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A Study of Convective Flux Schemes for
Aerospace Flows
This paper presents the effects of some convective flux computation schemes on boundary
layer and shocked flow solutions. Second-order accurate centered and upwind convective
flux computation schemes are discussed. The centered Jameson scheme, plus explicitly
added artificial dissipation terms are considered. Three artificial dissipation models,
namely a scalar and a matrix version of a switched model, and the CUSP scheme are
available. Some implementation options regarding these methods are proposed and
addressed in the paper. For the upwind option, the Roe flux-difference splitting scheme is
used. The CUSP and Roe schemes require property reconstructions toachieve second-
order accuracy in space. A multidimensional limited MUSCL interpolation method is used
to perform property reconstruction. Extended multidimensional limiter formulation and
implementation are here proposed and verified. Theoretical flow solutions are used in
order to provide a representative testbed for the current study. It is observed that explicitly
added artificial dissipation terms of the centered scheme may nonphysically modify the
numerical solution, whereas upwind schemes seem to better representthe flow structure.
Keywords: CFD, numerical flux schemes, compressible viscous flows, compressible
inviscid flows

Introduction

The paper reports recent improvements on a finite volume method
for 3-D unstructured meshes developed by the CFD group at Instituto
de Aerońautica e Espaço (IAE). Flow phenomena typical of aerospace
applications are usually associated with transonic and supersonic
shock waves and high-Reynolds number boundary layers. The correct
computation of such flow phenomena is of paramount importance
for the representativeness of numerical simulations for high Mach
and Reynolds-number flight conditions, since they are decisive for
the final aerodynamic data important for engineering purposes. The
numerical modeling of these flow features, through flux computation
schemes, must be representative of the physics of these phenomena,
as well as numerically adequate in terms of robustness and costs. In
light of that, the paper addresses several flux computation schemes
suitable for the typical aerospace applications of IAE.

Second-order accurate centered- (Jameson, Schmidt and Turkel,
1981) and upwind flux-difference splitting (Roe, 1981) schemes are
considered here. In the centered case, explicit addition of artificial
dissipation terms is required to control nonlinear instabilities in the
numerical solution. For computation of these terms in the current
work, both the scalar and the matrix versions of a switched second-
and fourth-difference scheme are considered (Mavriplis, 1990; Turkel
and Vatsa, 1994). The Convective-Upwind Split-Pressure (CUSP)
artificial dissipation model (Jameson, 1995a; Jameson, 1995b) is
also considered in the centered scheme case. Some implementation
options are proposed and discussed in the paper, in terms of
computational effort and numerical solution quality.

The CUSP and the Roe upwind schemes require special treatment
of properties in the control-volume faces to achieve 2nd-order
accuracy in space. The multidimensional, limited, MUSCL (van
Leer, 1979) reconstruction scheme of Barth and Jespersen (1989)
is adopted here. This limiter formulation is here addressed, and
an extension for this formulation is proposed and assessed in the
paper. A computationally cheap and robust integration of the limited
MUSCL-reconstructed schemes is also proposed, which allows for
large computational resource savings while maintaining the expected
level of accuracy.
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Inviscid flows for a 1-D shock tube and the Boeing A4
supercritical airfoil (Nishimura, 1992) configurations are considered
in order to address the flux computation schemes for shock wave
capturing. A mesh refinement study is performed for the airfoil case
in order to assess the dependency of the numerical schemes with grid
density and topology.

Subsonic laminar flows over a flat plate address the effects of the
numerical flux schemes in boundary layer flows. It is known that
flux schemes may have influence in such flow solutions, as reported
by Swanson, Radespiel and Turkel (1998), Zingg et al. (1999),
Allmaras (2002), and Bigarella (2002). The present group attributes
such problems to nonphysical behavior of centered flux schemes,
more precisely in the explicitly added artificial dissipation model,
as reported in Bigarella, Moreira and Azevedo (2004). The present
paper shows conclusive results that corroborate this assertive. Mesh
density and topology are also addressed for such test case. Generally,
improved accuracy is obtained with the new flux computation
schemes.

This section presents the motivation for the current effort. The
next section presents a brief discussion on the theoretical and
numerical formulations embedded in the current numerical tool.
Detailed discussion on the centered schemes here considered is
performed in the third section. Similar discussion is performed for the
upwind and the reconstruction schemes in the fourth section. The fifth
section presents the discussions on the obtained numerical results.
The last section closes the work with concluding remarks from the
current effort.

Nomenclature

a = speed of sound
C = convective operator
CFL = Courant-Friedrichs-Lewy number
Cp = pressure coefficient
D = artificial dissipation operator
d = artificial dissipation term
e = total energy per unit volume
ei = internal energy
n f = number of faces that compose a control volume
p = static pressure
Pe = inviscid flux vector
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Pv = viscous flux vector
Pr = Prandtl number
q = heat flux vector
Q = vector of conserved properties
Re = Reynolds number
S= |S| = face area
u, v, w = cartesian velocity components
v = cartesian velocity vector
V = viscous operator
x, y, z = cartesian coordinates

Greek Symbols

α = angle of attack
∆t = time step
Φ = gradient ratio for limiter computation
γ = ratio of specific heats
µ = dynamic viscosity coefficient
ψ = control volume limiter
ρ = density
τ = viscous stress tensor

Subscripts

∞ = freestream property
i,m = grid control volume indices
k = face index
ℓ = laminar property
L,R = interface left and right properties
t = turbulent property

Superscripts

∗ = dimensional property
n = time instant

Theoretical and Numerical Formulations

The flows of interest in the present context are modeled by the 3-D
compressible Reynolds-averaged Navier-Stokes (RANS) equations,
written in dimensionless form and assuming a perfect gas, as

∂Q
∂ t

+∇ · (Pe−Pv) = 0 ,

Q =
[
ρ ρu ρv ρw e

]T
. (1)

The inviscid and viscous flux vectors are given as

Pe =





ρv
ρuv+ pı̂x
ρvv+ pı̂y
ρwv+ pı̂z
(e+ p)v





, Pv =
1
Re





0
τxi ı̂i
τyi ı̂i
τzi ı̂i
βi ı̂i





. (2)

The shear-stress tensor is defined by

τi j = µℓ

[(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
∂um

∂xm
δi j

]
, (3)

where ui represents the Cartesian velocity components, andxi
represents the Cartesian coordinates. The viscous force work and heat

transfer term,βi , is defined asβi = τi j u j −qi , where the heat transfer
component is defined as

q j =−γ
µℓ

Pr
∂ (ei)

∂x j
. (4)

The molecular dynamic viscosity coefficient is computed by the
Sutherland law (Anderson, 1991). The dimensionless pressure can
be calculated from the perfect gas equation of state.

This set of equations is solved according to a finite volume
formulation (Scalabrin, 2002). Flow equations are integrated in
time by a fully explicit, 2nd-order accurate, 5-stage, Runge-Kutta
time stepping scheme. An agglomeration full-multigrid scheme
(FMG) is included in order to achieve better convergence rates for
the simulations. More details on the theoretical and numerical
formulations can be found in Bigarella, Basso and Azevedo (2004),
and Bigarella and Azevedo (2005).

Centered Spatial Discretization Schemes

Centered schemes require the explicit addition of artificial
dissipation terms in order to control nonlinear instabilities that
may arise in the flow simulation. Several models to compute the
artificial terms are included in the present numerical formulation. A
description of the available models is presented in the forthcoming
subsections.

Mavriplis scalar switched model (MAVR)

The centered spatial discretization of the convective fluxes,Ci , in
this scheme is proposed by Jameson, Schmidt and Turkel (1981). The
convective operator is calculated as the sum of the inviscid fluxes on
the faces of thei-th volume as

Ci =
n f

∑
k=1

Pe(Qk) ·Sk , Qk =
1
2
(Qi +Qm) , (5)

whereQi andQm are the conserved properties in thei-th andm-th
cells, respectively, that share thek-th face.

