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The specific impact of uremic toxins upon cognitive domains: 
a review

O impacto específico de toxinas urêmicas em domínios cognitivos: 
uma revisão

Um dos mecanismos propostos para ex-
plicar o comprometimento cognitivo rela-
cionado à doença renal crônica (DRC) é o 
acúmulo de toxinas urêmicas devido à de-
terioração da função de depuração renal. 
A cognição pode ser categorizada em cin-
co domínios principais de acordo com suas 
funções de processamento de informações: 
memória, atenção, linguagem, visual-espa-
cial e executiva. Realizamos uma revisão 
usando os termos "ácido úrico", "indoxil 
sulfato", "p-cresil sulfato", "homociste-
ína", "interleucinas" e "paratormônio". 
Estes são os compostos que se mostraram 
fortemente associados ao comprometimen-
to cognitivo na DRC na literatura. Os 26 
artigos selecionados apontam para uma as-
sociação entre níveis mais elevados de ácido 
úrico, homocisteína e interleucina-6 com 
menor desempenho cognitivo nos domínios 
executivo, atenção e de memória. Também 
revisamos os efeitos da hemodiálise na cog-
nição. A hemodiálise parece contribuir para 
uma melhoria da disfunção encefalopática 
relacionada à DRC, embora essa melhora 
ocorra mais em alguns domínios cognitivos 
do que em outros.

Resumo

Palavras-chave: Uremia; Disfunção Cog-
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One of the mechanisms proposed for 
chronic kidney disease (CKD)-related 
cognitive impairment is the accumulation 
of uremic toxins due to the deterioration 
of the renal clearance function. Cogni-
tion can be categorized into five major 
domains according to its information pro-
cessing functions: memory, attention, lan-
guage, visual-spatial, and executive. We 
performed a review using the terms ‘uric 
acid’, ‘indoxyl sulfate’, ‘p-cresyl sulfate’, 
‘homocysteine’, ‘interleukins’ and ‘para-
thyroid hormone’. These are the com-
pounds that were found to be strongly 
associated with cognitive impairment in 
CKD in the literature. The 26 selected 
articles point towards an association be-
tween higher levels of uric acid, homocys-
teine, and interleukin 6 with lower cogni-
tive performance in executive, attentional, 
and memory domains. We also reviewed 
the hemodialysis effects on cognition. He-
modialysis seems to contribute to an ame-
lioration of CKD-related encephalopathic 
dysfunction, although this improvement 
occurs more in some cognitive domains 
than in others.
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Introduction

Many potentially toxic compounds build 
up in patients with chronic kidney disease 
(CKD); the biologically active ones are 
called uremic toxins (UTs)1,2. UTs com-
prise around 150 compounds that may 
cause many deleterious effects, such as 
systemic inflammation, cardiac failure, 

anemia, immune dysfunction, anorex-
ia2, neurological damage, and cognitive 
impairment.

CKD patients have a higher risk of 
developing cognitive impairment (CI) re-
lated to CKD (CKD-CI) even in the ear-
lier stages3-7, which affects their daily life 
and work capacity, and causes increased 
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periods of hospitalization8. Most importantly, CKD-
CI is an independent predictor of mortality in patients 
submitted to dialysis and is associated with an almost 
three times greater mortality risk in 7 years9. More 
than 70% of hemodialysis (HD) patients older or 
equal to 55 years have moderate-to-severe CKD-CI10.

CKD-CI's hypothetical mechanism can be divided 
into neurodegenerative8,11-13 and cerebro-vascular14-16 
components. The former accounts for UTs’ direct 
neurotoxicity, resulting in the alteration of the brain’s 
redox environment, along with the promotion of cen-
tral nervous system excitotoxicity through the activa-
tion of the glutamatergic pathways and the inhibition 
of the GABAergic ones17. The latter states that UTs14 

along with systemic hemodynamic impairment relat-
ed to CKD15 also cause a direct effect on the cerebral 
endothelium, resulting in oxidative stress, chronic in-
flammation, hypercoagulability8,18,19, and disruption 
of the blood-brain barrier and cellular water trans-
port20,21. This corroborates the fact that CKD patients 
have a higher incidence of cerebral microbleeds22,23, 
silent brain infarcts, and white matter lesions (leu-
kariosis)10, even when adjusted for common risk fac-
tors (e.g.: hypertension and diabetes mellitus)24,25. 
Nevertheless, the impact of specific UTs upon cog-
nition and the exact mechanisms by which they oc-
cur are still not completely understood, despite the 
increasing necessity for a systematic characterization 
that could improve the identification and manage-
ment of CKD-CI26.

