. The red

sail contains the vertex R. (Color online at
http://www.cic.unb.br/docentes/arcela/cpv/f14.eps)

4. THE VECTOR ADDITION TONE
The purpose of applying the mathematical equiva-

lence between a tone space and a color space in the com-
putation of the pitch of a given complex is that it becomes
possible to find a single tone as the final result of adding
vectorially the respective component tones. Naturally,
this is done in analogy with the addition—or mixing—
of colors in the RGB cube, which is an operation that
necessarilly results in a single vector, since regardless of
the number of colors being mixed together, a single color
must be produced at the end of the mixing procedure. In
other words, the approach to compute pitch which is pre-
sented here could not be proposed if the addition of tones
were done by means of common algebraic addition of sine
functions.

Therefore, the methods introduced in Section 3 for
representing tones as vectors are now combined so as to
compute pure tones having supposedly pitch equivalence
with harmonic complexes. The basic operation is the vec-
tor addition of a pair of tones, which is carried out by Al-
gorithm A as described below. For complexes with more
than two components, the computation is carried out by
Algorithm M , which is described in Section 4.2. Multi-
tone complexes are broken into several temporary m:n-
complexes, so as to be resolved by successive applications
of AlgorithmA, each of them producing a vector addition
tone referred to as a temporary component.

4.1. THE VECTOR ADDITION OF TWO TONES
The computation of the vector addition tone for a

m:n-complex requires a sequence of three basic oper-

ations, namely down-transposition, vector composition,
and up-transposition which are respectively carried out
by the algorithms D, C, and U described below.

4.1.1. Down transposition: The need for this oper-
ation is due to the nature of the angular representation
of tones in the QOL space, for the transformation given
by Equation (36) which maps quotients into hues is not
linear. For instance, if the lower component of a 2: 3-
complex is such that fx/fmin is a power of two, so that
the lower and upper quotients are respectively qx = 1
and qy = 1.5, the QOL page of fx is the same as that of
fmin. Hence, according to Equation (36), the angular dif-
ference between the HSV page of the upper component
y(t) and that of the lower component x(t) is 180◦, for
hy = 360(1.5 − 1) = 180◦ and hx = 360(1 − 1) = 0◦,
so that ∆h = 180◦. This means that the resulting vec-
tor will be found on one of the two pages since they are
in the same plane (Section 5.2). Now, when fx/fmin is
not a power of two, the angular difference is not 180◦,
as can be seen with a 2: 3-complex having qx = 1.25.
In this case, the quotient of the upper component is qy =
1.25(3/2) = 1.875, so that hy = 360(1.875−1) = 315◦,
and hx = 360(1.25− 1) = 90◦, i.e., ∆h = 225◦, and not
180◦ as in the first case. Therefore, in order to have a vec-
tor composition as a homogeneous operation with respect
to the frequency ratio m:n, and whose result does not de-
pend on the value set to fmin, the down transposition is a
required operation.

After the down-transposition operation, both lower
and upper components will have their parameters changed
in a particular way. More specifically, x(t) becomes x̄(t)
by first dividing its frequency fx by its quotient qx, so that
x̄(t) will be a component having a unitary quotient, that
is, qx̄ = 1, while y(t) becomes ȳ(t), a component which
is lowered by the same factor qx, so that the frequency
ratio m:n is held. Next, the amplitudes are increased in
the proportion given by the equilibrium theorem so as to
preserve the loudness of both components. Finally, the
phases are transformed in such a way that the transposed
lower component x̄(t) has its phase set to π/2 rd, while
the phase of the transposed upper component ȳ(t) is set to
a value at which the waveform of x̄(t) + ȳ(t) assumes—
in a different time scale—the same shape as that of the
waveform of x(t)+y(t), as shown in Figure 15. The pur-
pose of this phase transformation is to have a reference
for measuring the waveform’s symmetry with Algorithm
S (Section 2.3.1), since a m:n-complex whose compo-
nents are both in cosine phase is symmetrical.

As a result of the down transposition, which is for-
malized below by Algorithm D, the sail of the lower tone
becomes coincident with that of fmin, i.e., the [q = 1]-
sail (or red sail), as shown in Figure 16.

74



Aluizio Arcela The Computation of Pitch with Vectors

Algorithm D (Down transposition algorithm). Given a
m:n-complex whose lower and upper components are,
respectively, [x]AFP = 〈ax, fx, px〉 and [y]AFP =
〈ay, fy, py〉, find the transposed components [x̄]AFP =
〈ax̄, fx̄, px̄〉 and [ȳ]AFP = 〈aȳ, fȳ, pȳ〉.
step D1. [Find the quotient of the lower component.] Use
Equations (30) and (31) to find qx.
step D2. [Down-transpose the lower component.] Find
the frequency fx̄ of the down-transposed lower compo-
nent x̄(t) by dividing fx by the quotient qx, that is,

fx̄ =
fx

qx
. (42)

Then, find the amplitude ax̄ by considering that the trans-
posed component x̄(t) must have the same loudness as
x̄(t). That is, by applying Theorem 1,

ax̄ = ax

(
fx

fx̄

)2

. (43)

Now set the phase px̄ to π/2. That is,

px̄ =
π

2
. (44)

step D3. [Down-transpose the upper component.] Find
the down-transposed upper component ȳ(t) according to

fȳ =
fy

qx
, (45)

aȳ =
ly
f2

ȳ

, (46)

and
pȳ = py −

( n
m

)
px̄, (47)

where the relationship between px̄ and pȳ is the same as
that of px and py .

4.1.2. Vector composition: This operation is applied
to the transposed components x̄(t) and ȳ(t). After ob-
taining the symmetry ξ of the zero-crossing pattern of
the second derivative of the transposed complex c̄(t) =
x̄(t)+ ȳ(t), which is the same as that of the untransposed
complex c(t), it finds the vector composition of the two
transposed tones as a vector addition under a magnitude
coefficient ξ as described below.

