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Introduction Inviscid flows for a 1-D shock tube and the Boeing A4
supercritical airfoil (Nishimura, 1992) configurations are considere

The paper reports recent improvements on a finite volume methggl order to address the flux computation schemes for shock wave
for 3-D unstructured meshes developed by the CFD group at Institugapturing. A mesh refinement study is performed for the airfoil case
de Aerorautica e Espaco (IAE). Flow phenomena typical of aerospadg order to assess the dependency of the numerical schemes with grid
applications are usually associated with transonic and supersowiensity and topology.
shock waves and high-Reynolds number boundary layers. Theatorr  Subsonic laminar flows over a flat plate address the effects of the
computation of such flow phenomena is of paramount importangfimerical flux schemes in boundary layer flows. It is known that
for the representativeness of numerical simulations for high Madfux schemes may have influence in such flow solutions, as reported
and Reynolds-number flight conditions, since they are decisive fy Swanson, Radespiel and Turkel (1998), Zingg et al. (1999),
the final aerodynamic data important for engineering purposes. Tidimaras (2002), and Bigarella (2002). The present group attributes
numerical modeling of these flow features, through flux computatiosuch problems to nonphysical behavior of centered flux schemes,
schemes, must be representative of the physics of these phenomenare precisely in the explicitly added artificial dissipation model,
as well as numerically adequate in terms of robustness and costs.alireported in Bigarella, Moreira and Azevedo (2004). The present
light of that, the paper addresses several flux computation schengger shows conclusive results that corroborate this assertiveh Mes
suitable for the typical aerospace applications of IAE. density and topology are also addressed for such test case. Generally

Second-order accurate centered- (Jameson, Schmidt and Turkelproved accuracy is obtained with the new flux computation
1981) and upwind flux-difference splitting (Roe, 1981) schemes akthemes.
considered here. In the centered case, explicit addition of artificial This section presents the motivation for the current effort. The
dissipation terms is required to control nonlinear instabilities in th@ext section presents a brief discussion on the theoretical and
numerical solution. For computation of these terms in the curremumerical formulations embedded in the current numerical tool.
work, both the scalar and the matrix versions of a switched seconDetailed discussion on the centered schemes here considered is
and fourth-difference scheme are considered (Mavriplis, 199&eTu performed in the third section. Similar discussion is performed for the
and Vatsa, 1994). The Convective-Upwind Split-Pressure (CUSRpwind and the reconstruction schemes in the fourth section. The fifth
artificial dissipation model (Jameson, 1995a; Jameson, 1995b)dsction presents the discussions on the obtained numerical results.
also considered in the centered scheme case. Some implementatipe last section closes the work with concluding remarks from the
options are proposed and discussed in the paper, in terms @frrent effort.
computational effort and numerical solution quality.

The CUSP and the Roe upwind schemes require special treatm@ftmenclature
of properties in the control-volume faces to achieve 2nd-order

accuracy in space. The multidimensional, limited, MUSCL (vara = speed of sound
Leer, 1979) reconstruction scheme of Barth and Jespersen (1989) = convective operator
is adopted here. This limiter formulation is here addressed, at@FL = Courant-Friedrichs-Lewy number
an extension for this formulation is proposed and assessed in g = pressure coefficient
paper. A computationally cheap and robust integration of the limitep = artificial dissipation operator
MUSCL-reconstructed schemes is also proposed, which allows fgr = artificial dissipation term
large computational resource savings while maintaining the expectgd = total energy per unit volume
level of accuracy. g = internal energy
nf = number of faces that compose a control volume
Paper received 27 July 2009. Paper accepted 29 November 2011 p = static pressure
Technical Editor: Eduardo Belo Pe = inviscid flux vector
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Py = viscous flux vector

Pr = Prandtl number

q = heat flux vector

Q = vector of conserved properties
Re = Reynolds number

S=|S| =face area

u, v, w = cartesian velocity components
Y = cartesian velocity vector

\Y = viscous operator

X, Y, z = cartesian coordinates

Greek Symbols

a = angle of attack

At =time step

0] = gradient ratio for limiter computation
0% = ratio of specific heats

n = dynamic viscosity coefficient

P = control volume limiter

o = density

T = viscous stress tensor

Subscripts

o0 = freestream property

i,m = grid control volume indices

k = face index

14 = laminar property

LR = interface left and right properties
t = turbulent property

Superscripts

* = dimensional property
n = time instant

Theoretical and Numerical Formulations

transfer termp;, is defined agj = 7juj — ¢, where the heat transfer
component is defined as

Hed&)

Pr o0x; @

qj=-v
The molecular dynamic viscosity coefficient is computed by the
Sutherland law (Anderson, 1991). The dimensionless pressure can
be calculated from the perfect gas equation of state.