The artificial dissipation operator is built by a blend of undivided
Laplacian and bi-harmonic operators. In regions of high property
gradients, the bi-harmonic operator is turned off in order to avoid
oscillations. In smooth regions, the undivided Laplacian operator
is turned off in order to maintain 2nd order accuracy. A numerical
pressure sensor is responsible for this switching between the
operators. The expression for the artificial dissipation operator is
given by

Di =
nb

∑
k=1

{
1
2
(Am+A i)

[
ǫ2 (Qm−Qi)−ǫ4

(
∇2Qm−∇2Qi

)]}
,

(6)

wherem represents the neighbor of thei-th element, attached to the
k-th face, andnb is the total number of neighbors of thei-th control
volume. Furthermore,

∇2Qi =
nb

∑
k=1

[Qm−Qi ] ,

ǫ2 = K2max(νi ,νm) ,

ǫ4 = max(0,K4−ǫ2) , (7)

νi =
∑nb

m=1 |pm− pi |
∑nb

m=1 [pm+ pi ]
.
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In this work, K2 and K4 are assumed equal to 1/4 and 3/256,
respectively, as recommended by Jameson, Schmidt and Turkel
(1981).

The A i matrix coefficient in Eq. (6) is replaced by a scalar
coefficient (Mavriplis, 1988; Mavriplis, 1990) defined as

Ai =
n f

∑
k=1

[|vk ·Sk|+ak |Sk|] . (8)

This formulation is constructed so as to obtain steady state solutions
which are independent of the time step (Azevedo, 1992).

In the multistage Runge-Kutta time integration previously
described, the artificial dissipation operator is calculated only
on the first, third and fifth stages for viscous flow simulations.
For the inviscid calculations, the artificial dissipation operator is
calculated in the first and in the second stages only. This approach
guarantees the accuracy for the numerical solution while reducing
computational costs per iteration (Jameson, Schmidt and Turkel,
1981). Furthermore, the MAVR model has also been integrated into
the multigrid framework. In order to achieve lower computational
costs for the multigrid cycles, only the first order artificial dissipation
model is used in the coarser mesh levels. This operation is achieved
by not computing the bi-harmonic term in Eq. (6) and by setting
ǫ2←ǫ2+ǫ4 in these levels.

Matrix switched model (MATD)

The formulation for the matrix model (MATD) is similar to
the previously described one for the MAVR model, except for the
definition of theA i terms. In this case, the flux Jacobian matrices,
as defined in Turkel and Vatsa (1994), are used instead of the scalar
term inside the summation in Eq. (8). TheA i term, re-interpreted for
the present cell-centered, face-based finite-volume framework, can be
written as

A i =
n f

∑
k=1
|Ak||Sk| , (9)

where

|Ak| = |λ3|I +
[

1
2
(|λ1|+ |λ2|)−|λ3|

](
γ−1

a2
k

E1+E2

)

+
1

2ak
(|λ1|− |λ2|) [E3+(γ−1)E4] . (10)

In this equation, the following definitions in thek-th face are used:

|λ1| = max(|vn+a|, Vnλ) ,

|λ2| = max(|vn−a|, Vnλ) ,

|λ3| = max(|vn|, Vlλ) , (11)

λ = |vn|+a ,

and thek subscript is dropped in order to avoid overloading the
previous formulation nomenclature. In these definitions,vn is the
normal velocity component, computed asvn = v · n, where the unit
area vector is defined asn=S/|S|. Furthermore, in these expressions,
Vn limits the eigenvalues associated with the nonlinear characteristic
fields whereasVl provides a similar limiter for the linear characteristic
fields. Such limiters are used near stagnation and/or sonic lines,
where the eigenvalues approach zero, in order to avoid zero artificial
dissipation. The values recommended for these limiters by Turkel and

Vatsa (1994),Vn = 0.25 andVl = 0.025, are used in the present effort.
Furthermore,

E1 = RT
1 R2 , E2 = RT

3 R4 ,

E3 = RT
1 R4 , E4 = RT

3 R2 , (12)

where

R1 = {1,u,v,w,H} , R2 =

{
1
2

v ·v,−u,−v,−w,1

}
,

R3 =
{

0,nx,ny,nz,vn
}

, R4 =
{
−vn,nx,ny,nz,0

}
, (13)

andH = (e+ p)/ρ is the total enthalpy. In these definitions, thek-
th subscript, that indicates a variable computed in the face, has been
eliminated in order to avoid overloading the equations with symbols.

In the finite difference context in which the matrix-based artificial
dissipation model is originally presented (Turkel and Vatsa, 1994), its
numerical implementation is very attractive due to the advantageous
form of the|Ak| matrix in terms of vector multiplications, Eqs. (10)
- (13). Written in this way, the final dissipation vector is directly
computed through vector multiplications rather than being necessary
to compute and store the complete matrix coefficient. Thus, in Turkel
and Vatsa (1994), this dissipation model only requires up to 20% more
computational cost per iteration and much less memory overhead,
while providing upwind-like solutions for shock-wave flows.

The artificial dissipation model in the current context is scaled
with the use of integrated coefficients, such as the scalar coefficient
shown in Eq. (8). Therefore, the advantage of having the artificial
dissipation contribution computed directly by the product of the|Ak|
matrix and a difference of conserved properties, which uses the form
given in Eq. (10) by Turkel and Vatsa (1994), is destroyed by the
need to perform the surface integral of the matrix coefficient shown
in Eq. (9). Hence, one has to actually form the|Ak| matrix in the
present finite volume context. This is the straightforward extension
of the scalar option to the matrix one, here termedMATDs f . The
finite difference-like option, namedMATDf d, in which the attractive
form of the scaling matrix is used, can be readily obtained by
replacing the1

2 (Am+A i) coefficient in Eq. (6) by the|Ak||Sk| scaling
matrix. Another option in which the advantageous form of the scaling
matrix is kept while still using an integrated coefficient, though in a
nonconservative fashion, can also be obtained, here termedMATDnc.
This option is given as

Di =

(
nb

∑
k=1
|Sk|
)

nb

∑
k=1

{
|Ak|

[
ǫ2 (Qm−Qi)−ǫ4

(
∇2Qm−∇2Qi

)]}
,

(14)

which means that the matrix coefficient computed in the face is
directly used in the summation, which allows for the use of the faster
vector products, and the surface integral is obtained through the area
of the faces that compose thei-th cell. The three previous matrix-
based artificial dissipation forms are addressed in the present work.

In order to approximate the MATD artificial dissipation terms to
an upwind scheme behavior in the vicinity of shock-wave regions,
the recommended value for theK2 constant isK2 = 1/2 (Turkel
and Vatsa, 1994). Furthermore, it has been observed, during the
application of this method along with the multigrid scheme in highly
stretched grids, that it may be beneficial to increase theK4 value to
K4 = 1/64 (Bigarella and Azevedo, 2005).
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Convective Upwind and Split Pressure Scheme (CUSP)

The Jameson CUSP model (Jameson, 1995a; Jameson, 1995b;
Swanson, Radespiel and Turkel, 1998) is inspired in earlier work on
flux-vector splitting methods. It is based on a splitting of the flux
function into convective and pressure contributions. In some sense,
the pressure terms contribute to the acoustic waves while the velocity
terms contribute to convective waves, which makes it reasonable to
treat these flux terms differently.

Previously, the scalar and matrix-valued artificial dissipation
terms have been constructed considering differentials in the conserved
property arrays. For the CUSP model, the artificial dissipation
terms are, instead, chosen as a linear combination of the conserved
property array and the flux vectors. The second-order accurate, CUSP
model, artificial dissipation term is re-interpreted for the present cell-
centered, face-based finite volume framework as follows:

Di =
n f

∑
k=1

[
1
2
α∗ak|Sk|(QR−QL)+

1
2
β (PeR−PeL) ·Sk

]
, (15)

and

α =

{
|Mn| if |Mn| ≥ǫCUSP

1
2

(
ǫCUSP+

M2
n

ǫCUSP

)
if |Mn|<ǫCUSP

,

β = sign(Mn)min(1,max(0,2|Mn|−1)) , (16)

α = α∗+βMn .