Algorithm C (Vector composition algorithm). Given the
transposed tones x̄(t) and ȳ(t), find their vector composi-
tion [ū]RGB .
step C1. [Convert to QOL.] Convert the transposed
components [x̄]AFP = 〈ax̄, fx̄, px̄〉 and [ȳ]AFP =
〈aȳ, fȳ, pȳ〉 into QOL by using Equations (30)–(33).
step C2. [Convert to HSV.] Convert the transposed com-
ponents [x̄]QOL = 〈qx̄, ox̄, lx̄〉 and [ȳ]QOL = 〈qȳ, oȳ, lȳ〉
into HSV by using Equations (36)–(38).

step C3. [Convert to RGB.] Convert the transposed
components [x̄]HSV = 〈hx̄, sx̄, vx̄〉 and [ȳ]HSV =
〈hȳ, sȳ, vȳ〉 into RGB by using Equations (39)–(41).
step C4. [Find the symmetry.] Apply Algorithm S (sym-
metry algorithm; Section 2.3.1) to the transposed tones
x̄(t) and ȳ(t) in order to find the symmetry ξ of the zero-
crossing pattern of c̄′′(t) = x̄′′(t) + ȳ′′(t), i.e.,

ξ = S(x̄, ȳ). (48)

step C5. [Add the vectors.] Find the transposed vector
composition [ū]RGB by using the symmetry ξ as a scalar
multiplier to the vector addition [ū∗]RGB = [x̄]RGB +
[ȳ]RGB . That is, [ū]RGB = ξ [ū∗]RGB , or

rū = ξ(rx̄ + rȳ), (49)

gū = ξ(gx̄ + gȳ), (50)

and
bū = ξ(bx̄ + bȳ). (51)

4.1.3. Up transposition: The up transposition, which
is the inverse operation of the down transposition, is ap-
plied to the down transposed vector [ū]RGB in order to
find and place the resulting tone u(t) in respect to the
original untransposed tones x(t) and y(t), as shown in
Figure 17. Before the up transposition is effectively ap-
plied, the vector [ū]RGB is first converted from RGB to
HSV, then to QOL, and finally to AFP.

Algorithm U (Up transposition algorithm).
Let Γ−1(〈rū, gū, bū〉, k) represent the k-th component
(0 ≤ k ≤ 2) of the RGB to HSV transformation.
step U1. [Go back to HSV.] Find the components hū, sū.
and vū, by using

hū = Γ−1(〈rū, gū, bū〉, 0), (52)

sū = Γ−1(〈rū, gū, bū〉, 1), (53)

and
vū = Γ−1(〈rū, gū, bū〉, 2). (54)

step U2. [Go back to QOL.] Use Equations (55)–(57),
which are derived from Equations (36)–(38), to convert
the above computed HSV values back to QOL:

qū = 1 +
hū

360
, (55)

oū = 10 sū, (56)

and
lū = 100 vū. (57)

step U3. [Go back to AFP.] Use Equations (58)–(60),
which are derived from Equations (30)–(33), to convert
the resulting tone from QOL to AFP. Find the transposed
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vector addition tone ū(t) = aū sin(2πfūt+pū) by calcu-
lating first the frequency fū, then the amplitude aū, and
finally the phase pū, that is,

fū = qū2int(oū)fmin, (58)

where int(oū) is the integer part of oū. The amplitude aū

is then given by

aū =
imax lū
100f2

ū

, (59)

and the phase pū comes from

pū = 2π[oū − int(oū)]. (60)

step U4. [Transpose the tone up.] Find the vector addition
tone [u]AFP = 〈au, fu, pu〉 by up transposing [ū]AFP

under the factor 1/qx. From Equations (45)–(47) used
to down transpose the tone y(t), the equations for the up
transposition of tone u(t) can be deduced. They are

fu = qxfū, (61)

au = aū

(
fū

fu

)2

, (62)

and

pu = pū + (px − px̄)
(
fu

fx

)
, (63)

where fu is the computed pitch.

4.1.4. Grouping the algorithms: At this point, the
above described algorithms D, C, and U are combined
together so as to define the algorithm A for computing the
vector addition of two tones, as illustrated in Figure 18.

Algorithm A (Vector addition tone algorithm) Given the
components x(t) and y(t) of a m:n-complex, find the
vector addition tone u(t).

The components x(t) and y(t) are expressed in AFP
quantities, that is, [x]AFP = 〈ax, fx, px〉 and [y]AFP =
〈ay, fy, py〉, where the phases are in degrees.
step A1. [Do the down transposition.] Apply Algorithm
D to the components x(t) and y(t) so as to find the
transposed tones [x̄]AFP = 〈ax̄, fx̄, px̄〉 and [ȳ]AFP =
〈aȳ, fȳ, pȳ〉.
step A2. [Do the vector composition.] Apply Algorithm
C to [x̄]AFP and [ȳ]AFP so as to obtain the transposed
vector composition [ū]RGB = 〈rū, gū, bū〉.
step A3. [Do the up transposition.] Apply Algorithm U
to [ū]RGB so as to find the vector addition tone [u]AFP =
〈au, fu, pu〉.

Figure 15. The down transposition of a m: n-complex. (a) Waveforms
of the spectral components x(t) = 2 sin[2π(468)t] and

y(t) = 1.3 sin[2π(585)t + 216(π/180)]. (b) The corresponding
4:5-complex, that is, c(t) = x(t) + y(t). (c) The transposed

components x̄(t) and ȳ(t). (d) The transposed complex has a period
1.22 (the approximate value of qx) times greater than that of the

untransposed complex and, while it is phase shifted, its waveform has
the same shape as the untransposed complex. (Color online at

http://www.cic.unb.br/docentes/arcela/cpv/f15.eps)

4.2. COMPLEXES HAVING MORE THAN TWO TONES
For complexes having more than two components, the

vector addition tone is found by extending the application
of Algorithm A to all the components of the complex.
More specifically, the first two vector tones are added to-
gether, the sum of which is added to the third component
vector, and so on.

