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Simultaneous Control and 
Piezoelectric Insert Optimization for 
Manipulators with Flexible Link 
This work proposes a tracking control model for a flexible link robotic manipulator using 
simultaneously motor torques and piezoelectric actuators. The dynamic model of 
manipulator is obtained in a closed form through the Lagrangian approach. The control 
uses the motor torques for the tracking control of the joints and also to reduce the low 
frequency vibration induced in the manipulator links. The stability of this control is 
guaranteed by the Lyapunov stability theory. Piezoelectric actuators and sensors are 
added for controlling the high frequency vibrations beyond range of motor torque control. 
Additionally, this work introduces a formulation for simultaneous control and piezoelectric 
inserts geometry optimization through the maximization of the control action dissipated 
energy. Simulations on Matlab/Simulink are used to verify the efficiency of the control 
model. 
Keywords: piezoelectric actuators, flexible links, tracking control, optimization, 
manipulators 
 
 
 

Introduction 
1The design of light weight robotic manipulators with flexible 

links requires a control system which takes into account the 
interaction of the joint angles and the elastic deformation. This 
complex task has the additional complication of the essential 
uncertainty that characterizes robotic manipulators, such as variable 
payload and joint frictional torques (Siciliano and Valavanis, 1998). 

A flexible robot control design is composed by two steps: a 
tracking control acting on the joint angles and a stabilizer for 
motion induced vibration suppression (Zhang et al., 2005; 
Mohamed et al., 2005). 

Robotic systems can be considered linear with respect to some 
parameters, such as mass, inertia and damping factors, but this 
assumption is not valid for the state. Therefore, a position control 
law must be defined with an appropriate tracking error asymptotic 
stability, obtained with Lyapunov functions (Arimoto, 1996). 
       In this work, we propose a tracking control model for a robot 
arm with flexible link. Motor torques tracking control based on the 
elastic links dynamic reduces the low frequency vibrations.  
However, the high frequency modes cannot be eliminated by the 
motor torque action alone, because the torque control system low 
speed is unsuited to control high frequency vibrations. Thus, high 
frequency vibrations control must use faster response actuators like 
piezoelectrics. The actuation frequency ranges of the motor and the 
piezoelectrics inserted are chosen to be non-overlapping, so that 
their controls are uncoupled. Similar techniques have been already 
proven in single-link flexible manipulators (Sun et al., 2004; Choi 
and Shin, 1996; Cho et al., 1999) and in two-link flexible 
manipulators in (Kim et al., 2001).  

The lower fundamental modes are responsible for most of the tip 
displacement of the robot arm, therefore only the first two 
eigenfunctions are considered here. The theory formulated in this 
work can be used for more than one flexible link, but for 
simplification, the simulated model has one rigid and one flexible 
link. 

Robotic manipulator design has largely ignored the latest 
structural design methodologies. There is ground for improving 
robotic manipulators using modern structural optimization 
techniques, including the use of smart materials to assist the control 

                                                           
Paper accepted January, 2009. Technical Editor: Domingos A. Rade 

 

by changing the structural behavior (Banks et al., 1996; Gabbert and 
Schulz, 1996). 

In this work, we propose a tracking control model for a planar 
robot with a flexible link. The motor torque controls the joint angle 
tracking and decreases the low frequency link vibration, while 
piezoelectric sensor and actuator are added to control the high 
frequency vibration. Furthermore, we propose a location and sizing 
optimization where the mass and stiffness changes due to the 
addition of sensors and actuators included. This has been already 
used in suppressing vibrations in a flexible beam system (Abreu et 
al., 2003; Dhuri and Seshu, 2006; Kermani et al., 2004). A 
Matlab/Simulink code was created to assess the control model 
efficiency. 

Nomenclature 

ia  = length of link i. 

bA   = cross section of the link. 

 b = width of the flexible link. 

ijb  = inertia matrix terms. 

ijc  = Coriolis and centrifugal effects matrix terms. 

)q(B  = positive definite symmetric inertia matrix. 

aC  = input piezoelectric control matrix. 

q)q,q(C && = Coriolis and centrifugal forces vector. 

sc  = capacitance of the film sensor. 

Ck,ij   = constants. 
D  = positive semidefinite link damping diagonal matrix. 

∆D  = positive definite gain diagonal matrix. 