Therefore, we reviewed literature data regarding 
the mechanisms by which homocysteine and uremic 
toxins with a higher impact on the emergence of 
CKD-CI.26 - uric acid, indoxyl sulphate, p-cresyl sul-
phate, interleukins 1-β and 6, and parathyroid hor-
mone - can produce deleterious effects on cognition 
(data shown in Table 1). We conducted an analysis 
on the possible relationship between the main uremic 
toxins on one side, and the basic cognitive domains 
on the other (data shown in Table 2), which reveal a 
consistent cognitive deterioration pattern associated 
with CKD-CI. Finally, we also reviewed the influence 
of HD upon each different cognitive domain among 
CKD patients, identifying which domains benefit the 
most from this treatment.

Uremic toxins and cognitive domains

The categorization of cognition into discrete cog-
nitive domains is a reductionist approach used in 

neurocognitive study and practice. This method al-
lows researchers and clinicians to decompose the 
high-order feature called ‘cognition’ into less com-
plex information processing units in order to identify 
patterns of impairment that can be associated with a 
certain disease, process, or toxin. Hence, the descrip-
tion of major cognitive domains - memory, execu-
tive functions, attention, language, and visual-spatial 
function - affected by a particular toxin can be used to 
establish a specific cognitive impairment pattern and 
identify its target areas. This can be achieved by the 
association between its serum levels and standardized 
specific neuropsychological tests.

Uric acid

High uric acid levels in the blood are associated with 
poorer attention, visual-processing speed, and cogni-
tive flexibility in adolescent survivors of childhood 
acute lymphoblastic leukemia, but not in adult ones27. 
Increased uric acid in baseline levels was also associ-
ated with poorer working memory in a cohort study 
with cognitively healthy community-dwelling older 
women28, as well as with white matter atrophy, poor-
er information-processing speed, decreased executive 
functionality29 and cerebral ischemic burden30. It is 
also associated with faster cognitive decline in visual 
memory and visuo-construction skill in the baseline 
levels, although increased serum uric acid over-time 
was associated with a potential benefit for the atten-
tion domain and the processing speed among older 
men31. The authors of this study determined that this 
paradoxical situation might be attributed to uric acid 
antioxidant (primarily in plasma) and oxidant (pri-
marily intracellular) function in neurons32. Aiming to 
resolve this possibility, Schretlen et al. performed a 
study that showed an association between uric acid 
and poor verbal and working memories, even after 
controlling for confounding factors33.

Indoxyl sulphate and P-Cresyl sulphate

High serum indoxyl sulphate levels are associated 
with a poorer executive function in the early stages of 
CKD, despite the lack of a significant association be-
tween p-cresyl sulphate and cognitive impairment34.

Homocysteine

Increased homocysteine (HCy) levels in the blood 
are related to greater cognitive and motor im-
pairment, especially regarding frontal-executive 
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function, attention35, verbal memory, fine motor 
speed36, processing speed, episodic memory37, visu-
al, spatial and constructional ability, and process-
ing speed38. High HCy levels impact negatively on 
task performance that assesses executive function-
ing39,40 and executive-language functioning41. The 
impact of HCy on memory is controversial: while 
some studies have shown none, others have re-
ported poorer memory, motor speed, dexterity, and 
visuo-spatial function with higher HCy levels42. 

Executive functions and verbal expression43, atten-
tion, and visuoperception and construction44 are 
also impaired by HCy. In another study, HCy was 
found to be significantly inversely correlated with 
attention, and delayed but not immediate memory 
recall45. When assessing memory, the mixed results 
found might suggest a more specific subcomponent 
impairment of this core cognitive domain. There is 
a significant positive correlation between HCy and 
interleukin (IL)-6 levels45.