Algorithm M (Vector addition tone algorithm for har-
monic complexes having more than two tones). Let
C(t) = {z0, z1, . . . , zk−1} be a complex having k har-
monic components. Find the vector addition tone u(t)
by sequentially applying Algorithm A to pairs of tones as
follows:
step M1. [Add up the first two spectral components.] Find
the first temporary component u1(t) for the vector addi-
tion tone by applying AlgorithmA to the first two spectral
components, that is,

u1(t) = A(z0, z1). (64)

step M2. [Add up the remainder components.] Compute
each iteration of the following operation sequence

uj(t) = A (uj−1, zj) ; for 2 ≤ j < k, (65)

as a subsequent temporary component uj(t) for u(t). The
last iteration of the operation sequence of Equation (65)
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Figure 16. A pair of tones inside the RGB cube. (a) The vector
representation for the tones x(t) = 2 sin[2π(468)t] and

y(t) = 1.3 sin[2π(585)t + 216(π/180)]. (b) The sails for x(t) on
the right and for y(t) on the left. (c) The vector representation for the
transposed tones x̄(t) and ȳ(t). (d) The sails for x̄(t) and for ȳ(t).
(Color online at http://www.cic.unb.br/docentes/arcela/cpv/f16.eps)

gives the resulting vector addition tone of the complex
C(t), i.e.,

u(t) = uk−1(t). (66)

This ends the algorithm M .

5. GEOMETRY OF COMPLEXES
There is a close relationship between the geometry of

any vector composition and the corresponding reduced
harmonic numbers m,n from which relevant properties
related to the pitch of complexes can be derived. Some of
these properties refer to the problem of the missing fun-
damental. In this way, in order to address the conditions
of equality between the computed pitch and the frequency
of the fundamental, four basic frequency ratios are stud-
ied here.

5.1. COMPONENTS AN OCTAVE APART
According to Equation (31), in a two-tone complex

whose components are one octave apart, that is, m:n =
1: 2, the difference between the number of octaves of the
transposed tone ȳ(t) relatively to fmin and that of x̄(t) is

νȳ − νx̄ = 1. (67)

Figure 17. Up transposition. (a) The transposed vector addition tone
ū(t) of components x(t) = 2 sin[2π(468)t] and

y(t) = 1.3 sin[2π(585)t + 216(π/180)]. (b) The up transposition
operation gives the final vector addition tone u(t), where the frequency

is multiplied by the quotient qx of the original lower tone so that the
resulting tone has a period in the same scale of time as that of the

original complex. (Color online at
http://www.cic.unb.br/docentes/arcela/cpv/f17.eps)

As shown in Figure 19(a) for the respective vector com-
position, since the RGB sails of both transposed tones are
coincident, that is,

qx̄ = qȳ = 1, (68)

the transposed addition tone will be located on this com-
mon sail. That is to say, any quotient the lower tone
x(t) might have, which is always equal to that of y(t),
the vector-addition tone u(t) will have the same quotient
(Section 4.1.4, step A3), that is, qu = qx. However,
mainly due to the phase relationship and secondarily due
to the amplitude proportion, the resulting pitch can be ei-
ther fx or fy . For instance, when the 1: 2-complex is in
equilibrium, that is,

lx̄ = lȳ, (69)

the transposed vector addition tone ū(t) has a distance in
octaves oū equal to the arithmetical mean of the distances
in octaves ox̄ and oȳ of the transposed components x̄(t)
and ȳ(t). As a consequence, if the phase px is set to π/2
rd while py can assume any value between 0 and 2π rd,
the pitch will correspond to fx when 0 ≤ py < 3π/2,
and will correspond to fy when 3π/2 ≤ py < 2π rd, as
demonstrated below.

The HSV equivalents of Equations (68) and (69) are
given respectively by Equations (36) and (38), that is,

hx̄ = hȳ = 0 (70)
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Figure 18. Vector composition of tones. (a) The vector representations
[x̄]RGB , [ȳ]RGB , and [ū]RGB of the components x(t) and y(t) along

with and transposed vector addition tone ū(t). (b) The sails of
[x̄]RGB , [ū]RGB , and [ȳ]RGB (the latter is not visible in the figure).
(c) The vector representation [ū]RGB of the vector addition tone u(t)

of the components x(t) = 2 sin[2π(468)t] and
y(t) = 1.3 sin[2π(585)t + 216(π/180)]. (d) The sails for [x]RGB ,
[x]RGB , and for the addition vector [u]RGB . Here, a 180◦ rotation
has been applied to the cube so as to make all the three sails visible.
(Color online at http://www.cic.unb.br/docentes/arcela/cpv/f18.eps)

and

vx̄ = vȳ =
lx̄

100
. (71)

In terms of RGB coordinates, the necessary conditions
for a vector to be located on the red sail are that (1)
the coordinates g and b are equal, and (2) the coordi-
nate r is the greatest among the three, that is, rx̄ =
max(rx̄, gx̄, bx̄) and rȳ = max(rȳ, gȳ, bȳ). Therefore,
according to the HSV to RGB transformation represented
by Equations (39)–(41) and the conditions indicated by
Equations (70) and (71), the transposed RGB vectors can
be obtained. The vector [x̄]RGB is given by rx̄ = vx̄,
gx̄ = vx̄ (1− sx̄), and bx̄ = gx̄, that is,

rx̄ =
lx̄

100
, (72)

gx̄ =
lx̄

100

(
1− ox̄

10

)
, (73)

and
bx̄ = gx̄. (74)

