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Development of an Automated and 
Dedicated Measuring System for 
Straightness Evaluation  
This work presents an automated and dedicated system aiming at the measurement of 
straightness errors of mechanical components, using an industrial robot. A multi-probe 
error separation technique was used to make measurements independent from the 
coordinate system of the robot. A mathematical model that takes into account the readings 
from three sensors was specifically designed for the proposed measurements and produces 
inspection results by means of the solution of a system of linear equations, in only one 
operation. Also in this work, a new approach was developed to minimize the influence of 
the zero-adjustment errors of the sensors, which represent the major source of errors in 
the separation process. Experimental tests applied to the measurement of straightness 
errors of mechanical components were accomplished, which demonstrated the 
effectiveness of the employed methodology. 
Keywords: Error separation, straightness error, multi-probe method, measurement 
automation 
 
 
 

Introduction 

1The ability to accomplish precise measurements is vitally 

important to the mechanical industry, where the knowledge of 

dimensions is essential to guarantee conformity of parts and to 

control the production processes. The application of automatic 

systems in tasks formerly made only by the human operator has 

hugely expanded in the last two decades, to some extent due to the 

growing market of CNC machines. On the other hand, great part of 

the measuring processes that are effectively done on manufacture 

lines until today rely on the utilization of manual instruments and 

conventional techniques. Therefore, the application of automated 

manufacturing processes requires the project and construction of 

also automated measuring systems, which could be integrated to the 

manufacturing processes. 

As a result of the development of better machine tools and 

enhanced processes, higher quality products could be manufactured. 

Such products, which are often made under tighter tolerances, also 

require the improvement of measuring instruments making them 

capable of taking satisfactory measurements within the dimensional 

limits defined by design. Finally, the existence of accurate 

measuring instruments allows the construction of new and enhanced 

machines, initiating a favourable cycle of technological 

development of machines, instruments and assorted processes. 

Automatic measuring instruments are especially useful for 

complete measurement of large lots of parts aiming at selective 

assembly. When compared to conventional techniques, automatic 

measurement can be fast and objectively accomplished. For 

workpieces that were machined within tight tolerances, automatic 

measurement offers the advantage of eliminating the influence of 

the human operator upon measurement. In the case of dimensional 

evaluation of relatively simple workpieces, such as guideways and 

plane or cylindrical surfaces, besides automation, it might be 

desirable to use a dedicated instrument with ability to evaluate a 

single mechanical feature much more effectively when compared to 

universal instruments. 

In addition to the utilization of automatic machine tools, a high 

degree of industrial automation has been achieved by using robots in 

production and assembly lines. Nowadays, it is very common to find 

robots performing repetitive low-accuracy tasks, as painting, 

welding and loading/unloading. The relatively low acquisition and 
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maintenance costs of robots, easy programming and fast execution 

of the programmed tasks make robots an attractive investment. 

The application of industrial robots as measuring instruments, 

however, is not trivial. The manipulator low positioning accuracy is 

a critical restriction. Currently available accuracy levels at the 

industrial robot technology, in general, are not enough to provide 

reliable results in case of measurements referring back to the robot 

coordinate system as a reference. Factors such as tolerances of parts 

that compose the robot structure, elasticity at joints, resolution of 

resolvers, limitations of the control system, among others, produce a 

unique behaviour in each robot, which even limits the application of 

error compensation techniques. 

About the possibility of adapting a piece of measuring 

equipment to the wrist of a robot set in order to take measurements, 

Greenway (2000) comments: “Conceptually, a measurement device 

is mounted to the end-effector of a robot that moves this device into 

position to take a measurement. All measurements are related back 

to robot position; the measurement accuracy will only be as accurate 

as the robot positioning”. The relation between measurements and 

robot position disregards the device as a base to a measuring system. 

In order to make measurements independent from the reference 

system of the robot, it is necessary to employ some error separation 

technique that allows decoupling between the errors of the artefact 

and those originated from the robotic measuring system. 

The application of error separation techniques is especially 

desired when errors of the measuring system are not negligible if 

compared to workpiece errors. In these cases, it is a mistake to 

consider the instrument as reference. 

The reversal technique, whose origin dates back to the decade of 

1940, is perhaps the most recognizable error separation technique 

and was developed to evaluate machine tools produced at that time 

(Bryan and Carter, 1989). The work by Evans, Hocken and Estler 

(1996) presents a very comprehensive review of various reversal 

techniques, which are applicable to a wide range of common 

situations in the mechanical industry. 