In these equations,Mn = vn/a is the Mach number in the face
normal direction, andǫCUSP is a threshold control value introduced
in order to avoid zero artificial dissipation near stagnation lines. The
L andR subscripts represent reconstructed neighboring properties of
the k-th face. The definitions for such properties is presented in
the forthcoming section which discusses the MUSCL reconstruction
scheme. In the above scheme definitions, thek-th subscript, which
indicates a variable computed in the face, has been eliminated in order
to avoid overloading the equations with symbols. It is important to
remark here that face properties are computed using the Roe average
procedure (Roe, 1981; Swanson, Radespiel and Turkel, 1998).

The centered spatial discretization of the convective fluxes,Ci , in
this scheme, for the present context, is defined as

Ci =
n f

∑
k=1

Pe(Qk) ·Sk , Qk =
1
2
(QL +QR) , (17)

which means that reconstructed properties are also used to build the
convective fluxes in the CUSP scheme, here termedCUSPrec scheme.
This does not seem to be the approach chosen by other CUSP users
(Jameson, 1995a; Jameson, 1995b; Swanson, Radespiel and Turkel,
1998; Zingget al., 1999). In these references, the respective authors
apparently define the convective flux operator similarly to the one
presented in Eq. (5), that is, reconstructed properties are only used
to build the dissipation terms and constant property distribution is
assumed to build the convective terms. This approach is named
CUSPctt in the present context and it is compared to the here proposed
fully reconstructed approach, as defined in Eq. (17).

Upwind Spatial Discretization Scheme

Upwind Roe flux-difference splitting scheme (f ROE)

General definition of the scheme. The upwind discretization in
the present context is performed by the Roe (1981) flux-difference

splitting method. In the present context, the f ROE inviscid numerical
flux in thek-th face can be written as

Pek = Pe(Qk)−
1
2

∣∣∣Ãk

∣∣∣(QR−QL) , Qk =
1
2
(QL +QR) , (18)

where
∣∣∣Ãk

∣∣∣ is the Roe matrix associated with thek-th face normal

direction, defined as

∣∣∣Ã
∣∣∣(QR−QL) =

5

∑
j=1

∣∣λ j
∣∣δ j r j . (19)

The authors observe that this form of computing the central
difference portion of the Roe flux is slightly different from the
standard calculation shown in Roe (1981). In the present case, the
authors are computing the flux of the averaged conserved property
vector, whereas Roe (1981) calculates the average of the fluxes
themselves in the original reference. In the present formulation,|λ j |
represents the magnitude of the eigenvalues associated with the Euler
equations, given as

|Lλ|= diag(|vn| , |vn| , |vn| , |vn+a| , |vn−a|) . (20)

Similarly, r i represents the associated eigenvectors, given by

r1 =
[

nx nxu nxv+nza

nxw−nya nxΘ1+a
(
nzv−nyw

) ]T
,

r2 =
[

ny nyu−nza nyv

nyw+nxa nyΘ1+a(nxw−nzu)
]T

,

r3 =
[

nz nzu+nya nzv−nxa (21)

nzw nzΘ1+a
(
nyu−nxv

) ]T
,

r4 =
[

1 u+nxa v+nya w+nza H+qna
]T

,

r5 =
[

1 u−nxa v−nya w−nza H−qna
]T

,

whereΘ1 = 0.5v · v. Theδ j terms represent the projections of the
property jumps at the interface over the system eigenvectors, defined
as the elements of

Dδ = L
[

∆ρ ∆(ρu) ∆(ρv) ∆(ρw) ∆e
]T

, (22)

where ∆() represents the corresponding property jump at the
interface. Moreover, the left eigenvectors are the rows of theL matrix,
which are defined as

l1 =
[

nx+
nyw−nzv

a −Θ4nx Θ2unx

Θ2vnx+
nz
a Θ2wnx− ny

a −Θ2nx
]

,

l2 =
[

ny+
nzu−nxw

a −Θ4ny Θ2uny− nz
a

Θ2vny Θ2wny+
nx
a −Θ2ny

]
,

l3 =
[

nz+
nxv−nyu

a −Θ4nz Θ2unz+
ny

a

Θ2vnz− nx
a Θ2wnz −Θ2nz

]
, (23)

l4 =
[

Θ3Θ1− qn
2a −Θ3u− nx

2a

−Θ3v− ny

2a −Θ3w− nz
2a Θ3

]
,

l5 =
[

Θ3Θ1+
qn
2a −Θ3u+ nx

2a

−Θ3v+ ny

2a −Θ3w+ nz
2a Θ3

]
,

with Θ2 = (γ− 1)/a2, Θ3 = Θ2/2 andΘ4 = Θ1Θ2. In the above
definitions, thek-th subscript, which indicates a variable computed
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in the face, is eliminated in order to avoid overloading the equations
with symbols.

In the classical form in which the f ROE scheme is presented, such
as in Eq. (18), the underlining argument is the numerical flux concept,
as also found in other upwind scheme examples (Azevedo, Figueira da
Silva and Strauss, 2010; Steger and Warming, 1981). Therefore, each
time the numerical flux is built, the inherent numerical dissipation is
also evaluated. In an explicit Runge-Kutta-type multistage scheme,
this fact means that the Roe matrix defined in Eq. (19) is computed in
all stages. The present authors rather understand the f ROE scheme as
the sum of a centered convective flux, defined as in Eq. (17), and an
upwind-biased numerical dissipation contribution, that is given by

Di =
n f

∑
k=1

1
2

∣∣∣Ãk

∣∣∣(QR−QL) |Sk| . (24)

Therefore, the attractive, cheaper, alternate computation of the
numerical dissipation in the multistage scheme, as already used for
the switched artificial dissipation schemes, can also be extended for
the upwind flux computation. A detailed comparison between the
classical implementation, namedROEcla, and the alternate multistage
option, termedROEalt , is further assessed in the present work. An
analysis of numerical solution quality and computational costs is also
performed.

Roe averaging.Similarly as in the CUSP scheme, properties in the
volume faces are computed using the Roe (1981) average procedure.
The conserved properties in the faces are defined such that the flux
in that face can be represented by a parameter vector, resulting in
P = P(w) and Q = Q(w), wherew is the parameter vector. This
parameter vector is chosen in Roe (1981) as

w =
√
ρ
[

1 u v w H
]T

. (25)

This definition allows the exact solution of the problem proposed
by Roe (1981), in the form of Eq. (19). Conserved properties in thek-
th face are obtained through the previous parameter vector definition,
resulting in

q jk = ρk
w jL +w jR√
ρL +

√
ρR

, ρk =
√
ρLρR , (26)

wherew j is a component of the parameter vector,w, and q j is a
component of the conserved property vector,Q.

Stability and robustness enhancement. Similarly to the MATD
artificial dissipation scheme, the eigenvalues for the Roe scheme, Eq.
(20), can be clipped to avoid zero artificial dissipation near stagnation
points or sonic speed regions. In the Roe scheme case, the eigenvalues
are smoothly clipped to theǫROE threshold value such as

Mλ j
=





Mλ j
if Mλ j

≥ǫROE ,

1
2

(
ǫROE+

M2
λ j

ǫROE

)
if Mλ j

<ǫROE ,
(27)

with Mλ j
= |λ j |/a. The threshold value is entered by the user, and it

is usually set aroundǫROE≈ 0.05. For more complex geometries,
mainly with bad cells in the mesh, robustness is enhanced with
ǫROE≈ 0.15.

MUSCL reconstruction

To achieve 2nd order accuracy in space for the CUSP and f ROE
schemes, linear distributions of properties are assumed at each cell
to compute the left and right states in the face. Such states are
represented by theL andR subscripts, respectively, in the CUSP and
f ROE definitions.