In the same way, the vector [ȳ]RGB is given by

rȳ =
lx̄

100
, (75)

gȳ =
lx̄

100

(
1− oȳ

10

)
, (76)

and
bȳ = gȳ. (77)

From Equations (72)–(77), the coordinates of the trans-
posed resulting vector [ū]RGB = 〈rx̄ + rȳ, gx̄ + gȳ, bx̄ +
bȳ〉 are given by

rū =
lx̄
50
, (78)

gū =
lx̄

100

(
2− ox̄ + oȳ

10

)
, (79)

and
bū = gū. (80)

In order to find the distance in octaves oū, first the satu-
ration sū must be obtained from the RGB to HSV trans-
formation indicated by Equations (52)–(54), that is, sū =
[max(rū, gū, bū)−min(rū, gū, bū)]/max(rū, gū, bū). As
the maximum is rū and the minimum is gū, it follows that

sū =
rū − gū

rū
. (81)

Substituting sū = oū/10, as given by Equation (37), to-
gether with Equations (78)–(79) into Equation (81) yields

oū =
ox̄ + oȳ

2
, (82)

which, according to Equation (32), can be rewritten as

oū =
1
2

(
νx̄ +

px̄

2π
+ νȳ +

pȳ

2π

)
. (83)

Now, taking into account Equation (67) yields

oū = νx̄ +
1
2

+
px̄ + pȳ

4π
. (84)

Therefore, if
1
2

+
px̄ + pȳ

4π
≥ 1, (85)

that is, if px̄ + pȳ ≥ 2π, the number of octaves νū of the
transposed vector addition tone will be 1 plus the number
of octaves νx̄, so that the resulting pitch equals fy . Oth-
erwise νū will be equal to νx̄, and so the pitch will be fx.
For example, if px is set to π/2 which, according to Equa-
tions (44) and (47), implies in a equality between px and
px̄ as well as between py and pȳ, then for 0 ≤ px̄ < 3π/2,
the resulting pitch is fx, while for 3π/2 ≤ px̄ < 2π it is
2fx.
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Figure 19. Vector composition of transposed components of
m: n-complexes having simple m: n ratio. (a) Vector addition of tones

in octaves. (b) Vector addition of tones in fifths. Definition of the
red-cyan rectangular section. (c) Vector addition in fourths. (d) Vector

addition in major thirds. (Color online at
http://www.cic.unb.br/docentes/arcela/cpv/f19.eps)

5.2. COMPONENTS A FIFTH APART
For a complex whose components are a fifth apart,

that is, m:n = 2: 3, the vector placement is that shown
in Figure 19(b). In this case, the sails of the transposed
tones are complementary, so that the association of them
defines the red-cyan rectangular section of the RGB cube.
Because of this singular alignment of sails, the transposed
resulting vector [ū]RGB will be located exclusively either
on the sail of [x̄]RGB or on that of [ȳ]RGB . As illustrated
in Figure 20 for the red-cyan rectangular section, if the
angle ψ between the transposed addition vector [ū]RGB

and the diagonal KC (of the face KBCG) is greater than
δ = tan−1(

√
2/2)—the angle between the diagonal KW

of the cube and the diagonal KC of the face—the result-
ing vector will be on the red sail, so that its quotient will
be the same as that of [x̄]RGB . Otherwise, it will be on
the cyan sail, and so its quotient will be equal to that of
[ȳ]RGB .

Since the necessary condition for a RGB vector to be
located on the red-cyan rectangular section is that its com-
ponents g and b have the same value, it holds for the vec-

tor [x̄]RGB that gx̄ = bx̄, while for the vector ȳ it holds
that gȳ = bȳ , so that the projection of the resulting vector
[ū∗]RGB on the side KR is given by

rū∗ = rx̄ + rȳ, (86)

while its projection on the diagonal KC is

cū∗ = (gx̄ + gȳ)
√

2. (87)

Therefore, as
tanψ =

rū∗

cū∗
, (88)

the resulting vector will be located on the red sail if

rx̄ + rȳ

(gx̄ + gȳ)
√

2
>

√
2

2
, (89)

that is,
rx̄ + rȳ > gx̄ + gȳ, (90)

whereas it will be located on the cyan sail if

rx̄ + rȳ < gx̄ + gȳ. (91)

5.2.1. Computed pitch under equilibrium: When the
2: 3-complex is in equilibrium, that is, lx̄ = lȳ , it follows
from Equation (57) that

vx̄ = vȳ, (92)

a condition whose RGB equivalent is found from the
RGB to HSV transformation mentioned in Section 3.2.2
according to which vx̄ = max(rx̄, gx̄, bx̄), and vȳ =
max(rȳ, gȳ, bȳ). Therefore, since

max(rx̄, gx̄, bx̄) = rx̄ (93)

and
max(rȳ, gȳ, bȳ) = gȳ, (94)

it holds that

rx̄ = gȳ. (95)

Substituting Equation (95) into Equation (90) gives the
condition for the transposed resulting vector being located
on the red sail, that is,

rȳ > gx̄. (96)

Substituting Equation (95) into Equation (91) gives the
condition for the transposed resulting vector being located
on the cyan sail, that is,

rȳ < gx̄. (97)

In order to obtain the AFP equivalents of these conditions,
it is necessary to carry out the back conversion. Accord-
ing to the RGB to HSV transformation, the saturations sx̄

and sȳ are given respectively by sx̄ = [max(rx̄, gx̄, bx̄)−
min(rx̄, gx̄, bx̄)]/max(rx̄, gx̄, bx̄) and sȳ =
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[max(rȳ, gȳ, bȳ) − min(rȳ, gȳ, bȳ)]/max(rȳ, gȳ, bȳ).
Since min(rx̄, gx̄, gx̄) = gx̄ and min(rȳ, gȳ, gȳ) = rȳ,
and by using Equations (93)–(95), it follows that

sx̄ =
rx̄ − gx̄

rx̄
(98)

and

sȳ =
rx̄ − rȳ
rx̄

. (99)