Compared to reversals, multi-probe error separation methods 

present the advantage of not having the need of artefact 

manipulation. Multi-probe methods require the acquisition of 

redundant data on the part and besides, depending upon the type of 

the measured error, a specific sensorial arrangement is needed. 

Whitehouse (1976) describes the theory behind both multi-

orientation and multi-probe methods. 

Several multi-probe methods were proposed to accomplish 

straightness error measurement and the most prominent are the two-

probe method (Tanaka et al. 1981; Gao and Kiyono, 1996) and the 
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three-probe method (Tanaka and Sato, 1986; Gao and Kiyono, 

1997). An issue arises as the three-probe method is extremely 

sensitive to the presence of zero-adjustment errors of the probes. 

Gao et al. (2002) have shown that the difference between the zero-

readings of the probes introduces a parabolic error term in the 

profile result, which consists of the largest influence source in 

determining straightness error by three points measurement. 

In this work, an automated and dedicated multi-probe measuring 

system is presented. The system is basically composed of an 

industrial robot, specifically arranged displacement sensors and a 

multi-probe error separation mathematical model. A self-calibration 

procedure was developed to minimize the influence of probes zero-

adjustment errors. Experimental tests were performed and proved 

the efficiency of the proposed technique. 

Nomenclature 

G3P = Generalized Three Points method 

k = zero-adjustment error, µm 

L = distance between sensors, mm 

M = total number of measurement runs 

S3P = Sequential Three Points method 

SA, SB, SC = readings of sensors A, B and C, µm 

RP = straightness error of profile, µm 

RR = robot translational error motion, µm 

x, y, z = coordinate system 

Greek Symbols 

δ = displacement due to pitch of scanning device, µm 
θ = pitch error of scanning device, rad 

Subscripts 

A, B, C    sensor index 

i relative to the number of measuring points 

P relative to artefact straightness error 

R relative to robot translational error motion  

Superscripts 

D relative to the contribution of the displacement due to pitch 

E relative to the contribution of the zero-adjustment error 

h relative to the number of reference lines for the straightness 

error of the artefact considered in the error model 

j relative to the number of measurement runs 

k relative to the number of robot translational error motion 

values considered in the error model 

P relative to the contribution of the artefact straightness error 

R relative to the contribution of the robot translational error 

motion 

s relative to the number of reference lines for the robot 

translational error motion considered in the error model 

t relative to the number of displacements due to pitch of 

scanning device considered in the error model 

v relative to the number of zero-adjustment error values 

considered in the error model 

The Utilization of Robots as Inspection Devices 

During the selection of a measuring system, several factors must 

be considered, for instance, the verified geometry, the required 

tolerance levels, the number of parts to be tested, the degree of 

complexity of parts and the ability of reconfiguration to meet 

possible modifications in the production line. Figure 1 indicates that 

a measuring system can be determined taking into account the lot 

size and the variety of parts to be verified (Hocken, 1995). 

Coordinate measuring machines (CMM) are perhaps the most 

flexible measuring instruments, presenting the ability of measuring 

Cartesian coordinates of spatial points by means of scales and, 

frequently, a touch-trigger type probe, which can be replaced by 

laser scanning probes or CCD cameras. Current models present 

resolution of about 0.1 mm. Complex geometry workpieces can be 

evaluated rather straightforwardly with CMMs. Considering the 

case of large lots of relatively simple geometry parts, dedicated and 

automated measuring instruments are potentially more efficient, 

enabling inspection of the full lot. Grant (1995) considers that total 

inspection is undesirable, since it would indicate that the process is 

prone to errors. However, Boillot and Uota (2002) state that the aim 

of total inspection is not to compensate for poor process, but rather 

to identify very defective parts. Moreover, total inspection can be 

used to classify and separate parts for selective assembly. In this 

case, a CMM is not so effective as an automated and dedicated 

measuring system. 
 

 

Figure 1. Selection of measuring system (Hocken in Bosch, 1995). 

 

Additional aspects can yet be considered in the implementation 

of a robotic measuring system: firstly, industries aim the increase of 

product quality by enhancing manufacturing process control. This 

action is simpler when using automatic systems due to the exclusion 

of human effects. Another factor to be considered is the velocity at 

the execution of a task. As long as the robot can provide velocity, 

larger productivity can be attained. 