31d  = piezoelectric constant.  

nid      = distance from the bottom of the piezofilm sensor to the 

neutral axis. 
)t,x(d ikyi = deflection of flexible link.  

bE  = elastic modulus of the flexible link. 

cE   = elastic modulus of the piezoceramic actuator. 

 Ef   = elastic modulus of the piezofilm sensor. 

i)EI(  = flexural stiffness property of the link i. 

ijf       = deflection velocity depend functions. 

)q(g  = gravitational torque vector. 
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31g  = piezoelectric stress constant. 

cK  = piezoelectric feedback gain matrix. 

eK  = positive definite stiffness diagonal matrix. 

pK  = positive definite control gain diagonal matrix. 

piezK  = modal stiffness due to the actuator and sensor. 

2
31K  = electromechanical coupling factor. 

 la = length of the piezoelectric actuator and sensor. 

im  = link mass. 

him  = motor mass. 

[ ]T,q δθ= = generalized coordinates vector. 

rq&  = reference velocity vector. 

q~  = tracking error vector. 

dq  = desired path vector. 

s  = reference error vector. 

bt  = link thickness. 

ct  = piezoceramic thickness.  

 ft  = piezofilm thickness. 

u  = input control torque vector. 
)t(Vf  = voltage generated by the piezofilm sensor.  

)t(Va  = input voltage to the piezoelectric actuator. 

xa = location of the actuator on the link. 
)t(W 0  = initial energy of the system.     

fW  = energy dissipated by internal damping.  

cW  = energy dissipated by the control action.  

 

Greek Symbols 

α   = constant of material cost. 

ijβ  = constant of feedback gain. 

δ  = 1×n  elastic modes coordinates vector. 

dδ  = 1×n  desired elastic modes coordinates vector. 

ijij   ,ϕε  = positive constants. 

kijφ  = eigenfunctions. 

iλ  = weight elements. 

ijω  = jth natural angular frequency. 

θ   = 1×n  joint coordinates vector. 

bρ  = beam mass density. 

kiρ  = link i uniform density. 

τ   = input motor torque. 
ζ  = modal damping. 

Λ  = gain diagonal matrix. 

Dynamic Model 

The control laws are obtained from the arm motion equations. 
Figure 1 shows a simplified planar manipulator composed by one 
rigid and one flexible link, two joints, two motors, one piezoelectric 
actuator and one sensor attached to the top side and bottom side of 
the flexible link, respectively. 

 

 
Figure 1. Model of planar manipulator with one rigid and one flexible link 
featuring piezoelectric actuator and sensor. 

 
 
The motion of the robot endpoint is a composition of the 

successive relative link motions. This movement is described using 
homogeneous matrix transformations. These transformations 
represent translations and rotations due to the joints angle changes 
and the flexible link elastic deflections (Book, 1984; Bottega et al., 
2007). The deflections are obtained considering each link as an 
uniform beam with length ai featuring a piezoceramic actuator 
bonded to the top face, and a piezofilm sensor bonded to the bottom 
face as shown in Fig. 2.  

 
 

 
Figure 2. A flexible link of manipulator featuring surface-bonded 
piezoelectric actuator and sensor. 

 
 

Flexible links featuring surface-bonded piezoelectric actuator and 
sensor can be modeled as discontinuous cross-section Euler-
Bernoulli beams, with deflection t)(x,dkyi , satisfying the partial 

differential equation system (Tsukazan, 2005; Copetti et al., 2007) 
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where kiρ  is the uniform density, ik )EI(  is the flexural rigidity 

property of the link i (Meirovitch, 1967), and the index k selects the 
position along the beam length, where 1, 2, and 3 mean respectively 
before, within, and after the piezoelectric actuator. 

Exploring the time and space separability of the system Eq. (1) 
by the modal analysis technique (Knani, 2002), the link i deflection 
can be expressed as  
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∑
m

1=j
ijkijkyi (t)(x) δ=t)(x,d φ , (2) 

  
where each term in the general solution of Eq. (1) is the product of a 

time harmonic function of the term 
t

e=δ ijj
ij

ϖ
and of a space 

eigenfunction of the form 
 

x)(βcoshC+x)sinh(βC+            

x)(βcosC  +  x)sin(βC  =(x)

ijij4,ijij3,

ijij2,ijij1,kijφ
 , (3) 

 

where  i2ij

4
ij (EI)/=β ϖ  and ijϖ  is the jth vibration mode angular 

velocity for the link i, derived from an eigenvalue problem. The 
determination of the constant coefficients ijk,C uses clamped 

conditions at the link base and mass boundary conditions 
representing the balance of bending moment, shearing force at the 
link endpoint (De Luca et al., 1988), and the internal boundary 
conditions are expressed in Table 1.  