The linear reconstruction of properties is achieved through the van
Leer (1979) MUSCL scheme, in which the property at the interface is
obtained through a limited extrapolation using the cell properties and
their gradients. In order to perform such reconstruction at any point
inside the control cell, the following expression is used for a generic
element,q, of the conserved variable vector,Q, in Eq. (1),

q(x,y,z) = qi +∇q·~r , (28)

where(x,y,z) is a generic point in thei-th cell;qi is the discrete value
of the generic propertyq in the i-th cell, which is attributed to the cell
centroid;∇q is the gradient of propertyq; and~r is the vector distance
of the cell centroid to that generic point.

Gradients are computed with the aid of the gradient theorem
(Swanson and Radespiel, 1991), in which derivatives are converted
into line integrals over the cell faces such as

(
∂q
∂x

)

i
=

1
Vi

∫

Vi

∂q
∂x

dV =
1
Vi

∫

Si

qı̂x ·dS , (29)

where ˆıx represents the unit vector in thex direction, andVi and
Si are thei-th cell volume and external face area, respectively. In
the present work, the control volume,Vi , to perform the gradient
computation is chosen to be thei-th cell itself. This approach yields a
formulation that is identical to the one for calculations of the RANS
viscous terms. This procedure differs from the method proposed by
Barth and Jespersen (1989), in which an extended control volume is
assumed, but it is simpler and similar results are achieved (Azevedo,
Figueira da Silva and Strauss, 2010). Therefore, the expressions for
the reconstructed properties in thek-th face can be written as

(qL)k = qi +ψi∇qi ·~rki , (qR)k = qm+ψm∇qm ·~rkm , (30)

where∇qi and∇qm are the gradients computed for thei-th cell and its
neighboringm-th cell, respectively;ψi andψm represent the limiters
in these cells; and~rki and~rkm are the distance vectors from thei-th
andm-th cell centroids, respectively, to thek-th face centroid. The
right-hand side cell, represented by them subscript in the previous
definitions, can be both an internal or a ghost cell. If the gradients
are correctly set in the ghost cells, this formulation directly allows for
reconstruction in the boundary faces similarly to internal faces. This
procedure guarantees high discretization accuracy in the boundary
faces as well as in internal faces.

The 1st-order CUSP or f ROE schemes can be readily obtained
by setting the limiter value to zero in Eq. (30). This operation
is equivalent to writingQL = Qi and QR = Qm in the previous
formulation. The integration of MUSCL-reconstructed schemes with
the multigrid framework is simply accomplished by computing the
2nd-order scheme in the finest grid level and the 1st-order one in the
other coarser levels. This approach guarantees lower computational
costs for the multigrid cycles while maintaining the adequate accuracy
for the solution at the finest mesh level.

The limiter options that are available in the present context are
the minmod, superbee and van Albada limiters (Hirsch, 1991). The
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Figure 1. Limiter functions.

respective 1-D definitions for these limiters are

ψ (Φ) =





min(Φ,1) ,
max(min(2Φ,1),min(Φ,2)) ,(

Φ2+Φ
)
/
(
Φ2+1

)
,

(31)

and the respective function plots are shown in Fig. 1. The total
variation diminishing (van Leer, 1979; Barth and Jespersen, 1989)
region is limited between the minmod and the superbee curves. In
the previous equations,Φ is defined as the ratio between the gradients
of adjacent control volumes in the interface, which in a 1-D finite-
difference context yields

Φ = Φi+1/2 = (qi+1−qi)/(qi −qi−1) . (32)

One should observe that the minmod and superbee limiters require the
evaluation of maximum and minimum functions, which characterizes
these limiters as nondifferentiable. The van Albada limiter, on the
other hand, is continuously differentiable. This aspect is discussed
further in the forthcoming paragraphs.

Limiter formulations

In a similar sense as discussed for the f ROE upwind scheme,
the usual way of computing limiters is to perform such calculation
every time the new numerical flux should be updated. The limiter
computation work, though, is a very expensive task, amounting to
more than half of an iteration computational effort, in the present
context. Therefore, the idea of freezing the limiter along with the
dissipation operator at some stages of the multistage time-stepping
scheme seems to be very attractive in terms of possible computational
resource savings. This possibility is proposed and addressed in terms
of numerical solution quality and computational resource usage in the
present work. Limiter computation options are now discussed in the
forthcoming subsections.

Barth and Jespersen multidimensional limiter implementation
(MUSCLBJ). In this method, the extrapolated property in thek-th
face of thei-th cell is bounded by the maximum and minimum values
over thei-th cell centroid and its neighbor cell centroids (Barth and
Jespersen, 1989). This TVD interpretation can be mathematically
written as

q−i ≤ (qi)k ≤ q+i , (33)

where

q+i = max
(
qi ,qneighbors

)
, q−i = min

(
qi ,qneighbors

)
. (34)

The Barth and Jespersen (1989) limiter computation in thei-th
cell is initiated by collecting the minimum,q−i , and the maximum,
q+i , values for the genericq variable in thei-th cell and its neighboring
cell centroids. A limiter is computed at eachj-th vertex of the control
volume as

ψ j (Φ) =





min
(
1,num+

BJ/denBJ
)

, if denBJ > 0 ,
min

(
1,num−BJ/denBJ

)
, if denBJ < 0 ,

1 , if denBJ = 0 ,
(35)

where

denBJ = (qi) j −qi ,

num+
BJ = q+i −qi , (36)

num−BJ = q−i −qi .

The j-th vertex property is extrapolated from thei-th cell centroid
with the aid of Eq. (28), such as(qi) j = qi +∇q ·~r ji , where~r ji is the
distance vector from thei-th cell centroid to thej-th vertex. Barth
and Jespersen (1989) argue that the use of the property in the cell
vertices gives the best estimate of the solution gradient in the cell.
The limiter value for thei-th control volume,ψi , is finally obtained
as the minimum value of the limiters computed for the vertices. The
control volume limiter,ψi , is eventually used to obtain the limited
reconstructed property in the face, as shown in Eq. (30).

General multidimensional limiter implementation (MUSCLge).
The current extension of the 1-D limiters to the multidimensional
case is originally based on the work of Barth and Jespersen (1989).
Moreover, Azevedo, Figueira da Silva and Strauss (2010) also present
some insights into this effort in a 2-D case. The present work,
however, presents a further extension of the methodology of Azevedo,
Figueira da Silva and Strauss (2010). This extension is aimed at
allowing the user the choice of any desired limiter formulation. Barth
and Jespersen (1989) proposal is a complete limiter implementation
in itself, and it has some advantages as well as disadvantages. One of
such disadvantages is that it is not a continuous limiter. This aspect is
discussed further in the present work. In order to allow for a general
multidimensional limiter implementation, a further extension to the
work of Barth and Jespersen (1989) is here proposed.

The difficulty in implementing a TVD method in a
multidimensional unstructured scheme is related to how to define the
gradient ratio,Φ. The definition forΦ in Eq. (32) is suitable for a
finite-difference context. Nevertheless, if one considers Eq. (32) as
the ratio of the central- to the upwind-difference ofq, both evaluated
at the interfacei +1/2, and also considering the bounding definition
for the property in the face in Eq. (33), then a generalization of Eq.
(32) to thek-th face of thei-th cell of an unstructured grid can be
obtained as

Φ = (Φi)k =

(
q±i −qi

)
/|~rmi|

((qi)k−qi)/|~rki|
, (37)

whereq±i is defined in Eq. (34) and the extrapolated property in the
face,(qi)k, is given by

(qi)k = qi +∇qi ·~rki . (38)
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In the previous definitions,~rmi is the vector distance from thei-th cell
centroid to itsm-th neighbor cell centroid;~rki is the vector distance
from thei-th cell centroid to thek-th face centroid.