About the utilization of articulated arms, Hoshizaki and Bopp 

(1990) consider that repeatability and accuracy of this configuration 

are not good enough to allow the realization of precision tasks. As a 

matter of fact, robot accuracy, which is rarely quoted on 

manufacturers booklets, can sometimes be several orders of 

magnitude worse than positioning repeatability (Young e Pickin, 

2000). 

Kato, Sone and Nomura (1991) presented a measuring system 

that consisted of a robot and one displacement sensor for evaluation 

of roundness errors on cross sections of cylindrical parts. The robot 

was employed to place the transducer around the workpiece. Error 

value was calculated by means of the three points method for 

circularity (Mitsui, 1982), yielding to satisfactory results. 

In the field of non-contact measurement, several industries have 

been employing laser scanning devices on the wrist of robots in 

order to accomplish so said “more precise” measurements. 

However, measurement accuracy is limited by the accuracy of the 

robot itself, which is around 100 mm. Thus, using robot position as 

reference must be carefully planned and only done when convenient. 

Some examples of this type of application, which consider low 

precision tasks, are described next: Lee and Park (2000) developed 

algorithms for inspection of free-form shape workpieces by laser 

scanning. Boillot e Uota (2002) used an industrial robot and a laser 

scanning device to verify weldments on truck frames. Picard (2002) 
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developed an algorithm to evaluate and correct the positioning of 

vehicle parts to be assembled by robots. 

It can be observed that robotic measuring systems are almost 

always directed to the verification of large tolerances due to the 

absence of an adequate reference to measurements. In order to make 

measurements independent from the robot accuracy, the application 

of some error separation technique becomes necessary, since 

artefact errors can be decoupled from the motion errors of the robot 

system. 

Multi-Probe Error Separation Methods 

All multi-probe error separation techniques require the 

manipulation of a selected degree-of-freedom of the system other 

than the sensitive direction of the sensor. This operation changes the 

phase of one component of the error (Evans, Hocken and Estler, 

1996). The Two-Probe Method, which provides separation of probe 

motion straightness error from artefact straightness error, is the 

simplest multi-probe method (Tanaka et al. 1981; Gao and Kiyono, 

1996). Two displacement sensors are moved along the measuring 

path, scanning the artefact in regular intervals that correspond to the 

distance between probes. The two-probe method, however, is unable 

to eliminate possible deleterious influences from rotational 

movements of the probing device. 

The Three-Probe Method, described next, is capable of 

eliminating the influence of rotational and translational errors of the 

probing system, allowing detection of part straightness profile free 

from the deterioration caused by the measuring system. Figure 2 

shows the operational principle of the three-probe method. 
 

 

Figure 2. Three-Point Method operational principle schematic. 

 

The readings of sensors A, B and C, represented by SA, SB and 

SC, can be expressed as a function of system errors at position i: Let 

RPi be the straightness error of the artefact to be measured, RRi the 

probing system translational error motion and δi and – δi respective 
displacement at probes A and C tips due to pitch of the probing 

device on the scanning direction. When the scanning step is equal to 

the distance between sensors (L), the three-probe method is referred 

to as the S3P method (Sequential Three Points) (Tanaka and Sato, 

1986). Otherwise, when scanning step is smaller than L, the three-

probe method is referred to as the G3P method (Generalized Three 

Points) (Gao and Kiyono, 1997). In the absence of probe calibration 

errors, both three-point methods allow perfect identification of 

artefact profile from the collected data. In the S3P method, sensor 

readings can be expressed as: 
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The main error source in the three-probe method consists of the 

impossibility of providing a global reference for the probes zero-

value. The presence of zero-adjustment errors originates a parabolic 

error term in the profile result of the measured artefact. In addition, 

probe position cannot be easily adjusted even with the help of a 

sufficiently accurate reference flat surface (Gao et al., 2002). Figure 

3 illustrates the zero-adjustment errors of the three sensors in the 

probing device. Constants kA, kB and kC correspond to the adjustment 

errors over the readings of sensors A, B and C, respectively. 

The proposed multi-probe technique for straightness 

measurement is described next. As well as the S3P method, the 

proposed technique requires that experimental data is collected at 

steps that correspond to the distance between sensors. 
 

 

Figure 3. Zero-adjustment errors. 