 
 

Table 1. Discontinuity conditions 

First discontinuity Second discontinuity 
)()x( ijaij 021 φφ =  )()l( ijaij 032 φφ =  

)(')x(' ijaij 021 φφ =  )(')l(' ijaij 032 φφ =  

)('')x('' ijaij 02
4

1 φαφ =  )('')l('' ijaij 03
4

2 φαφ =  

)(''')x(''' ijaij 02
4

1 φαφ =  )(''')l(''' ijaij 03
4

2 φαφ =  

 
 
 
Starting from this analysis, the mode shape for flexible link is  
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where la  and  xa  are  the length and the location of the piezoceramic 
actuator and the piezofilm sensor respectively as shown in Fig. 3. 

Equations of Motion 

The equations of motion are derived in closed form using a 
Lagrangian approach written in the form of compact matrices, 
resulting (Book, 1984): 

 

u)q(gqDqKq)q,q(Cq)q(B e =++++ &&&&& , (5) 

where [ ]Tδθ,=q is the generalized coordinates vector. 
 

 
Figure 3. A flexible link of manipulator featuring surface-bonded 
piezoelectric actuator and sensor. 

 
 
The matrices of the dynamic model can be partitioned as 
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where the indexes θθ , θδ   and δδ  are the terms from the matrices 
corresponding to rigid body, rigid coupling with flexible body and 
flexible body, respectively.  

Tracking Control 

This section introduces the flexible robot arm tracking control, 
based on an adaptive controller presented by Arteaga and Siciliano, 
(2000) and a robust control law to reduce the elastic vibrations of 
the arms. The stability of the tracking error is proved using the 
Lyapunov stability theory (La Salle and Lefschetz, 1961). The 
improved tracking controller using nominal compensation of 
dynamic nonlinearities of system Eq. (5) is given by  

 
sKg(q)+qD+qK+q)qC(q,+qB(q)=u prderr −&&&&& , (7) 

 
where qΛq=q dr

~−&&  is the reference velocity vector with tracking 

error dqq=q~ −  and q~Λ+q~=qq=s r
&&& −  is the reference error. 

Inserting Eq. (7) in the dynamic equation, Eq. (5), the error 
equation in s becomes 

 
)sKDsq~Ks)q,q(C(s)q(B pe +++−= &&    (8) 

 
In order to prove the stability at the origin of Eq. (8), consider 

T]q~  q~[x &=  with the Lyapunov function: 
 

q~)KK(q~s)q(Bs)x(V)t,x(V ep
TT ++== Λ

2

1  (9) 

 
Deriving Eq. (9) along Eq. (8), using the property of dynamic 

equation that )q,q(C)q(B &2−  is skew symmetric and 

02 =− s))q,q(C)q(B(sT &  (Arteaga, 1998 ), we have 
 

q~)KK(q~q~Kq~)x(V ep
T

p
T Λ+ΛΛ−−= &&&   (10)  
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Since Λ,K p  and eK  are positive definite and diagonal 

matrices, 0≤)x(V&  which implies that the equilibrium point 0=x  
is asymptotically stable (Arteaga and Siciliano, 2000). However, it 
is not guaranteed that the deflections tend to zero for weakly 
damped system. In this case, we can add a robust control law 
(Arimoto, 1996) that damps the system and eliminates the steady 
vibrations as 

 

dnrnrr∆d∆ δ)},f,f,,,f,f{diag(DδD'
n

&KKK&
11111−=  

i
ijdijdij

dijdij
ij r1,...,j     n,...,i       

es

s
f

ij
==

+
= − 1ϕεδ

δ
&

&

, (11) 

 

where dijdij s ,δ&  are generic elements dependent on desired 

deflections dδ  and tracking error s , ir  is the number of deflection 

generalized coordinates for link i , and n is the number of links. 
The robust control law Eq. (11) presents strong adaptation to various 
perturbation from modeling errors and disturbance, and guaranteed 
transient performance (Yao and Tomizuka, 1996).  

