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Numerical Computation of Optimal 
Low-Thrust Limited-Power 
Trajectories – Transfers between 
Coplanar Circular Orbits 
An algorithm based on gradient techniques, proposed in a companion paper, is applied to 
numerical analysis of optimal low-thrust limited-power trajectories for simple transfer (no 
rendezvous) between coplanar circular orbits in a central Newtonian gravity field. The 
proposed algorithm combines the main positive characteristics of two well-known methods 
in optimization of trajectories: the steepest-descent method and the direct second variation 
method. The analysis is carried out for various radius ratios and transfer durations. The 
results are compared to the ones provided by a linear analytical theory. The performance 
of the proposed algorithm shows that it is a good tool in determining optimal low-thrust 
limited-power trajectories between close circular coplanar orbits in a Newtonian central 
gravity field. 
Keywords: Optimization of space trajectories, low-thrust limited power trajectories, 
transfers between circular coplanar orbits 
 
 
 

Introduction 

The main purpose of this paper is to present a numerical analysis 
of optimal low-thrust limited power trajectories for simple transfers 
(no rendezvous) between circular coplanar orbits in a central 
Newtonian gravity field. This analysis is carried out by means of an 
algorithm based on gradient techniques, briefly described below. 
The fuel consumption is taken as the performance criterion and it is 
calculated for various radius ratios ρ = rf /r0, where r0 is the radius 
of the initial circular orbit O0  and rf  is the radius of the final circular 
orbit Of, and for various transfer durations tf – t0. The numerical 
results are compared to the ones provided by a linear theory 
(Edelbaum, 1964; Marec, 1967, 1979; Da Silva Fernandes, 1989). 

This analysis has been motivated by the renewed interest in the 
use of low-thrust propulsion systems in space missions in the last 
ten years, caused by the beginning of the practical use of electric 
propulsion. Up to date, two space missions have made use of low-
thrust propulsion systems: NASA-JPL Deep Space One and ESA- 
SMART1. Several researchers have obtained numerical and 
sometimes analytical solutions for a number of specific initial orbits 
and specific thrust profiles (Coverstone – Carroll and Williams 
1994; Kechichian, 1996, 1997, 1998; Sukhanov and Prado, 2001; 
Kluever and Oleson, 1997; Kluever, 1998; Coverstone – Carroll et 
al, 2000; Vasile, 2000; Racca, 2001, 2003). Averaging methods are 
also used in such researches (Edelbaum, 1965; Marec and Vinh, 
1977; Hassig et al, 1993; Geffroy and Epenoy, 1997).1 

Low-thrust electric propulsion systems are characterized by high 
specific impulse and low-thrust capability and have their greatest 
benefits for high-energy planetary missions. For trajectory 
calculations, two idealized propulsion models have most frequently 
used (Marec, 1979): LP and CEV systems. In the power-limited 
variable ejection velocity systems or, simply, LP systems, the only 
constraint concerns the power, that is, there exists an upper constant 
limit for the power. In the constant ejection velocity limited thrust 
systems or, simply, CEV systems, the magnitude of the thrust 
acceleration is bounded. In both cases, it is usually assumed that the 
thrust direction is unconstrained. The utility of these idealized 
models is that the results obtained from them provide good insight 
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about more realistic problems. In this paper, only LP systems are 
considered.  

In a companion paper (Da Silva Fernandes and Golfetto, 2003), 
an algorithm based on gradient techniques has been discussed. This 
algorithm combines the main positive characteristics of the steepest-
descent (first order gradient) and of a direct method based upon the 
second variation theory (second order gradient method), and it has 
two distinct phases. In the first one, the algorithm uses a simplified 
version of the steepest-descent method developed for a Mayer 
problem of optimal control with free final state and fixed terminal 
times, in order to get great improvements of the performance index 
in the first few iterations with satisfactory accuracy. In the second 
phase, the algorithm switches to a direct method based upon the 
second variation theory developed for a Bolza problem with fixed 
terminal times and constrained initial and final states, in order to 
improve the convergence as the optimal solution is approached. This 
algorithm requires a set of several parameters, which must be 
chosen by the user. A discussion in details about the performance of 
the algorithm has been presented in the companion paper for two 
classic problems in optimization of trajectories: brachistochrone and 
Zermelo problems. 