 

A mathematical model can be developed from the sensors output 

signals if the hypothesis that four error sources are superimposed at 

the output is considered: 1) errors due to workpiece straightness 

profile; 2) errors due to probing device translational error motion 

along the measuring path, 3) errors due to probing device pitch and 

4) zero-adjustment errors. Hence, each sensor output can be 

expressed as the superposition of the four referred error sources: 
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where: 

iii CBA S,S,S  are the ith readings of sensors A, B and C, 

respectively; 
P
C

P
B

P
A iii

S,S,S  are the workpiece straightness errors at the ith 

measuring point, detected by sensors A, B and C, respectively;  
R
C

R
B

R
A iii

S,S,S  are the translational error motion of the industrial 

robot, which is the base of the measuring system, at the ith 

measuring point, on sensors A, B and C, respectively; 
D
C

D
B

D
A iii

S,S,S  are the contributions due probing device pitch at the 

ith measuring point, on sensors A, B and C, respectively; 
E
C

E
B

E
A iii

S,S,S  are the contributions due to the zero-adjustment 

errors at the ith measuring point, on sensors A, B and C, respectively; 
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i indicates a measuring point; 

N is the total number of measurements. 

An additional hypothesis, which is implicit in Eq.(2), is that 

each contribution can be individually analysed, i.e., one error source 

does not alter the behaviour of the others, within reasonable limits 

that do not affect the overall desired accuracy level. As a 

consequence, each term of Eq.(2) is independent and can be 

separately developed. It must be observed that there is no restriction 

as to amplitude and relative proportion among all contributions. 

Errors Due to Workpiece Profile 

The portion of the probes output signals due to workpiece shape 

and misalignment at the ith measured value can be defined by: 
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where: 

ix  is the coordinate that represents the ith position along the 

workpiece profile; 

iPR  is the workpiece straightness error at the ith measuring 

position; 

PCA  and PA  are the parameters of the reference line (with 

relation to a reference system) of the workpiece profile. 

The system shown in Eq.(3) can be simplified given the discrete 

character of sensor positioning on the profile and also that scanning 

step is constant and equal to the distance between sensors. A change 

of coordinates can be made so that index i is used instead of position 

x, which yields: 
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A similar model can be developed to cover step lengths that are 

different (especially smaller) than the distance between sensors, but 

it will not be considered in this work. 

Errors Due to Robot Translational Motion along the 

Measuring Path 

The contribution of the robot translational error motion along 

the measuring path upon sensor readings can be expressed in the 

same way as the workpiece profile: 
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where: 

iRR  is the translational error motion of the industrial robot at the ith 

measuring position; 

RCA  and RA  are the robot translational error motion reference 

line parameters. 

Again, the system shown in Eq.(5) can be simplified by a 

change of coordinates: 
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The translational error motion affects all three sensors on a 

given measuring point by the same amount, i.e., R
C

R
B

R
A iii

SSS == . 

Errors Due to Probing Device Pitch along the Measuring 

Path 

The error produced by the scanning device pitch during the 

measuring procedure can be expressed as follows: 
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where iδ  corresponds to the probing device angular error at the ith 

measuring position, which is given by: 
 

Lii ⋅=θδ  (8) 

 

where: 

iθ is the probing device pitch error in radians; 

L is the distance between sensors. 

In this case, it is supposed that the rotation happens around the 

central sensor. Thus, the angular error produces an increase in D
Ai

S  

and a corresponding decrease of same value in D
Ci
S , whilst D

Bi
S  

remains unchanged. 

Zero-Adjustment Errors and the Proposed Model 

The most influent error source on the three-point method is the 

lack of a single reference for all sensors in the scanning device. 

A calibration procedure could be carried out using a reference 

flat surface in order to obtain an ideal alignment among sensors, as 

shown in Fig. 4(a). However, minimal discrepancies between the 

zero values of the three sensors (with relation to an ideal flat 

surface) produce a large deleterious parabolic error term on the final 

profile result (Gao et al., 2002). 

The zero-adjustment error can be expressed in several ways, 

depending on how the reference is chosen. It can be reduced to one 

adjustment component (calibration constant kB) on the central sensor 

if sensors A and C zero-readings were taken as reference points, as 

illustrated in Fig. 4(b). 
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 (a) (b) 

Figure 4. Ideal alignment (a) and zero-adjustment error, kB (b) 

 

The choice of sensors A and C zero-readings as reference also 

settles the orientation of a coordinate system. Such orientation is 

described by two orthogonal axes. X axis is defined by the line 

intercepting the reference points at sensors A and C. Z axis is 

defined by a line that is normal to axis X. The system origin 

coincides with the first point of the workpiece straightness error, 

which is identically equal to zero as imposed by the model. 