To prove the stability of the deflections iδ  from Eqs. (5) and 

(6), and assuming that dθ  is constant, we take the partitioned 

equation, for a desired deflection dδ :  
 

0=++′++ ∆ )(gKDCB ddddd δδδδδ δδδ
&&&  (12)  

 

and we consider δδ gKy d
1−+= . Substituting in Eq. (12) we have 

 
0=+′++ KyyDyCyB &&&& ∆δδδ , (13) 

 
with Lyapunov function 

 

yByKyy)y,y(V TT
y &&& δδ2

1

2

1 +=  (14) 

 
The time derivative of Eq. (14) along Eq. (13) using the property  

of dynamic equation that δδδ CB 2−  is skew symmetric and 

02 =− y)CB(yT
δδδ , (Arteaga, 1998) results in 

 

yDy)y,y(V T
y &&&&

∆′−=  (15) 
 

Since  ∆'D  is a diagonal positive definite matrix, 0≤)y,y(Vy &&  

which implies that the equilibrium point 0=y  is asymptotically 
stable.  

 
The Eq. (11) is added to Eq. (7) to obtain the control law of the 

system Eq. (4) expressed as 
 

( ) TT
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The proof of the stability of this control law can be obtained 

using Lyapunov stability theory in a manner similar to that shown in 
the stability of the control law Eq. (7). So the control law Eq. (16) is 
stable on the origin and tracking error q~  tends to zero. The damping 
of the system has been increased, and the deflection modes tend to 

zero. A detailed proof of the stability of this control law can be seen 
in Arteaga and Siciliano (2000). 

Piezoelectric Sensors and Actuators Control 

Under certain conditions, achieving the suppression of elastic 
link vibrations by means of the motor torque alone may be very 
difficult. Hardware limitations, such as motor saturation and motor 
noise may prevent the control of high frequency vibration modes. 
To solve these problems we propose a hybrid controller consisting 
of the servo-motor and piezoelectric actuators and sensors bonded to 
the flexible links (Shin and Choi, 2001; Liu and Begg, 2000). We 
obtain a controller that relies on the motor torque to achieve the 
desired path and a feedback voltage control on the piezoelectric 
actuators for the elastic vibrations. 

We propose a feedback control voltage to the piezoceramic 
actuator (Crawley and De Luis, 1987), expressed as 

 

( ) ( )tVKCtV fc
T
aa

&−=  (17) 

 
With 

 

( ) ( ) ( )( )a
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dttEE
=C φφ −  (18) 

 
The voltage generated by the piezofilm sensor )t(V f  obtained 

by integrating the electric charge, developed at a point on the 
piezofilm is expressed as (Banks et al., 1996) 

 

( ) δd
Cg

bk
δ==ctV ni

f
sf

31

2
31

  (19) 

 
This additional controller Eq. (17) is combined to the original 

one, Eq. (16). The resulting control law for the system Eq. (5) is 
expressed as 

 

( ) ( )
T

aa
T

d
'
∆

T
p

rder

tVCδDsKg(q)

qDqKq)qC(q,qB(q)u
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+++=

&

&&&&&

0
 (20) 

 
resulting in a hybrid control act, where the motor torque controls 
the joint angle tracking and reduces the low frequency vibrations 
on the links while piezoelectric sensors and actuators are added to 
control the high frequency vibrations. Again, the proof of the 
stability of this control law can be obtained using Lyapunov 
stability theory as shown previously for the control law Eq. (7). 
So, the control law Eq. (20) is stable in the origin and tracking 
error q~  tends to zero. 

Location and Sizing Actuators Optimization 

Controlling structural vibration depends not only on the control 
law, but also on the selection and location of the actuators and 
sensors (Denoyer and Kwak, 1996). In this work, we propose a 
methodology for the actuator and sensor position and sizing 
optimization, based on maximization of dissipation of the energy 
control (Li et al., 2002). This procedure takes into account the 
actuators and sensors mass and stiffness and their effect on the 
mechanical behavior of the structure. This influence is combined to 
the control characteristics to obtain an objective function that 
depends on the actuators location and sizing, and the control gain.  
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The deflections are obtained considering each link as a uniform 
beam with ai length featuring a piezoceramic actuator bonded to the 
top face and a piezofilm sensor bonded to the bottom face as shown 
in Fig. 3.  