Problem Formulation 

A low-thrust limited-power propulsion system, or LP system, is 
characterized by low-thrust acceleration level and high specific 
impulse (Marec, 1979). The ratio between the maximum thrust 
acceleration and the gravity acceleration on the ground, γmax /g0, is 
between 10-4 and 10-2. For such system, the fuel consumption is 
described by the variable J defined as 
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where γ is the magnitude of the thrust acceleration vector Γ, used as 
control variable. The consumption variable J is a monotonic 
decreasing function of the mass m of the space vehicle,  
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where Pmax is the maximum power and m0 is the initial mass. The 
minimization of the final value Jf is equivalent to the maximization 
of mf or the minimization of the fuel consumption. 

The optimization problem concerning with simple transfers (no 
rendezvous) between coplanar orbits will be formulated as a Mayer 
problem of optimal control by using Cartesian elements as stated 
variables. At time t, the state of a space vehicle M is defined by the 
radial distance r from the center of attraction, the radial and 
circumferential components of the velocity, u and v, and the fuel 
consumption J. The geometry of the transfer problem is illustrated 
in Fig.1. 

 

 
Figure 1. Geometry of the transfer problem (Marec, 1979). 

 
In the two-dimensional formulation, the state equations are 

given by 
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where µ is the gravitational parameter, R and S are the radial and 
circumferential components of the thrust acceleration vector, 
respectively. 

The optimization problem is stated as: it is proposed to transfer 
a space vehicle M from the initial state at the time  t0 = 0: 

 
0)0( =u , 1)0( =v , 1)0( =r , 0)0( =J ,  (4) 

 
to the final state at the prescribed final time tf: 

 

0)( =ftu ,
f

f r
tv µ

=)( , ff rtr =)( , (5) 

 
such that Jf is a minimum; that is, the performance index is 

 
)( ftJIP = . (6) 

 
For LP system, it is assumed that there are no constraints on the 

thrust acceleration vector (Marec, 1979). 
It should be noted that in the formulation of the optimization 

problem described above, the variables are taken in a dimensionless 
form. Accordingly, in this case, the gravitational parameter µ is 
equal to1. 

Applying the Proposed Algorithm 

As described in the companion paper, the first phase of the 
proposed algorithm involves a simplified version of the steepest-
descent method, which is developed for a Mayer problem of optimal 
control with free final state and fixed terminal times. Accordingly, 
the optimal control problem defined by Eqs. (3) – (6), must be 
transformed into a new optimization problem with final state 
completely free. In order to do this, an exterior penalty function 
method, herein simply referred as penalty function method 
(Hestenes, 1969; O’Doherty and Pierson, 1974), is applied. The new 
optimal control problem is then defined by Eqs. (3), (4) with the 
new performance index obtained from Eqs. (5) and (6), 
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where k1 ,k2, k3 >> 1. As discussed in the companion paper, 
following the algorithm proposed by O’Doherty and Pierson, the 
penalty function method involves the progressive increase of the 
penalty constants; but, for simplicity, they are taken as fixed 
constants in the proposed algorithm, since the steepest-descent is 
used to provide a convex nominal solution as a starting solution for 
the second variation method. 

Following the algorithm of the simplified version of the 
steepest-descent method described in Da Silva Fernandes and 
Golfetto (2003), the adjoint variables λu, λv, λr and λJ are introduced 
and the Hamiltonian H is formed by using Eqs (3): 
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In the first steps, the algorithm of the steepest-descent method 

involves the integration of the state equations (3) with the initial 
conditions (4) for a nominal control, and, the integration of the 
adjoint differential equation from tf to t0, with initial conditions 
defined from the terminal constraints. From the Hamiltonian (8), 
one finds the adjoint equations  
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and, from the performance index defined by Eq. (7), one finds the 
“initial” conditions for the adjoint equations  
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Besides Eqs (3), (4), (9) and (10), the algorithm requires the 
partial derivatives of the Hamiltonian H with respect to the control 
variables. These partial derivatives are given by: 

 

Ju R
R
H λλ +=

∂
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S
H λλ +=

∂
∂ . (11) 

 
On the other hand, the second phase of the proposed algorithm 

involves a direct method based on the second variation theory, 
developed for a Bolza problem with fixed terminal times and 
constrained initial and final states. Accordingly, it requires the 
computation of the first order derivatives of the vector function Ψ  
containing the terminal constraints and the scalar function 
Φ  corresponding to the augmented performance index, and, the 
second order derivatives of the Hamiltonian H with respect to all 
arguments. First, we present the partial derivatives of the 
Hamiltonian function that are given, in a matrix form, by 
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0=αxH   (4 × 2 null matrix), (14) 
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Here, α denotes the control vector αT = [R  S], x denotes the 

state vector xT = [u  v  r  J ] and λ denotes the adjoint vector λT = [λu  
λv  λr  λJ]. 