Therefore, the contribution due to zero-adjustment errors can be 

expressed as: 
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where kB is a constant that describes the zero-adjustment error of the 

central sensor B with relation to a reference system originated from 

the zero-readings of sensors A and C. Next, the proposed coordinate 

system will be used to define the error model. Substituting Eqs.(4), 

(6), (7) and (9) in Eq. (2) yields: 
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Considering a data set of N sensor readings, the following 

system of equations can be derived: 
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The dashed lines in the system in Eq.(11) distinguish the 

equations written at a common measuring position on the 

workpiece. Eq.(11) can be rearranged gathering equations 

containing the same straightness error terms: 
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Again, the system above can be rewritten so as to gather the 

equations whose readings were taken by the same sensor.  
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An analysis of the system depicted in Eq.(13) reveals the 

number of equations and unknowns: 

The number of unknowns is equal to 3N+7, which are detailed 

below: 

0PR to
1+NPR → N+2 unknowns; 

1RR to 
NRR → N unknowns; 

,CAP ,AP ,CAR RA and Bk → 5 unknowns; 

1δ to Nδ → N unknowns; 

The number of equations is equal to 3N, where N is the total 

number of measured points. Therefore, the system is undetermined. 

Hence, it is impossible to find a solution for the system shown in 

Eq.(13) by means of conventional numerical methods. A more 

powerful and specific numerical technique is required to provide a 

satisfactory solution. Techniques such as orthonormal-triangular 

decomposition (QR) or singular value decomposition (SVD) can be 

applied. 

There are basically two ways of generating a larger number of 

equations. The first one would require the use of more than three 

sensors. The second one, which will be presented further, relies on 

the inclusion of experimental data from various runs in a single 

system. Since experimental data differ from run to run, such system 

is made up of linearly independent equations, which can be solved. 

The proposed methodology, which represents an innovative 

approach regarding traditional multi-probe error separation methods, 

is presented next. 
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Data Redundancy and Numerical Solution of the Model 

A mathematical model that comprises data sets from M runs can 

be derived from the system shown in Eq.(13) simply by putting 

together additional equations that were generated by the new data 

sets: 
 

( )[ ] ( )[ ]

[ ] ( )[ ]

( )[ ] ( )[ ]
M,,,j

NACARNACARS

ACARACARS

ACARACARS

ACARACARS

CARACARS

kNACARNACARS

kACARACARS

kACARACARS

kACARACARS

kCARACARS

NACARNACARS

ACARACARS

ACARACARS

ACARACARS

CARCARS

j
N

j
R

j
R

j
NR

j
P

j
P

j
P

j
C

jj
R

j
R

j
R

j
P

j
P

j
P

j
C

jj
R

j
R

j
R

j
P

j
P

j
P

j
C

jj
R

j
R

j
R

j
P

j
P

j
P

j
C

jj
R

j
R

j
P

j
P

j
P

j
C

j
B

j
R

j
R

j
R

j
P

j
P

j
P

j
B

j
B

j
R

j
R

j
R

j
P

j
P

j
P

j
B

j
B

j
R

j
R

j
R

j
P

j
P

j
P

j
B

j
B

j
R

j
R

j
R

j
P

j
P

j
P

j
B

j
B

j
R

j
R

j
P

j
P

j
P

j
B

j
N

j
R

j
R

j
NR

j
P

j
P

j
P

j
A

jj
R

j
R

j
R

j
P

j
P

j
P

j
A

jj
R

j
R

j
R

j
P

j
P

j
P

j
A

jj
R

j
R

j
R

j
P

j
P

j
P

j
A

jj
R

j
R

j
P

j
P

j
A

NN

NNN

NN

K

M

M

M

21

11

35

24

3

2

1

34

23

2

11

33

22

1

54

43

232

121

444

333

222

111

1

34

23

212

101

44

33

2

1

44

33

2

1

=

































+−++++⋅++=

++++++=

++++++=

++++++=

+++++=

+−⋅+++⋅++=

++++++=

++++++=

++++++=

+++++=

−−+++−⋅++=

−+++++=

−+++++=

−+++++=

−+++=

+

−

δ

δ
δ

δ
δ

δ

δ
δ

δ
δ

 (14) 

 

where index j designates the run which a given group of equations 

and respective parameters belong to. 