Uric acid Antioxidant and pro-oxidant effects, white matter atrophy, and cerebral ischemic burden. Uric acid 
is a major alarmin that induces pro-inflammatory cytokine expression and secretion, as well as 
inflammation; the underlying mechanism for these functions is the activation of the nuclear factor-κ 
B by toll-like receptor 4. This response was activated more in neurons than in glial cells when rat 
hippocampi were studied. The promotion of gliosis has also been observed.

Uric acid is also associated with atherosclerosis, endothelial and cardiovascular disease burden, 
microvascular renal disease, glomerular hypertension, glomerulosclerosis, and renal interstitial fibrosis.

29 30 32 64 65 66

Indoxyl 
sulphate 
and p-cresyl 
sulphate

Direct neurotoxicity of indoxyl sulphate is suggested, but not proven. Indoxyl sulphate possibly causes 
a disruption of the brain efflux transport systems. Some of the transporters found in brain capillary 
endothelium are the same secretory transport molecules found in the basolateral membrane of 
proximal tubular cells; for instance, the organic anion transporter 3 (OAT3). Indoxyl sulphate was found 
to accumulate in uremic patients’ brains.

Indoxyl sulphate also causes nephrotoxic renal fibrosis through the accumulation in renal tubular cells, 
production of free radicals, inflammation, endothelial cell dysfunction, endothelial and proximal tubular 
cell senescence, atherosclerosis, and the disruption of rhythmicity regulation of clock genes (rPer2).

26 67 68

Homocysteine 
(HCy)

HCy increases oxidative stress, DNA damage, induction of apoptosis, production of homocysteic 
acid, excitotoxicity (mediated by NMDA glutamate receptor activation), white matter hyperintensities, 
cerebrovascular disease, and brain atrophy. Hyperhomocysteinemia is linked to cerebral microvascular 
rarefaction and dysfunction of the methylation of DNA, proteins, and phospholipids due to the 
inhibition of methyltransferase. This can lead to abnormal epigenetic regulation. Superoxide and 
hydrogen peroxide are formed by the oxidation of homocysteine, whose increased levels could cause 
a reduction in glutathione peroxidase activity and antioxidant potentials. Hyperhomocysteinemia also 
seems to cause alterations in the monoamine neurotransmitter system through mechanisms involving 
the inhibition of methyltransferase reactions and changes in the cellular redox state. Involving these 
same mechanisms, hyperhomocysteinemia also promotes the reduction of brain-derived neurotrophic 
factor (BDNF) levels in cerebrospinal fluid. BDNF is a protein related to cell maintenance, plasticity, 
growth and death.

Hyperhomocysteinaemia also causes: endothelial dysfunction, prothrombogenic activity and 
cardiovascular disease.

13 18 19 26 69 70

Interleukin 1-β 
and interleukin 
6

These interleukins cause brain inflammation, particularly through microglial cells and astrocytes; DNA 
damage; oxidative stress; the up-regulation of glutamate resulting in excitotoxicity; and brain and 
systemic aging-related changes.

26 51

Parathyroid 
hormone (PTH)

PTH promotes mineral bone disorder, metastatic calcification, increased brain circulating and neuronal 
cytosol calcium levels causing changing in brain function, the induction of apoptosis due to calcium 
overloading, reduced regional cerebral blood flow, and somatic, behavioural and motor abnormalities.

26 59

Table 1	C urrent mechanistic data on some of the most meaningful uremic toxins, as stated by Watanabe 		
	 and colleagues26 with the addition of HCy
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Cognitive 
domains

Uric acid
Indoxyl 

sulphate
Homocysteine Interleukin 1-β Interleukin 6 PTH

Executive X

27

28

29

33

X

34

X

35

37

38

39

40

41

42

43

Dubious:

44

X

50

52

53

54*

X

58

Attention X

27

28

X

35

44

45

X

52

54

Memory X

31

35

X

37

42

43

44

45

Dubious:

35

36

X

46

47

48

X

54**

55

Dubious:

52***

Language X

41

43

Dubious:

35

42

Visual-spatial X

27

31

X

38

42

44

NA

Table 2	C ognitive domains affected by each of the searched UTs. The references in the table correspond to 	
	 the 26 selected articles
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Interleukin 1-β
There is some evidence relating IL-1β to aging pro-
cesses in the hippocampus, cognitive impairment in 
multiple domains, and to Alzheimer disease46. IL-1β 
also impairs spatial learning and memory in animal 
model studies47,48: higher IL-1β levels hamper the 
consolidation processes of contextual fear condi-
tioning and have a particular effect in the rat dorsal 
hippocampus47, which could be explained by the cy-
tokine’s interference with hippocampal long-term 
potentiation49.