In this formulation, considering a quasi-uniform grid, in which
|~rmi| ≈ 2|~rki|, the numerator ofΦ in Eq. (37) can be rewritten as

1
|~rmi|

(
q±i −qi

)
≈ 1

2|~rki|
(
q±i −qi

)
=

=
1
|~rki|

(
q±i +qi

2
−qi

)
= (39)

=
1
|~rki|

(
q±k −qi

)
,

whereq±k are the maximum and minimum properties, in the sense of
Eq. (34), though obtained at the centroid of the faces that compose the
i-th control volume. Theq±k variables can be mathematically defined
as

q+k = max
(
qi ,qf aces

)
, q−k = min

(
qi ,qf aces

)
, (40)

where the property in the faces,qf aces, is the arithmetic average
of the properties in the neighboring cells, as in Eq. (5). The
multidimensional gradient ratio for an unstructured grid face is finally
obtained as

Φ =





num+/den , if den> 0 ,
num−/den , if den< 0 ,
1 , if den= 0 ,

(41)

where

den = (qi)k−qi ,

num+ = q+k −qi , (42)

num− = q−k −qi .

We now take the already presented Barth and Jespersen (1989)
limiter formulation, though defined for thek-th cell face rather than
the originally described cell vertex situation, and compare it with the
previous generic gradient ratio definition. With the aid of Eq. (39), it
can be concluded that the Barth and Jespersen limiter can be rewritten
in terms of the previous generic gradient ratio as

ψk(Φ) =





min
(
1,2num+/den

)
, if den> 0 ,

min
(
1,2num−/den

)
, if den< 0 ,

1 , if den= 0 ,
(43)

with den, num+ andnum− previously defined in Eq. (42). From the
previous result, it can be observed that the Barth and Jespersen limiter
recasts the superbee limiter in the 0≤ Φ ≤ 1 region, for a 1-D case.
Similar conclusions have already been presented in the literature, as
in Bruner (1996).

The advantage of the gradient ratio definition in Eqs. (41) and (42)
is that it can be directly used in any other limiter definition, such as the
ones presented in Eq. (31). It can also be used to recast the original
Barth and Jespersen limiter formulation, as previously discussed, with
a slight modification though. As also discussed, the original Barth and
Jespersen limiter uses extrapolated properties in the nodes to build the
gradient ratio, while extrapolated properties in the faces are preferred
in the current implementation. Considering the Barth and Jespersen
vertex choice in the current gradient ratio definition (Eq. (41)), it can
be observed that

Φ(correct) =
num±/|~rki|
den/|~r ji |

=
|~r ji |
|~rki|

(
num±

den

)
=
|~r ji |
|~rki|

Φ(implemented)

=⇒ Φ(implemented) =
|~rki|
|~r ji |

Φ(correct) . (44)

Cell vertex

Face centroid

i
k

j

Figure 2. Overview of the original and modified limiters in a 2-D a pplication.

In this formulation, the mesh intervals|~r ji | and |~rki| cannot be
cancelled as in Eq. (39). Moreover, as exemplified in Fig. 2, the
distance ratio,|~rki|/|~r ji |, is lower than one, which results is an
implemented gradient ratio that is smaller than the correct one. This
difference yields smaller limiter values, which can be interpreted as an
undesired increase of diffusivity in the limiter implementation. This
issue can be avoided with the use of extrapolated face properties, as
proposed in Eqs. (41) and (42).

Thus, the complete definition for the current multidimensional
limiter is finally presented. The computation of the limiter in thei-th
cell is initiated by collecting the minimum,q−k , and the maximum,
q+k , values for the genericq variable in the centroid of the faces
that compose thisi-th cell, according to Eq. (40). Thek-th face
generic property,qk, for instance, is defined asqk = (qi + qm)/2,
where them-th cell shares thek-th face with thei-th cell. For each
k-th face centroid, the property(qi)k = q(xk,yk,zk) in that centroid is
extrapolated as in Eq. (38). The gradient ratio necessary to compute
the limiter value is obtained through Eq. (41). A limiter is computed
at each face of the control volume. The limiter value for thei-
th control volume is finally obtained as the minimum value of the
limiters computed for the faces.

Smooth multidimensional limiter implementation. The
nondifferentiable aspect of the minmod, superbee and Barth
and Jespersen limiters poses some numerical difficulties in
their utilization for practical numerical simulations. Their
discontinuous formulation allows for limit cycles that hamper
the convergence of upwind inviscid and viscous flow simulations to
steady state (Venkatakrishnan, 1995). Furthermore, such limiters
are also insensitive to the relative magnitudes of the neighboring
gradients. This problem can be found in shock wave regions,
where nondifferentiable limiters may present oscillations, or even
in apparently smooth regions, such as farfield regions, where such
limiters may respond to random machine-level noise.

One option to work around this problem is to freeze the limiter
after some code iterations or residue drop, but this technique
seems to not always work and to be highly problem dependent
(Venkatakrishnan, 1995). Such characteristics may also inhibit its
application in actual production environment because of the need for
user input in setting the limiter freezing operation for the simulation
of interest.
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Another option is to use differentiable (or continuous) limiters
instead of the ones which require maximum and minimum functions.
Some examples can be found in Venkatakrishnan (1995), for instance.
In that work, the continuous limiters are also augmented with a
control parameter to drive the smoothness of the limiter in small-
amplitude oscillation regions, and also to allow for a smooth
transition from limiting to nonlimiting state. In that formulation
(Venkatakrishnan, 1995), this limiter control is made grid-dependent
in order to sensitize the local gradients to the local grid size,
therefore eliminating small extrema oscillations. Although such
control actually allows for machine-zero convergence, it seems that
it somehow poses a trade-off between convergence and obtaining
monotone (oscillation-free) steady-state solutions.

The option chosen in the present work is to remove the grid
dependence of the limiter control and to add, instead, a constant
threshold value. The van Albada limiter, rewritten for such
modification, is given by

ψ
(
num±,den

)
=

num±
(
num±+den

)
+ǫLIM

num±2+den2+ǫLIM
, (45)

whereǫLIM is the constant limiter control, chosen asǫLIM = 10−4

in the present work. This option seems to be appropriate for all
aerospace cases considered by the present and other development
groups (see, for instance, Oliveira, 1999), always allowing machine-
zero steady-state convergence for monotone numerical solutions.
These aspects are further analyzed in the results of the present work.

Results and Discussion

The flux computation schemes presented in the previous sections
are applied to inviscid and viscous flows about typical aerospace
configurations. Firstly and foremost, the actual order of accuracy of
the discretization scheme is assessed. The influence of the numerical
schemes on shock-wave resolution is, then, addressed with a 1-D
shock-tube problem, and a transonic inviscid flow about a typical
supercritical airfoil. Boundary layer flows are also addressed, for
subsonic laminar flows about a flat plate configuration, with Reynolds
numberRe= 105 and Mach numberM∞ = 0.254.

Discretization order of accuracy

The current method for assessing the discretization order of
accuracy is based on the verification methodology presented by
Roache (1998) and the discretization order of accuracy estimation
procedure from Baker (2005). In the current methodology, a source
term carrying information of a generically prescribed solution for the
RANS equations is explicitly added to the RHS operator in order to
drive the numerical solution to the prescribed one (Roache, 1998).
The difference between the converged computational solution and the
original one is taken as a measure of the accuracy of the method,
as well as a confirmation of the correctness of the implementation
(Baker, 2005; Bigarella, 2002).

For this verification effort, the chosen physical domain is a
hexagonal block with unit sides. Several grid configurations are used
for the simulations, including different number of grid points and
different control volume types. The following sets of grids are used:

1. Uniformly spaced hexahedral meshes with 25× 25× 25, 50×
50×50 and 75×75×75 points;

2. Two isotropic tetrahedral meshes with 25× 25× 25 and 50×
50×50 control points in the domain edges.

With the chosen computational meshes, the authors attempt to
address the behavior of the numerical code with grid characteristics
such as refinement and topology. This evaluation is performed for
the four flux schemes available in the current code, namely the
MAVR, MATD, CUSP and f ROE schemes. For the CUSP and f ROE
schemes, the van Albada limiter is chosen.