The system shown in Eq.(14) presents M(3N) equations and 

M(3N+7) unknowns, i.e., both the number of equations and 

unknowns were increased by the same proportion with relation to 

the system in Eq.(13). Therefore, the system in Eq.(14) can not be 

solved by traditional numerical methods, either. However, it is 

possible to reduce the number of unknowns by assuming that the 

test conditions remain unaltered during the whole measuring 

procedure, hence the straightness error of the workpiece must be the 

same at any run and thus the number of unknowns is reduced by 

(M–1)*(N+2). The following system is then obtained: 
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where: 

h = 0 or h = 1 or h=M is the number of reference lines for the 

workpiece profile; 

k = 1 or k = M is the number of measuring system translational error 

motion sets; 

s = 0 or s = 1 or s = M is the number of reference lines for the robot 

error motion; 

t = 0 or t = 1 or t = M is the number of scanning device angular error 

sets; 

v = 0 or v = 1 or v = M is the number of zero-adjustment errors of 

the central sensor. 

The system shown in Eq.(15) comprises an adjustable error 

model. The indices h, k, s, t and v can be appropriately chosen to set 

the error model to meet specific measuring conditions. Considering 

the determination of only one workpiece profile using data from 

multiple runs, the system in Eq.(15) becomes overdetermined and 

can be solved by means of the Least Squares fitting method. 

The system shown in Eq.(15) can be rewritten in matrix form: 
 

{ } [ ]{ }PCS ⋅=  (16) 

 

where: 

{ }S  is a column vector composed by the readings of the three 

sensors, detailed below; 
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Each element { } jAS  is defined as: 
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and 
j
iAS  is the ith reading of sensor A at the jth run. 

{ }P  is a column vector composed by the system parameters to 

be determined ( )BRRRPPP k,,A,CA,R,A,CA,R 1δ ; 
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where: 
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and [ ]C  is the coefficients matrix of parameters { }P . The 

coefficients matrix is rectangular and is defined by the system 

depicted in Eq.(15). 

After the system in Eq.(16) is obtained, a solution is needed for 

the sought parameters. In this case, however, a traditional solution 

of the model presents some drawbacks. An analysis of the system 

reveals that matrix [ ]C  is rectangular, ill-conditioned and rank-

deficient. Thus, obtaining a satisfactory solution for the modelled 
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system by means of conventional techniques is not feasible due to 

the above-mentioned limitations of matrix [ ]C . In this work, the 

orthogonal-triangular decomposition of matrices (QR) is employed 

to solve Eq.(16). 

The QR decomposition, which is pre-programmed in numerical 

routines package MATLAB®, is appropriate for providing solution 

for rectangular sparse systems. The proposed approach differs from 

previous studies by its low susceptibility to environmental variations 

and its effectiveness on determining workpiece profile, even when 

the system errors are one order of magnitude greater than workpiece 

profile. 

The Measuring System and Experimental Results 

The Automated and Dedicated Measuring System (ADMsys) 

was developed around an ABB IRB140 six-axis articulated 

industrial robot. The robotic arm can handle up to 5 kg payload with 

810 mm reach, which is plenty enough for the application. The 

manipulator control system is provided with analogue-digital (A/D) 

conversion circuit board for communication with peripheral 

equipment and signal acquisition/processing algorithms. 

A probing device for straightness measurement was built to hold 

three specifically arranged LVDT type sensors. The distance 

between consecutive sensors is 18 mm, which corresponds to the 

measuring step, so as to match the error model. Measuring force is 

equal to 0.63 N ± 25% and uncertainty is equal to ±1 µm. 

The probing device mechanical set-up only admits a fairly 

reasonable adjustment of sensors positioning, in such a way that all 

sensors present simultaneously enough operating range to enable 

measurement. The previously described error model shall 

compensate the remaining zero-adjustment error. 

All three sensors were connected to a TESA electronic 

measuring column for signal demodulation. The measuring column 

can accommodate up to four sensors and provides independent 

analogue output signals, which are connected to the A/D acquisition 

board input channels by means of a parallel cable. 

Figure 5 shows the measuring system. 
 

 

Figure 5. The Automated and Dedicated Measuring System. 