From Eqs (5) and (6), one finds the functions Ψ and Φ : 
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where µi, i = 1, 2, 3, are Lagrangian multipliers associated to the 
final constraints defined by Eqs. (5) (or Eq(17) in a vector form); 
their partial derivatives are then given by 
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0=xxΦ .   (4 × 4 null matrix). (20) 

 
In the next section, the numerical results obtained through the 

proposed algorithm are presented. 

Computational Results 

The results of the numerical analysis obtained through the 
proposed algorithm for optimal low-thrust power limited trajectories 
considering simple transfers between coplanar circular orbits are 
presented for various radius ratios ρ = rf /r0 and for various transfer 
durations tf – t0. The set of several parameters used in the algorithm 
and first approximation of the control law have been chosen such 
that the admissible maximum number of iterations has been limited 
to 100 in all cases, the terminal constraints have been obtained with 
an error of 5.0 × 10-6, at least, that is, ⎜⎜Ψ(x(tf))⎜⎜≤ 5.0 × 10−6, with 
Ψ defined by Eq. (17) and the performance index has been 
calculated with an error e =⏐Jn+1 − Jn⏐< 5.0 × 10−10, where n 
denotes the iteration. This set of parameters is presented in Tables 1 
and 2 following the nomenclature introduced in the companion 
paper: the parameters for steepest-descent phase are ki − weights of 
the penalty function; β − reduction factor for the step size in control 
space; K0 − initial step size in control space; L − critic value used to 
redefine the step size in control space, and, the parameters for the 
second variation phase are k − reduction factor for partial 
corrections of the terminal constraint; ε − reduction factor for 
variations in control variables and Lagrange multipliers; Wii 
elements of the diagonal matrix W2 (used to assure Legendre 
condition). In Table 1, the ordinary parameters used for all values of 
ρ  and tf – t0 are presented. Three different values of initial step size 
in control space have been used: K0 = 1.5 × 10-3 for ρ = 0.95, 0.975, 
1.025, 1.050, 1.100, 1.200, K0 = 7.5 × 10-3 for ρ = 0.727, 1.523, K0 = 
1.5 × 10-2 for  ρ = 0.800, 0.900. In Table 2, two different first 
approximations of the radial and circumferential components, R and 
S, of the thrust acceleration are presented. Each computed maneuver 
involves only one of these approximations. The second control law 
is used only for Earth-Venus transfers. It should be noted that the 
results do not represent the best performance of the proposed 
algorithm but they are acceptable, for the purposes of this analysis. 

 

Table 1. Set of ordinary parameters. 

k1,2,3 L k ε β Wu,2 

200 5 000 0.175 0.25 0.75 −20 000 
 

Table 2. First approximation of the thrust acceleration. 

Thrust acceleration Control law 1 Control law 2 

Radial - R 
Circumferential - S 

0.0 
1.0 × 10-5 

0.02 sin t 
0.02 cost − 0.02 
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In Tables 3 and 4 the values of the consumption variable J 
computed through the proposed algorithm and the ones provided by 
a linear theory (Marec, 1979; Da Silva Fernandes 1989) are 
presented. The relative percent difference between the numerical 
and analytical results, 

 
( ) 100% / ×−= analanalnumrel JJJd , 

 
is, at least, about 3 % for ρ  > 1 and 15 %  for ρ  < 1. A brief 
description of the linear theory is presented in the Appendix. The 
analytical expressions for the consumption variable and thrust 
acceleration provided by this linear theory involve the semi-major 
axis of a reference orbit O , which is taken as the middle value of 
the radii of the terminal orbits (Gobetz, 1965). From these results, 
one sees that the linear theory provides a good approximation for the 
solution of optimal transfer problem between close circular coplanar 
orbits: for the smaller amplitude transfers (⏐ρ −1⏐ ≤ 0.050),    drel < 
2.5 %, and, for the shorter duration transfers (tf  −  t0 = 2),     drel < 
1.0 %. 

 

Table 3. Consumption variable J (ρ > 1). 