In this work, 2nd-order-accurate approximations for convective
flux computations are available. Hence, the numerical error of the
method as function of the mesh spacing can be written as

error∝ ∆x2 , (46)

where∆x, in the current study, is taken as the arithmetic average of
the cubic root of the cell volumes, for each of the previously described
grids. If one takes the logarithm of both sides of Eq. (46), that
equation can be rewritten as

log(error)∝ 2 log(∆x) . (47)

The logarithm of the theoretical error of the method has a slope of
two when plotted against the logarithm of the grid spacing. The actual
spatial accuracy of the method, however, may be different from that
presented in Eq. (47). The actual error can be written for a general
case as

log(error)∝α log(∆x) , (48)

whereα is the slope of the actual spatial accuracy curve that is
attained with the implemented scheme. The error is here taken as the
RMS value of the difference between the prescribed and numerical
density fields.

Table 1. Error slopes for different mesh and flux scheme settings .

Hexahedra Tetrahedra

MAVR 2.19 0.87
MATD 2.12 0.26
CUSP 2.00 1.00
f ROE 2.00 1.00

The resulting slopes are collected in Table 1. From these results,
it can be observed that all flux schemes sustain the nominal 2nd-
order accuracy for the uniformly-spaced hexahedral meshes. The
order of accuracy deteriorates for the tetrahedral meshes. The
switched artificial dissipation schemes (MAVR and MATD) present
larger accuracy losses than the MUSCL-reconstructed counterparts
(CUSP and f ROE). The latter schemes present less mesh topology
dependency, which is an indication of increased robustness that one
would like to have under highly-demanding or even inadequate mesh
cells.

In Mavriplis (1997), it is argued that routine upwind schemes,
such as the ones here used, are commonly applied in “a quasi-one-
dimensional fashion normal to control-volume faces”. Although
the reconstruction and limiter formulations used in the paper are
truly multidimensional, the background upwind flux schemes are not,
and they “may misinterpret flow features not aligned with control
volume interfaces” (Mavriplis, 1997). The current authors attribute
the observed loss of accuracy in the tetrahedral grid cases analyzed
before to this misalignment behavior.

The dependency of the discretization accuracy on mesh cell
type and topology is acknowledged in the literature, as discussed
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by Mavriplis (1997), Deconinck, Roe and Struijs (1993), Sidilkover
(1994), Peroomian and Chakravarthy (1997), Deconinck and Degrez
(1999), Jawahar and Kamath (2000), and Drikakis (2003). These
references, in particular, present efforts towards the developmentof
numerical schemes that are less sensitive to mesh topology, and that
present native multidimensional “cell-transparent” behavior. This is
certainly an interesting development to be brought to the current code
context, but it is beyond the scope of the present work.

1-D shock tube

Computations of 1-D shock-tube inviscid flow cases are
considered. Numerical results are compared to the analytical solution
for this problem. For the numerical simulations, an equivalent 3-
D grid composed of a line of 500 hexahedra is used. The initial
dimensionless density condition for the left half part of the shock
tube isρL

ini = 1, whereas on the right half,ρR
ini = 20. The reference

conditions are taken in the initial state of the low pressure side of
the shock tube. Equal temperatures are assumed at both sides of the
shock tube. Several other simulations with different density ratios
have also been performed and the results are essentially similar to the
ones presented in the forthcoming analyses. A constant dimensionless
time step of∆t = 10−5 is used for this transient solution, and the
forthcoming plots are taken att = 0.1.

MATD results. The three possible implementation forms of the
MATD artificial dissipation method are here assessed. TheMATDs f
option is the straightforward extension of the nominal finite-volume
scalar artificial dissipation (MAVR) to a matrix version. The
advantageous implementation form as found in a finite-difference
context cannot be used due to the necessity of performing a surface
integral of the scaling matrix. Another option, namelyMATDf d,
uses this attractive finite-difference-like implementation form, which
unfortunately is not in accordance with the current finite volume
artificial dissipation framework formulation. This option is only
considered here to verify this previous assertive. Finally, a mixed
version that allows for a surface-integrated scaling matrix, though in a
nonconservative form, with the same advantageous finite-difference-
like matrix implementation, here termedMATDnc, is suggested.

Dimensionless pressure and density distributions along the tube
longitudinal axis are presented in Fig. 3. One can clearly observe in
this figure that all MATD options allow for pre- and post-discontinuity
oscillation to build up. The less correctMATDf d option presents
much larger oscillations, whereas theMATDnc option presents the
lowest levels of oscillation. All options, however, correctly follow the
analytical result trends. In terms of computational resource usage, the
finite-difference-like implementation does present advantages over
the finite volume form. TheMATDf d andMATDnc options require
about 30% less computational time than theMATDs f formulation for
this test case.

CUSP results. The CUSP scheme implementation options are here
addressed. TheCUSPctt formulation (Jameson, 1995a; Jameson,
1995b; Swanson, Radespiel and Turkel, 1998) uses constant property
distributions in the cell to build the centered convective fluxes,
whereas theCUSPrec option proposed in the current work uses
reconstructed properties in the faces to compute such fluxes. The
dissipation formulation is identical between both options, and a value
of ǫCUSP= 0.3 is chosen for the CUSP constant. The van Albada
limiter is used here in the reconstruction process within the proposed
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(b) Dimensionless density.

Figure 3. Property distributions along the shock tube obtained with
different MATD model options.

multidimensional limiter implementation. The limiter computation is
only performed in alternate stages of the Runge-Kutta time step.

Swanson, Radespiel and Turkel (1998) argue that the original
CUSP scheme formulation, here termedCUSPctt, does not nominally
provide oscillation-free shocked-flow results. The current authors
believe this behavior is due to the computational form of the centered
convective fluxes, which uses constant properties in the cells in the
original formulation. The authors believe that the use of reconstructed
properties in the faces to build such fluxes may overcome such
limitation. These arguments are corroborated by the pressure and
density results presented in Fig. 4. Both CUSP implementation
options compare very well with the analytical solution. It can be
observed in Fig. 4 that the originalCUSPctt formulation does allow
oscillations to build up near discontinuities, while the proposed
CUSPrec option prevents such undesired behavior. Furthermore,
the latter option also exhibits a crisper representation of the high-
pressure-side expansion region. Finally, theCUSPrec implementation
requires less than 10% additional computational time than the original
formulation to compute the current test case.

f ROE results. The classical numerical flux implementation of
the Roe flux scheme (f ROEcla) is compared to the here proposed,
cheaper implementation (f ROEalt ) that uses the concept of centered
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Figure 4. Property distributions along the shock tube obtained with
different CUSP scheme options.

convective flux plus upwind artificial dissipation terms computed in
alternate stages of the Runge-Kutta time marching procedure. Limiter
settings are exactly the same as used for the previous CUSP scheme
simulations. Pressure and density distributions for the Roe scheme
are presented in Fig. 5. Numerical solutions compare very well
with the analytical one, and no oscillation near discontinuities can
be found in the numerical solution. It is interesting to observe that no
differences betweenf ROEcla and f ROEalt options can be observed.
The f ROEcla scheme, however, is about twice as expensive as the
f ROEalt implementation, proposed in the present paper.