 

The 12-bit A/D acquisition board total operating range is 

600 µm, with resolution of approximately 0.15 µm per A/D level, 

which is almost equal to the resolution of the sensor itself (0.1 µm, 

as stated by the manufacturer). Since in dimensional metrology it is 

frequently accepted that the repeatability of an instrument 

corresponds to ten times its resolution, it is expected that ADMsys is 

able to produce satisfactory results at a limit of about 1.5 µm. When 

considered all surrounding imperfections, such as vibration from the 

manipulator servomotors over sensors and the table where the whole 

system is placed, as well as temperature variation over sensor 

readings, the system global uncertainty is approximately 3 µm. 

One granite straightedge plus two steel artefacts were employed 

at the experimental tests. Both steel artefacts had been machined to 

present intentionally pronounced and known straightness errors. The 

measuring procedure was started with the robot activation via 

AD/DA interface in order to place the probing system at the 

measuring path starting point on the artefact. Subsequently, the 

robot was moved along the artefact longitudinal direction at 18 mm 

steps and sensor readings were collected at each step. All artefacts 

were measured at 23 points along the measuring path and a total of 

five forward and five backward runs were accomplished. Further 

information on operational aspects of the measuring system can be 

found in Paziani (2005). 

As stated before, the error separation model is configurable to 

suit a diverse number of measurement parameters. In this work, two 

different model configurations were employed. The first one, 

entitled the Complete Model, considers that all parameters of 

Eq.(15) vary from run to run. In other words, the complete model 

considers that parameters indexed by h, k, s, t and v of Eq.(15), i.e., 

are different at each run. On the other hand, in the entitled 

Simplified Model, the parameter given by h is considered constant, 

i.e., the workpiece profile reference line does not vary during the 

whole measuring process. Next, experimental results from the 

application of both models are presented. 

A Mitutoyo granite straightedge was measured with the purpose 

of testing the behaviour of the measuring system at its uncertainty 

limits. To begin with, the straightedge was measured by means of 

the reversal method, which yielded a straightness error RP value 

equal to 1.5 ± 1.0 µm (2σ). Since accuracy level of the employed 

industrial robot lies around 100µm, the straightedge can be taken as 

a reference for the system.  

Next, the granite straightedge was measured by the proposed 

system. The solution using the complete model yielded a 

straightness error of 3.9 ± 8.8 µm (2σ). The application of the 
simplified model to the measurement of the granite straightedge 

produced a straightness error equal to 3.6 ± 8.6 µm (2σ). The 
difference between measurements by ADMsys and reversal can be 

ascribed to the fact that the measured quantity leans too close to the 

uncertainty of the proposed system, which is approximately 3 µm. 

In such situations, the measuring system is prone to error sources 

that were not considered in the models, as vibration, for instance. 

Figures 6 and 7 show the measurements of the granite straightedge 

using the ADMsys complete model and simplified model, 

respectively, compared to the reversal method. 
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Figure 6. Straightness error of granite straightedge – Complete Model. 
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Figure 7. Straightness error of granite straightedge – Simplified Model. 
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Figure 8 below shows the artefact No 1 straightness error, which 

was obtained by means of the complete model, compared to the 

reversal method: 
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Figure 8. Straightness error of artefact No 1 – Complete Model. 

 

The measurement of artefact No 1 straightness error RP by the 

complete model yielded 37.7 ± 6.6 µm (2σ). In contrast, the reversal 
method yielded 37.1 ± 2.0 µm (2σ). For aesthetics reasons, standard 
deviation for the reversal method is not shown in the graph of Fig. 8. 

The small difference between the maximum values of the presented 

errors is equal to 0.6 µm, which corresponds to a percent error of 

1.59%, and indicates the satisfactory character of the decoupling 

process. Average errors are equal to 23.2 µm (ADMsys) and 

23.0 µm (reversal) and emphasize the effectiveness of the proposed 

method. The overall decoupling result of RP can be considered good. 

The straightness error of artefact No 1 by means of the 

simplified model is presented in Fig. 9, below: 
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Figure 9. Straightness error of artefact No 1 – Simplified Model. 