ρ tf-t0 Janal Jnum drel 

 
1.0250 

2.0 
3.0 
4.0 
5.0 

3.585643 × 10-4 
8.445904 × 10-5 
3.122686 × 10-5 
1.713865 × 10-5 

3.593212 × 10-4 
8.486076 × 10-5 
3.142976 × 10-5 
1.731427 × 10-5 

0.21 
0.47 
0.65 
1.02 

 
1.0500 

2.0 
3.0 
4.0 
5.0 

1.446336 × 10-3 
3.416927 × 10-4 
1.253353 × 10-4 
6.754112 × 10-5 

1.454199 × 10-3 
3.454512 × 10-4 
1.262316 × 10-4 
6.894566 × 10-5 

0.54 
1.10 
0.71 
2.08 

 
1.1000 

2.0 
3.0 
4.0 
5.0 

5.877822 × 10-3 
1.397767 × 10-3 
5.061973 × 10-4 
2.637445 × 10-4 

5.926844 × 10-3 
1.404534 × 10-3 
5.086380 × 10-4 
2.680018 × 10-4 

0.83 
0.48 
0.48 
1.61 

 
1.2000 

2.0 
3.0 
4.0 
5.0 

2.418758 × 10-2 
5.837020 × 10-3 
2.081399 × 10-3 
1.026057 × 10-3 

2.439812 × 10-2 
5.887873 × 10-3 
2.093900 × 10-3 
1.047825 × 10-3 

0.87 
0.87 
0.60 
2.12 

 
1.5236 

2.0 
3.0 
4.0 
5.0 

1.774350 × 10-1 
4.494734 × 10-2 
1.605125 × 10-2 
7.249877 × 10-3 

1.755412 × 10-1 
4.426941 × 10-2 
1.597075 × 10-2 
7.453021 × 10-3 

1.07 
1.51 
0.50 
2.80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Consumption variable J (ρ < 1). 

ρ tf-t0 Janal Jnum drel 

 
0.7270

2.0 
3.0 
4.0 
5.0 

3.765451 × 10-2 
8.926982 × 10-3 
4.048203 × 10-3 
2.894188 × 10-3 

3.777781 × 10-2 
9.709937 × 10-3 
4.461201 × 10-3 
3.325080 × 10-3 

0.33 
8.77 

10.20
14.88

 
0.8000

2.0 
3.0 
4.0 
5.0 

2.095182 × 10-2 
4.904019 × 10-3 
2.070390 × 10-3 
1.383857 × 10-3 

2.092074 × 10-2 
5.053224 × 10-3 
2.196835 × 10-3 
1.505942 × 10-3 

0.15 
3.04 
6.12 
8.82 

 
0.9000

2.0 
3.0 
4.0 
5.0 

5.474046 × 10-3 
1.277144 × 10-3 
5.006396 × 10-4 
3.049656 × 10-4 

5.477794 × 10-3 
1.313377 × 10-3 
5.196754 × 10-4 
3.203318 × 10-4 

0.07 
2.84 
3.80 
5.04 

 
0.9500

2.0 
3.0 
4.0 
5.0 

1.395891 × 10-3 
3.264941 × 10-4 
1.245127 × 10-4 
7.258595 × 10-5 

1.396823 × 10-3 
3.302046 × 10-4 
1.265439 × 10-4 
7.378935 × 10-5 

0.07 
1.14 
1.63 
1.66 

 
0.9750

2.0 
3.0 
4.0 
5.0 

3.522595 × 10-4 
8.255547 × 10-5 
3.112006 × 10-5 
1.776590 × 10-5 

3.527534 × 10-4 
8.258122 × 10-5 
3.120254 × 10-5 
1.784648 × 10-5 

0.14 
0.03 
0.26 
0.45 

 
Figures 2 and 3 show the agreement between the numerical and 

analytical results presented in Tables 3 and 4, respectively. Figures 
4 and 11 illustrate the time history of the control variables – radial 
and circumferential accelerations – for Earth-Venus (ρ  = 0.727)  
and Earth-Mars (ρ  = 1.523) transfers for tf  −  t0 = 3 and tf  −  t0 = 4. 
Note that the linear theory provides a good approximation for the 
solution of the low-thrust limited power transfer between close 
circular coplanar orbits in a Newtonian central gravity field. Figures 
2 and 3 also show that the fuel consumption can be greatly reduced 
if the duration of the transfer is increased. The fuel consumption for 
transfers with duration  tf  −  t0 = 2 is approximately ten times the 
fuel consumption for a transfer with duration tf  −  t0 = 4.  
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t=2

t=3

t=4

t=5

 
Figure 2. Comparison between analytical and numerical results for 
consumption variable J (ρ > 1). 

 
In order to follow the evolution of the optimal thrust 

acceleration vector during the transfer, it is also convenient to plot 
the locus of its tip in the moving frame of reference. Figures 12 – 15 
illustrate the locii for Earth-Mars and Earth-Venus transfers for        
tf  −  t0 = 3 and tf  −  t0 = 4. It should be noted that the agreement 
between the numerical and analytical results is better for Earth-Mars 
transfers. 