The dynamic of the flexible link with m  piezoelectric sensors 
and actuators in terms of modal coordinates can be expressed as 

 

(t)VCKδδDCδB aaδδ =+++ &&&& δδδ  (21) 
 

where pieze KKK +=  and piezK  represent the modal stiffness due 

to the actuator and piezoelectric sensor. 
The total energy stored in the system (De Luca et al., 1988) can 

be expressed as 
 

Kδδ+δBδ
2

1
=U+T=W TT &&

δδ  (22) 

 
Differentiating the Eq. (22) with respect to the time, we obtain 
 

KδδδBδ+δBδ
2

1
=U+T=W TTT &&&&&&&&&&& +δδδδ  (23) 

 
Isolating δδδ

&&B  on Eq. (21), replacing in Eq. (23) with the 

control law Eq. (17), and using the property of dynamic equation 
that δδδδ CB 2−  is skew symmetric and 02 =− δδ δδδδ )CB(T , we obtain 

 

δδδδ &&&&&&& )cCKC(DUTW s
T

aca
TT −−−=+= , (24) 

 
where the first and the second terms describe the energy rates 
removed from the system by the internal damping and by the control 
feedback, respectively. 

Integrating the Eq. (24), we obtain      
 

∫ ∫
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0 t t s
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For effective vibration suppression, it is reasonable to derive a 

method to increase the energy dissipated by the control. We observe 
that cW  depends on the locations ax  and the length al  of the 

actuators, and feedback matrix gain cK . Therefore cW  can be used 

as an optimization criterion to determine location and sizing of 
actuator and feedback gains. 

 
To determining cW , we write the Eq. (21) in state-space form as 

zH
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The control-induced energy dissipation by the active damping  

control cW  can be written as 
 

∫= zdt QzW T
c  (28) 

 
where 
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Q
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is a 2 m x 2 m matrix positive semi-definite, which allows proving 
the asymptotic stability using the Lyapunov theory of the Eq. (26)  
system (Naidu, 2003).    
       Applying transformation technique to the Eq. (28), we obtain 
(Truhar and Veselić, 2004) 

 

PzzW T
c =  (30)  

 

where P  is symmetric positive definite matrix, solution of the 
Lyapunov equation 

 

QH
~

PPH
~ −=+  (31) 

 
It is noticeable that cW  depends on the initial conditions of the 

flexible structure. In order to eliminate this dependence, we assume 

that the initial state of z  satisfies 0
1zWa

−  where 
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with random value of 0>iλ  where 1λ  and 2λ  are larger than the 

others, because it is expected that the lowest frequency modes are  
more easily excited by the rigid body motion (Li et al., 2002). 
Therefore, we obtain an objective function (Truhar, 2004), 

 

)PWW(trJ a
T

a=0   (33) 
 

 for  energy dissipated by the control which depends on the location 

ax , the length al  of the piezoelectric actuators and the gain cK . 

To design a precise and agile manipulator, it is reasonable to 
take it as light as possible. This is accomplished by adding a 
function of the actuator and sensor masses to the objective function 
shown above. We added to 0J  a quadratic dependency on the 

actuator length al  (Li et al., 2002), resulting the following 

composite objective function:  
 

)(Jmin
caa K,l,x

α  (34) 

 
with 

 

0
2 Jl =)(J a −αα  

maxc

iaa

ia

KK

axl

ax

≤
≤+<

≤≤
0

0

 (35) 

 
where α  depends on the piezoelectric material cost and maxK  

depends on the actuator power limitation. 

Results 

The control laws were tested on a simplified robot model with two 
links: the first one is rigid and the second one is flexible with two 
deformation modes, as shown in Fig. 1. Gravitational effects were 
ignored (De Luca et al., 1990). The Lagrangian coordinate vector is 

)δ,δ,θ,(θ=q 222121  and the inertial matrix and the Coriolis and 

centrifugal effects matrix are  
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while the stiffness and modal damping matrices are 
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The following diagonal elements of gain matrices for the control are  
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Physical Parameters 

We present the mechanical and geometrical properties of the 
piezoelectric materials (Choi and Shin, 1996) used in this work: 
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The results were obtained using a block-diagram implemented 

in MatLab/Simulink software presented in Fig. 4, where the fourth-
order Runge-Kutta method with t∆ = 1 ms was used to integrate the 
equations for a five second simulation.  