MUSCL results. The original Barth and Jespersen multidimensional
limiter (MUSCLBJ) is compared to the generic multidimensional
implementation (MUSCLge) proposed in the work. The minmod, van
Albada and superbee limiters are considered in order to demonstrate
the capability of the current multidimensional reconstruction scheme
to handle various limiter types. For this study, thef ROEalt scheme is
used with limiter computations at alternate stages of the Runge-Kutta
scheme. Pressure and density results for the previous limiter options
are shown in Fig. 6. One can clearly observe in this figure that the
correct solution is obtained for all cases, which demonstrates that the
current multidimensional reconstruction scheme does allow for the
use of various limiter formulations. In general, no oscillatory behavior
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(a) Dimensionless pressure.
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Figure 5. Property distributions along the shock tube obtained with
different f ROE scheme options.

in the numerical solutions can be observed in the results, regardless
of the limiter formulation used. The comparison with the analytical
solution is also very good, with thesuperbeelimiter presenting crisper
discontinuities, as expected, due to its less diffusive formulation. As
already discussed, the Barth and Jespersen limiter recasts the superbee
limiter in the 0≤ Φ ≤ 1 range, in the 1-D case. This is confirmed
in Fig. 6, since the former limiter results are virtually identical to
the latter ones. The van Albada limiter results lie within the more-
and the less-diffusive minmod and superbee limiters, respectively, as
expected. It should be remarked here that its augmented smoothness
cannot be demonstrated in this transient case since it is a feature
designed for steady problems.

2-D supercritical airfoil

Similar analyses, as performed for the 1-D shock tube, are now
considered for a multidimensional case. Transonic inviscid flows
about the Boeing A4 supercritical airfoil (Nishimura, 1992) are
chosen for such analyses. A C-type grid with 100× 24 cells over
the profile and along the normal direction, respectively, is considered.
A view of this configuration can be found in Fig. 11 for another grid
used in further studies in the paper. The farfield extends to 20 chords
away from the profile. The freestream Mach number isM∞ = 0.768
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(a) Dimensionless pressure.
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Figure 6. Property distributions along the shock tube obtained with
different limiter implementation options.

and the angle of attack isα= 1.4 deg. In the present simulations, three
grid levels in a “V” cycle, with one iteration before and after property
restrictions and prolongations, are used in the multigrid method. The
CFL number in all flux computation schemes is set toCFL = 1.25.
The numerical schemes are evaluated at a multidimensional shocked
flow in order to assess their capability at correctly solving such test
cases. Moreover, numerical results are not compared to experimental
ones in this case because viscous terms and turbulence modeling are
not included in the present calculations.

MATD results. The three possible implementation forms of the
MATD artificial dissipation method, namelyMATDs f , MATDf d and
MATDnc, are here assessed. Pressure coefficient distributions and the
residue histories are presented in Fig. 7. It can be observed in Fig.
7(a) that the threeCp distributions present differences. TheMATDs f
results seem to present a larger amount of dissipation. TheMATDf d
option presents several oscillations near the shock wave discontinuity.
This observation corroborates the assertive that the present switched
artificial dissipation model is calibrated to receive only surface-
integrated coefficients, which is not the case for theMATDf d option.
The MATDnc formulation avoids such oscillation problem while
allowing less dissipative results at lower costs,i.e., approximately
30% cheaper than theMATDs f option. Residue histories show that
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Figure 7. Simulation results for the supercritical airfoil obtai ned with
different MATD model options.

both options, which include some surface integration in the definition
of the scaling terms of the artificial dissipation, namelyMATDs f and
MATDnc, converge well for this case, while theMATDf d formulation
presents convergence stall due to the oscillatory behavior of the
solution.

CUSP results. TheCUSPctt andCUSPrec scheme options are here
addressed. Numerical settings are taken similarly to the previous 1-
D shock tube case.Cp distributions and residue histories for these
cases are presented in Fig. 8. As already observed in the 1-D case,
the originalCUSPctt implementation allows for oscillations to build
up in the solution. This undesired behavior is avoided with the use of
reconstructed properties in the faces to compute the convective flux
terms. The convergence of theCUSPrec option seems to be more
robust than theCUSPctt implementation, mainly because of the lack
of oscillatory structures in the numerical solution.

f ROE results. The classical numerical flux implementation of
the Roe flux scheme (f ROEcla) is compared to the proposed,
computationally cheaper,f ROEalt implementation. Numerical
settings similar to those used in the 1-D shock tube case are also
considered for the present study. As already expected, no large
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Figure 8. Simulation results for the supercritical airfoil obtai ned with
different CUSP model options.

differences can be observed between the two solutions, in terms of
both numerical resolution of the flow properties,i.e., airfoil pressure
coefficient in this particular case, and residue histories, as shown in
Fig. 9. The f ROEalt option, however, converges in almost half the
computational time used by the classicalf ROEcla implementation.
The reader should observe that Fig. 9(b) is showing the residue
histories as a function of multigrid cycles. However, thef ROEalt
option costs almost half the computational time of thef ROEcla
option per multigrid cycle. These results, once again, show that
the same quality of numerical solution and convergence rate can be
obtained with the proposed implementation method at much lower
computational resource usage.

MUSCL results. The original Barth and Jespersen multidimensional
limiter (MUSCLBJ) is compared to the here proposed generic
multidimensional implementation (MUSCLge). The minmod, van
Albada and superbee limiters are considered within the generic
multidimensional reconstruction scheme. Numerical settings similar
to those used in the 1-D shock tube case are also considered for the
present study.Cp distributions and residue histories for these cases
are presented in Fig. 10. No oscillatory behavior in the numerical
solutions can be observed in all presented results. The solutions
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Figure 9. Simulation results for the supercritical airfoil obtai ned with
different f ROE scheme options.

with the superbee and the Barth and Jespersen limiters present crisper
discontinuities, as already observed in the shock-tube case. As also
already observed, the van Albada limiter results lie within those of the
minmod and superbee limiters.

It is interesting to observe in the residue histories in Fig.
10(b) that the minmod, Barth and Jespersen and superbee limiters
present residue stall. As already discussed, this behavior is due
to their discontinuous formulation, which involves the evaluation
of maximum and minimum functions. The continuous van Albada
option, on the contrary, allows for automatic residue convergence,
that is, convergence without the need for user inputs such as limiter
freezing.

Grid refinement study. The previous 2-D airfoil case is revisited for
a mesh refinement study. In these analyses, the MATD model stands
for the MATDnc option; the CUSP model is actually theCUSPrec

option with the van Albada limiter computed at alternate stages of the
Runge-Kutta time stepping scheme; and the f ROE scheme represents
the f ROEalt implementation with the same previous CUSP limiter
settings. Three C-type grids, with 100×24, 150×40 and 255×64
cells over the profile and along the normal direction, respectively, are
used. A view of the grid with 255× 64 cells can be found in Fig.
11. Pressure coefficient distributions over the profile, obtained with
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Figure 10. Simulation results for the supercritical airfoil obta ined with
different limiter implementations.

the previously discussed flux computation schemes, are presented in
Fig. 11(b) for the 255×64-cell computational grid. One can observe
in this figure that all numerical schemes yield results that are very
similar to each other at computing a crisp shock-wave discontinuity
and overall pressure distributions. These computational results can,
therefore, be considered as a reasonable reference solution for further
comparisons in the paper.

It should also be remarked here that the numerical results
are not compared to experimental results because an inviscid
approximation is considered for the numerical simulations, which is
not representative of the actual turbulent viscous wind-tunnel flow.
The main interest here is the behavior of the numerical schemes at
computing shocked flows at successively refined computational grids.

Pressure coefficient distributions over the profile obtained with
different meshes and flux computation schemes are presented in Fig.
12. In this figure, one can observe that the MAVR scheme presents
considerable variations in the results as the grid is refined. Moreover,
the shock wave position also varies considerably with grid refinement.
More consistent results can be obtained with the MATD model.
Differences among the solutions are much smaller in this case and
the shock wave position presents less changes with grid refinement.
The CUSP and f ROE schemes present even more consistent results,
and the variations in the numerical solution with grid refinement are

(a) Computational grid.
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Figure 11. 2-D view of the grid over the supercritical airfoil with 255× 64
cells, and respective wall Cp distributions obtained with different flux
computation schemes.

much less pronounced in these cases. The numerical results obtained
with both models are comparatively much similar to each other, with
the CUSP scheme presenting slightly better results.