 

t=2
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t=5

 
Figure 3. Comparison between analytical and numerical results for 
consumption variable J (ρ < 1). 
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Figure 4. Radial acceleration history for ρ  = 1.523  and   tf   t0 = 3. 
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Figure 5. Circumferential acceleration history for ρ  = 1.523  and   tf   t0 = 3. 
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Figure 6. Radial acceleration history for ρ  = 0.727  and  tf   t0 = 3. 
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Figure 7. Circumferential acceleration history for ρ  = 0.727  and  tf   t0 = 3. 
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Figure 8. Radial acceleration history for ρ  = 1.523  and   tf   t0 = 4. 
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Figure 9. Circumferential acceleration history for ρ  = 1.523  and   tf   t0 = 4. 
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Figure 10. Radial acceleration history for  ρ  = 0.727  and  tf   t0 = 4. 
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Figure 11. Circumferential acceleration history for  ρ  = 0.727  and              
tf   t0 = 4. 
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Figure 12. Thrust acceleration for ρ  = 1.523  and   tf   t0 = 3. 
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Figure 13. Thrust acceleration for ρ  = 0.727  and  tf   t0 = 3. 
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Figure 14. Thrust acceleration for ρ  = 1.523  and   tf   t0 = 4. 
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Figure 15. Thrust acceleration for ρ  = 0.727  and  tf   t0 = 4. 

 

Conclusions 

In this paper a gradient-based algorithm, presented in a 
companion paper, is applied to the analysis of optimal low-thrust 
limited-power transfers between close circular coplanar orbits in a 
Newtonian central gravity field. The numerical results provided by 
the algorithm have been compared to the analytical ones obtained by 
using a linear theory. The agreement between these results shows 
that the linear theory provides a good approximation for the solution 
of the transfer problem and can be used in preliminary mission 
analysis. The numerical and analytical results obtained in the paper 
also show that the fuel consumption can be greatly reduced if the 
duration of the transfer is increased: the fuel consumption for 
transfers with duration tf  −  t0 = 2 is approximately ten times the fuel 
consumption for a transfer with duration tf  −  t0 = 4. On the other 
hand, the performance of the proposed algorithm – accuracy in 
satisfying the terminal constraints, number of iterations to converge 
– shows that it is a good tool in determining optimal low-thrust 
limited-power trajectories between close circular orbits in a 
Newtonian central gravity field. The application of the algorithm to 
large amplitude transfers should be investigated. For further studies, 
the algorithm should be applied to numerical analysis of transfers 
between circular non-coplanar orbits and transfers between elliptical 
coplanar or non-coplanar orbits, for small and large amplitude 
transfers.   
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Appendix 

A first order analytical solution for the problem of optimal 
simple transfer (no rendezvous) between close quasi-circular 
coplanar orbits in a Newtonian central gravity fields is given by 
(Edelbaum, 1964; Marec, 1967, 1979; Da Silva Fernandes, 1989): 

 

0λ∆ Ax = , (A.1) 
 

where ∆x = [∆α  ∆h  ∆k ]T denotes the imposed changes on non-
singular orbital elements (state variables): aa /=α , h = ecosω,  k = 
esinω, where a is the semi-major axis, e is the eccentricity and ω is 
the argument of the pericenter; λ0 is the 3 × 1 vector of initial values 
of the adjoint variables, and, A is a 3 × 3 symmetric matrix. The 
overbar denotes the reference orbit O  about which the linearization 
is done. In this first order solution, the adjoint variables associated 
to the non-singular elements are constant. The matrix A is given by: 
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where: 
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where ( ) ∆+=−+= 000 ttn ff , t0  is the initial time, tf  is the 

final time, 3a
n µ

=  is the mean motion (reference orbit O ). 

The optimal thrust acceleration ∗Γ  and the variation of the 
consumption variable J∆ during the maneuver is expressed by: 
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where aaa, aαh,…, akk  are given by Eqns (A.3) - (A.8), and, λα , λh , 
and λk are obtained from the solution of the linear algebraic system 
defined by Eq. (A.1); er and  es are unit vectors extending along 
radial and circumferential directions in a moving reference frame, 
respectively. 

For transfers between circular orbits, only α∆  is imposed. If it 
is assumed that the initial and final positions of the vehicle in orbit 
are symmetric with respect to x-axis of the inertial reference system, 
that is, 20 ∆=−=f , the solution of the system (A.1) is given 
by: 
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Note that the particular choice of the x-axis is possible because 

the primary body has z-axis symmetry. 
The first order solution presented in this Appendix has been 

compared to the numerical one provided by the proposed algorithm. 
 