 

Figure 4. Block-diagram of the proposed control algorithm. 

 
 

Desired Trajectory 

Figure 5 shows the trapezoidal trajectory tracking used with 
amplitude 2/π  for the joint angles 1 and 2 without initial tracking 
error. 

 
 

 
Figure 5. Desired trajectory of the joint angle 1 and 2. 

 
 
Figure 6 shows a circle path selected as an end-point trajectory. 

The circle has 0.4 m of diameter. Equation (36) is executed in a 
clockwise direction starting at the top point of the circle in xy plane. 

 

(t)sinr=y

0,4+(t)cosr=x
 (36) 
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Figure 6. Desired circle-path, end-point trajectory. 

Figure 7 shows the joint trajectories generated by inverse 
kinematics from the desired end-point motion. 

 
 

 
Figure 7. Desired joint angle trajectory for a circle-path, end-point trajectory. 

 

Performance Indices 

Performance measures commonly used such as the rising time, 
damping and steady state error are not adequate for nonlinear 
systems such as robot. In Yao and Tomizuka (1996), the valued L2  
norm given by 
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is used as an objective numerical tracking measure performance for 
an entire curve t . It is an average measure, and large 
deflections during the initial transient stage cannot be represented. 

 Also, we will use the average tracking error of joint i during the 
last three seconds, 

 

[ ] ∫ −= fT

fT
dt)t()t(L

33

1 δδ
 

(38) 

 
as indexes to measure the steady state tracking error. 

Simulations 

Firstly, we simulated a damped system with a control law, Eq. (7). 
Figure 8 shows that the elastic deflections tend to zero and they are 
limited due to structural damping of the system. Figure 9 shows that 
the system tracking error also tends to zero. In the second simulation, 
we used the control law given by Eq. (16) in the same system used 
before. Figure 10 shows an increase in the system damping and a 
faster convergence to zero of the deflections. This is a result of the 

addiction of  d
'
ΛδD &  controller. 

 
 

 
Figure 8. Deflection of modes 1 and 2 for the damped system. 

 
 
 

 
Figure 9. Joint tracking error of the trapezoidal trajectory. 

 



Valdecir Bottega et al. 

112 / Vol. XXXI, No. 2, April-June 2009 ABCM 

 
Figure 10. Deflections of first and second modes for the damped system 
with robust control. 

 
 
 
For the next simulations of the system above with control law 

Eq. (20), we added piezoelectric actuators and sensors. We first 
obtained the location and sizing of the actuators solving the problem 
of objective function minimization, Eq. (34), using Matlab software. 
Figures 11 and 12 show the objective function that depends on al   

and ax  variables with 300=α . 

The minimal value is obtained at m.xa 090=  and m,la 350=  

that respectively represents the position and sizing of piezoelectric 
actuator bonded on the flexible link. 

 
 
 

 
Figure 11. Dissipated energy objective function due to piezoelectric 
control action. 

 

 

Figure 12. Contour curves of dissipated energy objective function due to 
piezoelectric control action. 

 
 
 
In Figure 13, we observe that for given location and sizing of 

the piezoelectric actuator/sensor pairs, 0J  is a monotonous 

decreasing function of gain cK . But when cK   can be chosen very 

large, there are almost no variations of the value of J . Therefore, it 
is necessary to introduce the gain function cckβ  into the objective 

function Eq. (34), where cβ  represents a gain parameter dependent 

of the  hardware limitations. In Fig. 14, the optimal solution for the 
feedback gain is 30=Kc  obtained with 3=cβ . 

 
 
 

 
Figure 13.  Objective function J dependency on the gain Kc. 
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Figure 14. Objective function J with gain BcKc dependency on the gain Kc. 

 
 
 
Figure 15 shows a reduction on the frequency and deflection 

amplitude induced by the tracking control when piezoelectric 
actuators and sensors are added in the position m.xa 090=  and 

length m.l a 350=  of the piezoelectrics. It is clearly seen that the 

deflection frequency and amplitude is reduced by activating the 
piezoelectric actuator and sensor during the motion. 