Subsonic flat plate

The present effort has been strongly motivated by an anomaly
found in previous simulations of subsonic flat-plate boundary layers,
more precisely, in the bend of the boundary layer profile (Strauss,
2001). Further studies associated this issue to the explicitly added
artificial dissipation terms for the centered flux computation scheme,
as reported by Bigarella (2002). A dependency of the numerical
solution with the computational mesh topology and refinement has
also been observed. Although Bigarella (2002) reports this problem in
a different context, namely a finite difference code, the same issue can
also be found with the present finite volume formulation (Bigarella,
Moreira and Azevedo, 2004). Moreover, Bigarella, Moreira and
Azevedo (2004) also discuss a detailed analysis of mesh topology
for such boundary layer flows. Such work has shown that an
adequate mesh topology for boundary layer flows should respect
certain characteristics, which are described in the next paragraph.
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Figure 12. Wall Cp distributions over the supercritical airfoil obtained with
different flux computation schemes and computational grids.
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Figure 13. 2-D views of the grid over a flat plate with 20 points insid e the
boundary layer.

The corresponding mesh generator places a user-provided number
of computational cells inside the boundary layer. These cells are
evenly spaced along the wall-normal direction, and they extend to
a user-defined height,ηmax, given by a Blasius-transformed length,
which is defined asη = (y/x)

√
Rex. Therefore, the physical height

of the boundary layer points varies with the longitudinal position,
following the theoretical growth of the boundary layer up to the value
of ηmax. This grid construction allows the user to keep a constant
number of points inside the boundary layer along the flat plate length.
In the actual implementation, however, in order to avoid numerical
difficulties near the plate leading edge, this assertive is valid for
the last three quarters of the flat plate length. This specific grid
construction requires the knowledge of the flow Reynolds number,
which should be correctly provided by the user. The plate length is
fixed as one and the grid extends two lengths upstream of the plate
leading edge, and one length along the normal direction. Outside
the boundary layer, an automatic exponential growth guarantees the
normal direction length extension and a sufficiently low number of
control volumes. One quarter of the number of points specified by the
user for the longitudinal direction is placed in the two-length space
ahead of the plate, and the remaining points are placed along the
plate longitudinal direction. These points are clustered near the flat
plate leading edge in order to account for the larger gradients that are
expected in this region.

Hence, subsonic laminar flows about a flat plate configuration,
with Reynolds numberRe= 105 and Mach numberM∞ = 0.254, are
addressed. Three consecutively refined grids are generated for this
flow case. For the present study, different number of cells inside the
boundary layer, namely 10, 20 and 40 cells, are considered, with 30
cells outside the boundary layer. The user-defined boundary layer
height in terms of the Blasius transformed coordinate isηmax= 6. All
grids have 81 points along the longitudinal direction. A view of the
grid with 20 points inside the boundary layer can be found in Fig. 13.
Figure 14 presents boundary layer results obtained with the previously
described computational grids. The flux schemes considered in these
analyses are the same used in the previous 2-D airfoil subsection.
Centered- and upwind-scheme results have been considered in this
figure, and they are compared to the theoretical Blasius solution. It
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Figure 14. Laminar boundary layer profiles over a flat plate obta ined with
different flux computation schemes and computational grids.

is interesting to observe that the upwind f ROE scheme, as well as
the centered MATD and CUSP models, guarantee the correct solution
with all tested grid configurations. The MAVR centered scheme
presents an anomaly in the bend of the boundary layer profile for the
grids with a smaller number of points in the boundary layer, as also
verified by Bigarella, Moreira and Azevedo (2004). The oscillation,
nevertheless, decreases with the increasing number of points inside
the boundary layer. It is only with the 40-point grid configuration that
the correct solution can be obtained with the MAVR model.

Concluding Remarks

The paper presents results obtained with a finite volume
code developed to solve the RANS equations over aerospace
configurations. Several flux computation schemes are considered in
the paper. The convective fluxes can be computed by either a centered
scheme plus explicitly added artificial dissipation terms, or the Roe
upwind scheme. For the centered scheme, three artificial dissipation
models are addressed, namely a scalar and a matrix version of a
switched model, and the CUSP scheme.

Multidimensional interpolation is used in order to achieve second-
order accuracy for schemes that require property reconstruction.
An extension to the work of Barth and Jespersen is proposed and
evaluated in the paper. Such extension aims at decreasing the level of
dissipation added by the original limiter formulation, which has been
verified in the presented results. As a byproduct of such effort, various
limiter formulations can also be used within the multidimensional
unstructured code structure. A smooth limiter option is also
proposed and used to achieve machine-zero convergence of monotone
numerical solutions without user interference.

Several formulation and implementation approaches for such
methods are proposed and assessed in the paper in order to enhance
robustness, numerical accuracy and computational efficiency of the
numerical tool for aerospace flow cases. Comparisons of numerical
boundary layers for a zero-pressure gradient flat plate laminar flow
with the corresponding theoretical Blasius solution show the level
of accuracy that can be obtained with the present formulation. It is
observed that the scalar artificial dissipation model presents a very
large dependency on the grid density. For this model, about 40 cells
inside the boundary layer are required to correctly solve the boundary
layer flow. The matrix artificial dissipation model, as well as the
CUSP and the Roe schemes, require only 10 points to achieve the
same level of accuracy. The grid-independent converged solutions,
for all methods, are very close to the theoretical Blasius solution.

The code is also able to correctly solve for more complex flows,
such as the transonic flow about a typical supercritical airfoil. The
ability of the flux computation schemes in calculating shock waves
in the solution is assessed in the present study, in particular with
regard to the dependency with grid density. It is observed that more
consistent solutions can be obtained with the Roe and CUSP schemes,
to which small variations with grid refinement are verified. The
scalar artificial dissipation model is not so effective in these analyses,
and a considerable dependency of the numerical solution with the
grid configuration is observed. The matrix version of the switched
artificial dissipation model presents more consistent results than its
scalar counterpart.

The numerical schemes proposed in the paper compose a set
of methods for accurately solving complex flow phenomena typical
of aerospace flow applications. Numerical robustness, accuracy
and efficiency could be obtained with the proposed implementation
options. The schemes and the experience acquired in the present
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study have advanced the capability of simulating the transonic and
supersonic viscous flows of interest to IAE, which motivated the
current effort.
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de Aerońautica, S̃ao Jośe dos Campos, SP, Brazil, 127 p.

Swanson, R.C., and Radespiel, R., 1991, “Cell Centered and Cell Vertex
Multigrid Schemes for the Navier-Stokes Equations”,AIAA Journal, Vol. 29,
No. 5, pp. 697–703.

Swanson, R.C., Radespiel, R., and Turkel, E., 1998, “On Some Numerical
Dissipation Schemes”,Journal of Computational Physics, Vol. 147, No. 2, pp.
518–544.

Turkel, E., and Vatsa, V.N., 1994, “Effect of Artificial Viscosity on Three-
Dimensional Flow Solutions”,AIAA Journal, Vol. 32, No. 1, pp. 39–45.

van Leer, B., 1979, “Towards the Ultimate Conservative Difference
Scheme. V. A Second-Order Sequel to Godunov’s Method”,Journal of
Computational Physics, Vol. 32, No. 1, pp. 101–136.

Venkatakrishnan, V., 1995, “Convergence to Steady State Solutions
of the Euler Equations on Unstructured Grids with Limiters”,Journal of
Computational Physics, Vol. 118, No. 1, pp. 120–130.

Zingg, D.W., De Rango, S., Nemec, M., and Pulliam, T.H., 1999,
“ Comparison of Several Spatial Discretizations for the Navier-Stokes
Equations”, AIAA Paper No. 99-3260, Proceedings of the 14thAIAA
Computational Fluid Dynamics Conference, Norfolk, VA, USA.

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright c© 2012 by ABCM July-September 2012, Vol. XXXIV, No. 3 / 329