Interleukin 6

Higher IL-6 levels are associated with poorer execu-
tive function50, aging processes, and degeneration of 
GABAergic interneurons, which are essential for nor-
mal information processing, encoding, and retrieval 
in the hippocampus and the cortex51. IL-6 levels also 
correlate inversely with performance in tests assess-
ing auditory recognition memory, attention/working 
memory, and executive function, but surprisingly 
not with general memory52. This cytokine is also as-
sociated with poorer executive function in African 
Americans, but not in European Americans53, with 
worse executive, attentional, and memory function, 
independent of cardiovascular disease and risk fac-
tors54, and with low performance in memory tests55.

Parathyroid hormone

Parathyroid hormone (PTH) crosses the blood-brain 
barrier56 and has a wide receptor distribution in the 
central nervous system57, which probably explains 
why alterations in calcium metabolism and, conse-
quently, in the serum ionized calcium level (the main 
regulator of PTH), also impact brain function. A study 

has found significant negative associations between 
serum PTH levels and working memory capacity, and 
the speed of information processing58. A 2015 syste-
matic review concluded that, despite mixed results, 
there is the suggestion of a link between PTH high 
serum levels and increased odds of poor cognition or 
dementia, although the evidence available offers weak 
support59. In this way, studies that conclusively diffe-
rentiate the effects of PTH from those of the meta-
bolites it modulates (e.g., calcium) are still necessary.

Hemodialysis and the cognitive domains

Evidence about the effectiveness of dialysis in reduc-
ing CKD-CI is extremely relevant when considering it 
as a treatment at the first signals of CI. Although di-
alysis causes great morbidity and is a nuisance to the 
patient, an untreated CKD-CI for a long period will 
lower the patient’s quality of life and may result in 
increased periods of hospitalization and a higher risk 
of mortality26. This is a very relevant topic because of 
the high prevalence of CKD-CI8, mainly among those 
older than 55 years60.

The association of CKD with the impairment of 
target cognitive domains is now being elucidated. 
People treated with HD have significantly lower cog-
nitive test scores than the general population in all 
the domains evaluated (orientation and attention, 
memory, language, construction and motor function, 
conceptualization and reasoning, executive function, 
and global cognition) except for one (perception), as 
concluded by a systematic review and meta-analysis 
of 42 randomized controlled trials, and both cohort 
and cross-sectional studies. Tests assessing orienta-
tion and attention, memory, and executive function 
scored the poorest in HD patients compared to the 

Motor Dubious:

28

NA X

42

Dubious:

36

43

NA NA

X - Significant negative associations - p<0.05.

Dubious - Association lost significance after adjusting for other factors. 

NA - Not assessed.

PTH - Parathyroid hormone.

* Association with processing speed in cross-sectional, but not in prospective analysis.

** Association only in prospective, but not in cross-sectional analysis.

*** Association with auditory recognition memory (before correcting for demographic characteristics) but not with general memory.

Continuation table 2.
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general population. However, compared to chronic 
kidney disease patients not undergoing dialysis, lim-
ited evidence suggests that HD patients may perform 
better in memory and attention60.

A cohort of Dutch CKD patients performed the 
worst in questions that demanded memory and atten-
tion, and presented a low verbal fluency. They were 
born before 1979 and had started chronic renal replace-
ment therapy at age 0-14 years between 1972 and 1992. 
However, this study61 made use of the Wechsler Adult 
Intelligence Scale; therefore, the cognitive domains could 
not be evaluated by individual tests. The authors con-
cluded that the long duration of dialysis would enhance 
CI, a condition that could not be reversed even after 
renal transplantation, and that end-stage renal disease 
in childhood is associated with CKD-CI and impaired 
educational attainment levels in adulthood.