To find the condition for the transposed resulting vector
being on the red sail under equilibrium, it is necessary to
compare Equations (98) and (99) one to the other while
taking into consideration Equation (96). In this way, it
follows that sx̄ > sȳ , or, according to Equation (56), the
respective distances in octaves are such that

ox̄ > oȳ, (100)

which, from Equation (32), yields

νx̄ +
px̄

2π
> νȳ +

pȳ

2π
. (101)

Since fx̄ is a power of two times fmin, it follows from
Equations (30) and (31) that fx̄ and fȳ are in the same
octave relatively to fmin. Therefore,

νx̄ = νȳ. (102)

Then, substituting Equations (44) and (102) into Equa-
tion (101), it follows that

pȳ <
π

2
. (103)

That is, under equilibrium conditions of the 2: 3-complex,
the resulting transposed vector will be on the red sail if the
phase of the transposed higher tone ȳ(t) is lesser than π/2
rd. Otherwise, that is, if

π

2
< pȳ < 2π, (104)

it will be on the cyan sail. Therefore, the pitch of a
2: 3-complex in equilibrium has a bipolar response to the
phase relationship, since it can assume just one of two
values, i.e., according to Equation (61), fminqx, when
the transposed resulting vector is on the red sail, and
1.5fminqx, when it is on the cyan sail.

Finally, if both tones not only have the same loudness
but also are in cosine phase, that is, the 2: 3-complex is in
entire equilibrium (Section 2.2), the resulting vector will
be aligned with the achromatic diagonal KW, which is the
border between the red and cyan sails. This means that in
this very particular case, the resulting pitch is indefinite.

ψ
δ

x

y

u∗

u

K

C

R

W

s

s 2√

g y√2

cu*

g x√2

rx

ru*

ry

KR = side of the RGB cube = s

KC = diagonal of the face = s√2

KW = diagonal of the cube = s√3

KRW = red sail

KCW = cyan sail

ψ =  resulting angle

δ =  tan -1 ( √2 
2 
) ≈ 35.26°

Figure 20. A vector composition on the red-cyan rectangular section of
the RGB cube where the resulting transposed vector ū is found on the

red sail. In this case, the vector addition tone will have the same
quotient as that of x̄.

5.3. COMPONENTS A FOURTH APART
For a complex whose components are a fourth apart,

that is,m:n = 3: 4, the placement of vectors is that shown
in Figure 19(c). Now, as the sails of the transposed tones
are angularly spaced apart by 120◦, the transposed result-
ing vector [ū]RGB can be located on any sail defined be-
tween 0 and 120◦. Therefore, the quotient of the vector
addition tone has a value between the component quo-
tients.

When a 3: 4-complex is in entire equilibrium, the
value of its computed pitch is an octave below the arith-
metic mean of the component frequencies, that is, fu =
(fx +fy)/4. (A proof of this statement is not given here).
The effects of phase in this complex are described below
in Section 5.5

5.4. COMPONENTS A MAJOR THIRD APART
For a complex whose components are a major third

apart, that is, m:n = 4: 5, the placement of vectors is
that shown in Figure 19(d). In this case, the sails of the
transposed tones are angularly apart by 90◦, so that the
transposed resulting vector ū(t) can be located on any sail
defined between 0 and 90◦. Therefore, the computed quo-
tient is a value between the component quotients.

5.5. PHASE EFFECTS ON THE PITCH OF m:n-
COMPLEXES

By keeping the phase px at 90◦ while py is allowed to
vary from 0 to 360◦, it is possible in terms of phase sensi-
tivity to classify m:n-complexes into four major groups
according to the way the pitch changes in each of them.

The first group contains just the 1: 1-complex, because
it is the only complex whose pitch does not change with

80



Aluizio Arcela The Computation of Pitch with Vectors

the phase relationship, although the loudness of the vector
addition tone is affected.

The second one is constituted of complexes having a
bipolar effect, that is, those in which, for a certain phase
subrange for py , the resulting pitch corresponds to one
of the component frequencies, while for the complemen-
tary subrange it corresponds to the other component fre-
quency, as occurs with 1: 2 and 2: 3 complexes discussed
above in Sections 5.1 and 5.2.

The third one comprises complexes whose pitch re-
sponse has a discontinuity, that is, there are two comple-
mentary phase subranges where pitch varies continuously,
being these subranges about one octave apart one from the
other. For example, the pitch of a 4: 5-complex in equilib-
rium increases continuously 44 cents relatively to a given
frequency value as py goes from 0 to 330◦, while from
330 to 360◦ it increases continuously from 1244 to 1247
cents relatively to the same reference value of the first
subrange. Other examples include 5: 6, 22: 27, and 5: 8
complexes.

Finally, the fourth and last group comprises m:n-
complexes in which the pitch varies continuously along
the full phase range, in general for a small interval. For
instance, the pitch of a 3: 4-complex in equilibrium in-
creases continuously about 88 cents as py goes from 0 to
360◦, while a 8: 9-complex in equilibrium increases about
20 cents. Other examples include 25: 36, 3: 5, and 8: 15
complexes.

6. THE MISSING FUNDAMENTAL
The application of Algorithm M to three examples

selected from the literature is first considered. Subse-
quently, the possibility for the pitch of a harmonic com-
plex to be the same as the frequency of the fundamental is
investigated by exploring the geometric properties of the
vector pairs operated by Algorithm A inside Algorithm
M . An audible demonstration of these complexes and
their respective vector-addition tones is found in [3].