 
 

 
Figure 15. Deflections of first and second modes for the damped system 
with a piezoelectric actuator and sensor. 

 
 
 
Figure 16 shows deflections of first and second modes for 

damped system with piezoelectric actuator and sensor in four 
different positions ax and lengths al .    

 

 
Figure 16. Deflections of first and second modes for the damped system 
with a piezoelectric actuator and sensor in four different positions xa  and 
lengths la: a) xa = 0.00 m, la = 0.2 m; b) xa = 0.5 m, la = 0.2 m; c) xa = 0.09 m, 
la = 0.35 m; d) xa = 0.0 m, la = 0.7 m. 

 
 
 
As shown in Figs. 16, 17 and 18, all systems provide 

satisfactory tracking performance. However, the systems with 
piezoelectric actuator and sensor in the position and length 

m.xa 090= , m.la 350=  and m.xa 00= , m.la 70=  have a much 

better final tracking accuracy as seen by the performance index L 
norm Eq. (38) in Fig. 18, and a better transient as seen from 
performance index L2  norm Eq. (37) in  Fig. 17.  

 
 

 
Figure 17. Average tracking from the performance index L2 norm. 
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Figure 18. Average tracking during the last three seconds from the 
performance index L norm. 

 
 
 
It is clear that a system with a piezoelectric actuator and sensor 

in the position m.xa 00=  and length m.la 70=  is the best choice, 

but with a piezoelectric actuator and sensor in the position and 
length m.xa 090= , m.la 350= , respectively, it can be reduced 

their size and consequently the mass of the composite link with only 
a small loss of  control performance.     

Figures 19 and 20 show the torque applied to control the robot 
joint with and without the piezoelectric actuator, respectively. It is 
observed that the reduction of control effort as a high frequency of 
control in the second joint is reduced when the piezoelectric control 
is activated. 

 
 

 
Figure 19. Applied torques without active piezoelectric actuator and sensor. 

 

 
Figure 20. Applied torques with active piezoelectric actuator and sensor. 

 
 
 
These simulation results show the advantage of combining a 

size measure with the control performance index to obtain the 
composite objective function for optimal design of link. 

As a second step, a circle path is simulated in order to 
demonstrate favorable tracking control performance of the proposed 
control scheme. Figures 21 and 22 present the tracking control 
responses for the imposed circle trajectory without and with active 
piezoelectric actuator and sensor, respectively. We can distinguish 
the difference of control performance between two cases of the 
tracking error. It shows that the initial tracking error is reduced.  

 
 

 
Figure 21. Tracking error of the circle path trajectory without active 
piezoelectric actuator and sensor. 
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Figure 22. Tracking error of the circle path trajectory with active 
piezoelectric actuator and sensor. 

 
 
 
Figures 23 and 24 present deflection control for a circle path 

trajectory without and with active piezoelectric actuator and sensor, 
respectively.  It is clearly observed that the unwanted oscillations of 
tip deflections are favorably suppressed. 

All these results support the advantage of introducing 
piezoelectric actuator/sensor for suppress undesirable tip deflections 
in the link. This control system result increases the possibilities of 
using the flexible link manipulator for several tasks.  

 
 

 
Figure 23. Deflections of first and second modes for the damped system 
with robust control without active piezoelectric actuator and sensor for a 
circle path trajectory. 

 

 
Figure 24. Deflections of first and second modes for the damped system 
with piezoelectric actuator and sensor for a circle path trajectory. 

Conclusions  

In this work we introduced a technique for tracking and 
vibration control of a robot with flexible links. This technique uses 
the motor torque for the joint angle control to control the low 
frequency vibrations in the robot links. Piezoelectric actuators and 
sensors are added to the system to control the high frequency 
vibrations that cannot be reduced by the motor alone. Simulation 
results show that this approach effectively reduces the motion 
induced vibration. We also introduced an optimization procedure for 
the sizing and position of the piezoelectric actuator and sensor, 
using the energy dissipated by the control in the objective function. 
This approach can obtain better results for motor torques that suits 
their control period limitation and a size reduction of the actuators 
and sensors sizes. This technique can be developed to build light 
manipulators with flexible links, while preserving the force and 
precision. It also reduces the energy consumption and suits the 
needs for aerospace systems or for tasks that demand lightness, 
precision and agility. 
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