Starosta and colleagues62, in a pilot study, matched 
CKD patients’ cognition before HD with measure-
ments taken after the beginning of the sessions. The 
results suggest that HD is an effective treatment for 
CKD-CI, even though cognition is not fully recovered 
to the level of a non-CKD patient (i.e. CKD-CI per-
sisted, but was less severe). Cognitive domains were 
not assessed individually in this study. In another 
study, Schneider and colleagues63 concluded that a 
single dialysis session (with testing performed 1 hour 
before and 19 hours after dialysis) improved the re-
sults in memory, attention, and executive functions. 
Despite the improvement, the performance of dialytic 
patients in post-dialysis assessments was significantly 
smaller than that of non-CKD patients, which high-
lights the lingering aspect of CKD-CI.

Interestingly, executive functions, memory, and at-
tention are the cognitive domains most affected by the 
UTs that we researched in our review. This convergent 
pattern of cognitive domain impairments underlines 
the role and importance of these toxins in the genesis 
of CKD-CI. The fact that HD treatment ameliorates 
memory and attention, in comparison with non-dia-
lyzed CKD patients, indicates that these removed UTs 
may affect some brain areas differently than others. 
We suggest that it would be beneficial for further 
studies to collect biochemical data about the uremic 
state of each patient and that cognition be assessed 
by domain-specific tests. In this way, specific factors 
may be matched more precisely with their impact on 
cognition, which would provide a better understand-
ing of the mechanism of each toxic molecule and the 
cause of the impairment in each cognitive domain.

All these findings, together with the continual de-
scription of alterations in discrete domains, provide 
a finer resolution of the pattern of cognitive impair-
ment found in uremic patients. Ultimately, these ef-
forts have clinical significance as uremic encephalopa-
thy needs to be distinguished from neurodegenerative 
diseases, delirium, cerebro-vascular diseases, and 
non-related psychiatric disorders, especially in a pop-
ulation of CKD patients, who exhibit multiple comor-
bidities many times.

Strengths and limitations

The main strength of our review is the extensive and 
comprehensive search on the topic of interest, which 
allowed us to gather a significant amount of data re-
garding the interaction between uremic toxins and 
specific cognitive domains. To the best of our knowl-
edge, no study has reviewed such a relationship to 
such depth. We have also provided a strong body of 
evidence linking at least three UTs to three specific 
cognitive domains.

There are various limitations with this review: (1) 
the articles’ biases were not systematically revised or 
graded after being selected for the review. Studies pre-
senting patients with comorbidities (which make it 
difficult to attribute an isolated correlation between 
a UT and CKD) or with cognitive domain measure-
ments made via telephone, were excluded in the se-
lection process; (2) only articles in English were in-
cluded; (3) only the PubMed database was searched; 
and (4) the data synthesis was not based directly on 
the tests used, but rather on their interpretations.

Conclusions

Higher levels of uric acid, HCy and IL-6 are signifi-
cantly associated with lower cognitive performance in 
executive, attentional, and memory domains. These 
same three cognitive domains are the most impaired 
in patients under HD treatment; conversely, among 
the cognitive domains, they present the greatest per-
formance improvement after HD treatment, accord-
ing to our literature review. This suggests a protec-
tive effect derived from the removal of uremic toxins, 
and highlights the important role of these three com-
pounds in the onset of CKD-CI. In fact, when study-
ing uremic encephalopathy, it is important to keep in 
mind that different uremic toxins may have differ-
ent effects upon different parts of the brain, which 
reflects the alterations in distinct cognitive domains. 
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This is important because it broadens the possibility 
of future symptomatic treatment based on the specific 
features a patient might present; it also helps to shed 
light on the biochemical background underlying each 
function. We hope that proper understanding of the 
pathophysiology of uremic encephalopathy will im-
prove the diagnosis of cognitive impairment (which 
will become more clearly recognizable with the use of 
tests) and allow for appropriate treatment and care.

As occurred in the 20th century with cancer - a 
single entity that was found to be composed of a 
myriad of different mechanisms and types - cogni-
tive dysfunction is bound to, in the present century, 
suffer the same process of deep understanding and 
enlightenment, since each of its facets is indeed com-
posed of unique, distinct, underlying neural substrate. 
Furthermore, it is possible that each dysfunction may 
need a differential, mechanism-based approach in or-
der to be tackled. With this review, we aimed to pres-
ent a panorama of the intricate relationship between 
renal failure’s uremic syndrome and the loss of full 
cognitive function - as both are issues to be solved per 
se - and to provide a window to the even most myste-
rious and intriguing ways of the brain.
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