From this point on, the notation “Hk” for a spectral
component is used, which is intended to mean that the
integer k is the harmonic number of the respective com-
ponent, that is, fHk

= kfH1 , being Hk the same as
Hk(t) = aHk

sin(2πfHk
t+ pHk

).

6.1. PITCH COMPUTATION FOR A COMPLEX WITH
SUCCESSIVE HARMONICS

The complex C1 = {H3,H4,H5} to be considered
in the first place has component frequencies according
to 600, 800, and 1000 Hz, respectively, so that its miss-
ing fundamental is at 200 Hz. A study of this com-
plex was reported in [9] where the components H3,
H4, and H5 have the same amplitude and are in co-

sine phase. Their values in AFP quantities are taken as
[H3]AFP = 〈0.9, 600, 90〉, [H4]AFP = 〈0.9, 800, 90〉,
and [H5]AFP = 〈0.9, 1000, 90〉. In this way, their loud-
nesses are according to lH3 = 36, lH4 = 64, and lH5 =
100 luts. The amplitudes are set to 0.9 units because this
value is appropriate in relation to the upper limit ampli-
tude of the highest componentH5, which is also the loud-
est one. More precisely, for a lower limit pitch fmin set
to 30 Hz [12] and an upper limit amplitude [amax]fmin

set to 1000 units, then according to Equation (34) the
maximum loudness is imax = 900000. Therefore, it fol-
lows from Equation (35) that the upper-limit amplitude
for H3 is [amax]fH3

= 900000/10002 = 0.9 units. As
the amplitude values are relative to each other, overall
gain adjustments are required for a suitable sound pres-
sure level as, for example, a value around 65 dB SPL for
H5. The final vector addition tone is found by applying
Algorithm M to the set of the three components such that
u(t) = M(H3,H4,H5) = A[A(H3,H4),H5], that is,
the Algorithm A is first applied to the components H3

and H4 thus yielding a temporary tone u1(t), then it is
applied again, this time to the pair (u1,H5). In this way,
the computed pitch for the complex C1 is 229.145 Hz, that
is, 236 cents above the 200-Hz fundamental. As for the
loudness lu, the computed tone u(t) has a loudness of 45
luts, therefore a value between the loudnesses of H4 and
H5.

6.1.1. Phase sensitivity: Small changes in any of the
phases of components H3, H4, and H5 produce small
changes in the pitch of C1. There are, however, some
phase relationships that produce significant changes in the
pitch as, for example, when the phase of H3 is set to 0◦

while those of H4 and H5 are held at 90◦, the resulting
tone is [u]AFP = 〈1.87, 485.25, 150〉, that is, the com-
puted pitch is 1299 cents above that value found in the
case where the components are all in cosine phase, with
a loudness of 49 luts. If the phase of H4 is set to 180◦

while the phases ofH3 andH5 are held at 90◦, the result-
ing tone is [u]AFP = 〈0.65, 983.88, 199.17〉, that is, the
pitch is 2523 cents above the first computed value, with a
loudness of 70 luts.

6.2. ANOTHER COMPLEX WITH SUCCESSIVE HAR-
MONICS

The complex C2 = {H9,H10,H11} to be consid-
ered now was mentioned in [5]. It has component fre-
quencies according to 1800, 2000, and 2200 Hz, re-
spectively, so that its missing fundamental is at 200
Hz. In AFP quantities they are taken as [H9]AFP =
〈0.0675, 1800, 0〉, [H10]AFP = 〈0.15, 2000, 0〉, and
[H11]AFP = 〈0.0675, 2200, 0〉 so that the correspond-
ing loudnesses are lH9 = 24, lH10 = 66, and lH11 = 36
luts. After applying Algorithm M to C2, it is found that
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[u]AFP = 〈0.21, 2024.38, 359.88〉. Thus, the computed
pitch, that is, 2024.38 Hz, is 4007 cents above the fre-
quency of the fundamental. The loudness is 97 luts.

6.3. A COMPLEX HAVING NONSUCCESSIVE HAR-
MONICS

The complex C3 = {H46,H51,H56} to be consid-
ered now was also mentioned in [5]. It has compo-
nent frequencies according to 1840, 2040, and 2240 Hz,
respectively, so that its missing fundamental is at 40
Hz. In AFP quantities they are taken as [H46]AFP =
〈0.0675, 1840, 0〉, [H51]AFP = 〈0.15, 2040, 0〉, and
[H56]AFP = 〈0.0675, 2240, 0〉 so that the correspond-
ing loudnesses are lH46 = 25, lH51 = 69, and lH56 = 37
luts. After applying Algorithm M to C3, it is found that
[u]AFP = 〈0.11, 2058.17, 359.88〉. Thus, the computed
pitch, that is, 2058.17 Hz, is 29 cents above the value
found for the preceding complex. The loudness is 53 luts.

6.4. COMPUTED PITCH COMPARED TO THE FRE-
QUENCY OF THE FUNDAMENTAL

The pitch computation for the complexes C1 and C2

above indicates that successive harmonics are not a nec-
essary and sufficient condition to assure the equality be-
tween pitch and the frequency of the fundamental. The
same is true for nonsuccessive harmonics, as shown with
complex C3. The equality between pitch and the fre-
quency of the fundamental (whether present or missing)
is discussed below through the pitch computation of some
selected complexes, followed by the description of a well-
defined class of harmonic numbers related to such equal-
ity.