 

Artefact No 1 straightness error RP, using ADMsys simplified 

model, is equal to 38.1 ± 10.5 µm (2σ), whilst the reversal method 

yielded 37.1 ± 2.0 µm (2σ). The difference between maximum 

errors is equal to 1 µm, which corresponds to a percent error of 

2.6% and indicates that the separation process is satisfactory. The 

maximum difference between profiles (5.8 µm) is larger than the 

obtained with the complete model (2.5 µm), but the small difference 

between average errors, nearly 1.5 µm, suggests good repeatability. 

Average straightness errors are 24.5 µm and 23.0 µm for ADMsys 

and reversal method, respectively. 

Figure 10 below shows the measurement results of artefact No 2. 

The profile straightness error RP by means of the complete model is 

equal to 111.4 ± 1.5 µm (2σ), whereas the reversal method yielded 

115.9 ± 4.0 µm (2σ). The difference between maximum errors is 

4.5 µm, which is equivalent to a percent error of 3.9%. 
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Figure 10. Straightness error of artefact No 2 – Complete Model. 

In this case, good correspondence between profile shapes can be 

observed. The improved shape matching may be credited to the fact 

that artefact No 2 straightness error magnitude is about the same as 

robot translational error motion (approximately 140 µm, not shown), 

allowing better numerical solution of the model. 

The results for artefact No 2 error decoupling are presented next. 
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Figure 11. Straightness error of artefact No 2 – Simplified Model. 

 

As a result of the application of the simplified measuring model, 

profile straightness error of artefact No 2, RP, is equal to 113.9 ± 

8.2 µm (2σ), while the reversal method yielded 115.9 ± 4.0 µm 

(2σ). Percent error between curves of Fig. 11 is equal to 1.7%, 

which corresponds to less than half the percent error obtained for 

artefact No 2 using the complete model and reveals the adequacy of 

the adjustable error model to suit different measuring conditions. 

Average errors are 54.7 µm and 54.9 µm, obtained by the 

proposed system and reversal method, respectively, which 

demonstrate high-quality decoupling ability. 

Conclusions 

In this work, an Automated and Dedicated Measuring system 

(ADMsys) was developed aiming at the measurement of 

straightness errors of mechanical parts. 

An industrial robot that operates specifically arranged 

displacement sensors comprises the proposed system. An error 

separation technique was employed to decouple part error from 

errors induced by the measuring system itself. An innovative error 

model, which takes into consideration the zero-adjustment errors of 

sensors, was developed and provided profile identification in one 

operation only. 

Since the error model demands three equally spaced sensors, a 

probing device was built accordingly. Three LVDT type sensors 

were employed and provided adequate resolution to meet most 

common machining processes precision requirements. 

An electronic interface was implemented to acquire 

displacement data and to perform a communication path between 

the robot control system and a microcomputer in order to activate 

programmed robot movements. The interface comprises an AD/DA 

acquisition board, object-oriented software and electric connections. 

The error separation algorithm was developed using MATLAB 

programming environment. The solution of an ill-conditioned linear 

system of equations was accomplished by means of the application 

of QR decomposition, which allowed the solution of the sparse least 

squares problem. 

Experimental tests were performed to verify the efficiency of the 

error separation algorithms. The tests consisted of measuring granite 

straightedge, as well as two steel artefacts presenting intentionally 

machined straightness errors. The results obtained from the 

proposed system were compared to the ones provided by the 

reversal method upon the same artefacts. 

The following essential points can be highlighted: 

• The proposed system is mechanical and electronically stable 

and can possibly be employed at industrial environments; 
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• Experimental tests with the proposed system were completed 

much faster than with the application of the reversal method. 

The automated straightness measurement took about 12 

minutes, whilst the measurement by the reversal technique 

took nearly 30 minutes; 

• ADMsys set-up cost is 75% the value of a small size CNC 

coordinate measuring machine. In industries with previously 

installed robots, cost is reduced by 90%, if the same model 

used in this work is considered. 

• ADMsys eliminates the influence of the human operator upon 

results and besides, allows full-lot inspection aiming selective 

assembly; 

• An adjustable error model was developed so as to suit 

different measurement conditions; 

• The reference coordinate system proposed to the error model 

allowed artefact straightness error decoupling so that the 

deleterious influence of the zero-adjustment error of sensor B 

was minimized; 

• The solution of a matrix error model by means of QR 

decomposition provided the results of all variables in one 

operation only and does not make use of substitution in other 

equations of the system, nor performs numerical integration 

and/or differentiation. Therefore, the solution is free from both 

cumulative errors along the measuring path and large 

numerical processing errors. 
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