6.4.1. Complex having the first three harmon-
ics. First case: the computed pitch is equal to
the frequency of the fundamental: First, let C4 =
{H1,H2,H3} be a complex having the first three har-
monics. According to Algorithm M , the vector addition
tone of complex C4 can be found by two successive ap-
plications of Algorithm A, namely u1(t) = A(H1,H2),
and u2(t) = A(u1,H3). After generating the down trans-
posed tones H̄1 and H̄2 in the first step of Algorithm D,
since fH̄2

= 2fH̄1
, it follows from Equation (30) that

qH̄1
= qH̄2

= 1. That is, the vectors [H̄1]RGB and
[H̄2]RGB are on the same RGB sail. Therefore, the tem-
porary component u1(t) has the same quotient as H1, as
discussed in Section 5.1 for a 1: 2-complex. Now the sit-
uation is like that described above in Section 5.2 for a
2: 3-complex. That is, if u1(t) when compared to H3

is such that Equation (89) holds, the resulting tone u2(t)
will have the same quotient as u1(t), which is the same as
that of H1. Therefore, the computed pitch will be equal
to the frequency of the fundamental. Otherwise, it will

have the same quotient as H3, for it will be on the page
qu2 = qH3 . In this case, the computed pitch will be the
same as a fifth above the frequency of the fundamental.

For a direct numerical example, let the spectral
components H1, H2, and H3 of C4 be [H1]AFP =
〈4, 200, 90〉, [H2]AFP = 〈3, 400, 90〉, and [H3]AFP =
〈0.34, 600, 90〉. According to Equation (33), the cor-
responding loudnesses are lH1 = 18, lH2 = 53, and
lH1 = 14 luts. After applying Algorithm M to C4, it
is found that [u]AFP = 〈16.89, 200, 55.39〉. Thus, the
computed pitch—200 Hz—is the same as the frequency
of the fundamental, the loudness being 75 luts.

6.4.2. Complex having the first three harmonics.
Second case: the computed pitch is a fifth above the
frequency of the fundamental: For a complex C5 hav-
ing the same first three harmonics H1, H2, and H3 as
C4, but having another proportion of amplitudes, namely
[H1]AFP = 〈3, 200, 90〉, [H2]AFP = 〈1.05, 400, 90〉,
and [H3]AFP = 〈2, 600, 90〉—that is, the correspond-
ing loudnesses are lH1 = 13, lH2 = 17, and lH3 = 80
luts—after applying Algorithm M to C5, it is found that
[u]AFP = 〈7.25, 150, 152〉. Thus, the computed pitch—
150 Hz—is a fourth below the frequency of the funda-
mental, with a loudness of 18 luts.

6.4.3. Complex having the first four harmon-
ics. First case: the computed pitch is equal
to the frequency of the fundamental: Let C6 =
{H1,H2,H3,H4} be a complex having the first fourth
harmonics. According to Algorithm M , the vector
addition tone of complex C6 can be carried out by
three successive applications of Algorithm A, that is,
u1(t) = A(H1,H2), u2(t) = A(u1,H3), and u3(t) =
A(u2,H4). If the components are such that [H1]AFP =
〈4, 200, 90〉, [H2]AFP = 〈3, 400, 90〉, [H3]AFP =
〈0.75, 600, 90〉, and [H4]AFP = 〈0.5, 800, 90〉—that is,
the corresponding loudnesses are lH1 = 18, lH2 = 53,
lH3 = 30, and lH4 = 36 luts—after applying Algorithm
M to C6, it is found that [u]AFP = 〈22.35, 200, 167〉.
Thus, the computed pitch—200 Hz—is the same as the
frequency of the fundamental with a loudness of 99 luts.

6.4.4. Complex having the first four harmonics.
Second case: the first three components have the
same loudness; the computed pitch is one octave
below the frequency of the fundamental: Let C7 =
{H1,H2,H3,H4} be a complex having the first fourth
harmonics. If the components are such that [H1]AFP =
〈6, 200, 90〉, [H2]AFP = 〈1.5, 400, 90〉, [H3]AFP =
〈0.65, 600, 90〉, and [H4]AFP = 〈0.23, 800, 90〉—that is,
the first three have the same loudness lH1 = lH2 = lH3 =
26 luts, while the last one has lH4 = 16 luts—after ap-
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plying Algorithm M to C7, it is found that [u]AFP =
〈285.82, 50, 63.56〉. Therefore, the computed pitch—50
Hz—is two octaves below the frequency of the fundamen-
tal; the corresponding loudness being 79 luts. This occurs
because the vector addition of H1, H2, and H3 is similar
to the complex C6 above, that is, the resulting frequency
of u2 is a fifth above the frequency of the fundamental.
Thus, the addition of this resulting tone with H4, which
is the last component of C7, is like the the case of the ad-
dition of tones a fourth apart, as discussed in Section 5.3.

6.4.5. Complex having the first four harmonics.
Third case: the components have the same loudness;
the phase of the first component is set to 91◦; the phase
of the second is set to 0◦; the computed pitch is 33 cents
below the frequency of the fundamental: Let C8 =
{H1,H2,H3,H4} be a complex having the first fourth
harmonics. If the components are such that [H1]AFP =
〈6, 200, 91〉, [H2]AFP = 〈1.5, 400, 0〉, [H3]AFP =
〈0.65, 600, 90〉, and [H4]AFP = 〈0.37, 800, 90〉—that is,
all of them have the same loudness lH1 = lH2 = lH3 =
lH4 = 26 luts—after applying Algorithm M to C8, it is
found that [u]AFP = 〈5.519, 196.25, 51.226〉. Therefore,
the computed pitch—196.25 Hz—is 33 cents below the
fundamental. The loudness is 23 luts.

6.4.6. Removing the fundamental and inserting the
sixth harmonic. First case: the computed pitch is
equal to the frequency of the missing fundamental:
Let C9 = {H2,H3,H4,H6} be a four-tone complex com-
posed of second, third, fourth, and sixth harmonics. If
the components are such that [H2]AFP = 〈2.5, 400, 90〉,
[H3]AFP = 〈0.3, 600, 90〉, [H4]AFP = 〈0.5, 800, 90〉,
and [H6]AFP = 〈0.065, 1200, 90〉—that is, the corre-
sponding loudnesses are lH2 = 44, lH3 = 12, lH4 = 36,
and lH6 = 10 luts—after applying Algorithm M to C9,
it is found that [u]AFP = 〈18.81, 200, 243.71〉. Thus,
the computed pitch—200 Hz—equals the frequency of
the missing fundamental. The loudness is 84 luts.

6.4.7. Removing the fundamental and inserting the
sixth harmonic. Second case: the computed pitch is
a fifth above the frequency of the missing fundamen-
tal: Let C10 = {H2,H3,H4,H6} be a four-tone com-
plex with second, third, fourth, and sixth harmonics. If
the components are such that [H2]AFP = 〈3, 400, 90〉,
[H3]AFP = 〈1, 600, 90〉, [H4]AFP = 〈1, 800, 90〉, and
[H6]AFP = 〈0.5, 1200, 90〉—that is, now the sixth har-
monic is louder than the others, namely lH2 = 53,
lH3 = 40, lH4 = 71, and lH6 = 80 luts—, after ap-
plying Algorithm M to C10, it is found that [u]AFP =
〈41.35, 150, 62.47〉. Therefore, the computed pitch—150
Hz—is an octave below the fifth of the frequency of the

missing fundamental. The loudness is about 100 luts.

6.5. CONCLUDING THE CONSIDERATIONS ON THE
FUNDAMENTAL

There are two conditions to be satisfied for the equal-
ity between the computed pitch fu and the frequency (F0)
of the fundamental. The first one is that both the vector-
addition tone and the fundamental must be located on the
same RGB sail, that is, they must have the same quo-
tient. The second one is that their corresponding vectors
must occur in close directions, so that they can be found
in the same octave, that is, the difference between their
distances in octaves must be lesser than one. For com-
plexes having a large number of components, its not so
simple—as it was in Section 5 for the case of two-tone
complexes—to determine a priori, that is, before apply-
ing AlgorithmM , whether they can satisfy these two con-
ditions. Theoretically, there is an infinity of harmonic
complexes which cannot satisfy them. However, there
is at least one particular solution which can be analyzed,
since in the context of AlgorithmM , when the transposed
vector addition tone is located on the red sail, it has the
same quotient as one of the transposed spectral compo-
nents, or as one of the transposed temporary components.
If such a situation not only occurs but also the harmonic
number of the corresponding component is a power of
two, then the vector addition tone will have the same quo-
tient as the fundamental. Here, at least one well-behaved
class of harmonic complexes can be cited in which every
vector composition may be carried out exclusively on the
red-cyan rectangular section. More specifically, the com-
position of transposed vectors having harmonic numbers
according to 1, 2, 3, 4, 6, 8, 12 . . . may take place exclu-
sively on the red-cyan rectangular section so that, depend-
ing upon the amplitude proportions and/or phase relation-
ships, the transposed vector addition tone can be placed
on the red sail. In summary, the vector addition tone of
a complex whose harmonic numbers can be expressed as
2j · 3k, where j and k are integers such that j ≥ 0 and
0 ≤ k ≤ 1, may have a quotient which equals that of the
fundamental.

By using the spectral content of the ten complexes de-
scribed in Sections 6.1–6.4 so as to experiment them as
additive musical instruments in the playing of a melodic
line, that is, a sequence of fundamentals, it becomes clear
that obtaining a computed pitch equal to the frequency of
the fundamental at every note is not simple, even when
the complex belongs to the above mentioned class of har-
monic complexes—since it accounts just for the first con-
dition, that is, the equality of quotients. It is audibly
demonstrated in [3] that for the first three complexes the
pitch neither reaches the frequency of the current funda-
mental nor any of its octaves. In the first one, the pitch
is a diminished minor third above the frequency of cur-
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rent fundamental for all the notes, as found for C1. In
the second one, it is three octaves plus a Phytagorean ma-
jor third above the fundamental sequence, as computed
for C2. In the third one, it is five octaves plus a just mi-
nor sixth above the fundamental sequence, as computed
for C3. For some of the most favorable cases (complexes
C4 · · · C10), the pitch may in fact correspond to the fre-
quency of the fundamental, specially in the case of C4,
but only at some notes for it will experience octave shifts
at other ones. It seems that playing a song with whatever
instrument is in some way putting it out of tune, unless
the instrument has a single component.

7. CONCLUSIONS
1. Results were presented showing that pitch of har-

monic complexes can be computed by means of vec-
tor operations provided that the spectral components
are represented in QOL coordinates and then trans-
formed into RGB vectors (Sections 3.1–3.2). Be-
sides, the symmetry of the second-derivative’s zero-
crossing pattern along the period of involved m:n-
complexes is also needed for the pitch computation.

2. Any complex having two or more components
whose vector addition tone is aligned with the achro-
matic diagonal of the RGB cube does not have a def-
inite pitch. This occurs, for instance, with the 2: 3-
complex at entire equilibrium (Section 5.2).

3. Phase effects are quite different for different groups
of m:n-complexes (Section 5.5). In complexes hav-
ing more than two components, the pitch can change
continuously within small intervals or can change
around one or more octaves (Section 6.1.1), depend-
ing on the diversities of harmonic numbers.

4. The missing fundamental problem can be addressed
by observing the geometry of the vector composi-
tions involved in the computation of its pitch, and
by finding the appropriate amplitude proportions and
phase relationships which are necessary to produce a
resulting vector on the RGB sail of the missing fun-
damental (Section 6.4). There are harmonic com-
plexes however where the frequency of the funda-
mental cannot correspond to the computed pitch,
even if it is present as a spectral component.
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