This set of equations is solved according to a finite volume
formulation (Scalabrin, 2002). Flow equations are integrated in
time by a fully explicit, 2nd-order accurate, 5-stage, Runge-Kutta
time stepping scheme. An agglomeration full-multigrid scheme
(FMG) is included in order to achieve better convergence rates for
the simulations. More details on the theoretical and numerical
formulations can be found in Bigarella, Basso and Azevedo (2004),
and Bigarella and Azevedo (2005).

Centered Spatial Discretization Schemes

Centered schemes require the explicit addition of artificial
dissipation terms in order to control nonlinear instabilities that
may arise in the flow simulation. Several models to compute the
artificial terms are included in the present numerical formulation. A
description of the available models is presented in the forthcoming
subsections.

Mavriplis scalar switched model (MAVR)

The centered spatial discretization of the convective fluggsn
this scheme is proposed by Jameson, Schmidt and Turkel (1984). Th
convective operator is calculated as the sum of the inviscid fluxes on
the faces of thé-th volume as

nf
1
Ci= ) Pe(Qu)-S, Q=3 (Qi+Qm), ®)
k=1
whereQ; and Qn, are the conserved properties in thth andm-th
cells, respectively, that share tkeh face.
The artificial dissipation operator is built by a blend of undivided

The flows of interest in the present context are modeled by the 3_ID':1pIacian and bi-harmonic operators. In regions of high property

compressible Reynolds-averaged Navier-Stokes (RANS) equati019§

written in dimensionless form and assuming a perfect gas, as

a
a—?—i—l]-(Pe—Pv):O ,

adients, the bi-harmonic operator is turned off in order to avoid
oscillations. In smooth regions, the undivided Laplacian operator
is turned off in order to maintain 2nd order accuracy. A numerical
pressure sensor is responsible for this switching between the
operators. The expression for the artificial dissipation operator is

T :
Q=[p pu pv pw e] (1) 9givenby
Lo . . nb
1
The inviscid and viscous flux vectors are given as Di = z {E (Am-+Aj) [62 (Qm— Qi) —€a (Dsz _ IZIZQi)} } '
k=1
Py 0 ®)
puv+ piy 1 | wili
Pe = pW + piy , P, = Re Ty fi (2)  wherem represents the neighbor of th¢h element, attached to the
PWV + piy Tzl k-th face, anchbis the total number of neighbors of tiwh control
(e+p)v Bii volume. Furthermore,
. ) b
The shear-stress tensor is defined by 2Q, = nz [Qm-Qil ,
K=1
" au.
Tij = He {(%4»0—)(]) 7§gim5ij:| s (3) € = szaX(Vi,Vm) ,
) ! m eq = max(0,Ky—e2), (7)
where u; represents the Cartesian velocity components, snd o Zﬂbbl Pm — pil
represents the Cartesian coordinates. The viscous force work and he i = S pm+pi]
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In this work, K, and K4 are assumed equal to/4 and 3256, Vatsa (1994)y,, =0.25andV, = 0.025, are used in the present effort.
respectively, as recommended by Jameson, Schmidt and Turlkelrthermore,

(1981).
The Aj matrix coefficient in Eq. (6) is replaced by a scalar E; =R]R,, E; =R Ry,
coefficient (Mavriplis, 1988; Mavriplis, 1990) defined as Ese RI Ra. Ey— R13' Ry, 12)
nf
A=Y (Vi Sl +ax|Sdl] - (8) where
K=1

1
This formulation is constructed so as to obtain steady state solutions ~ Rt ={LuvwwH},  Rp= {§v~v, UV W 1} v

which are independent of the time step (Azevedo, 1992). _ B
In the multistage Runge-Kutta time integration previously Ra= {0, Ny, Nz Vi Ra={~Vn,nem,nz,0p . (13)
described, the artificial dissipation operator is calculated only

on the first, third and fifth stages for viscous flow simulations.andH = (e+p)/pis the total enthalpy. In these definitions, te

For the inviscid calculations, the artificial dissipation operator i SUbscript, that indicates a variable computed in the face, has been

calculated in the first and in the second stages only. This approa%ﬂmi”ated_ir_‘ ord_er to avoid overlqading the equatiqns with sympqls.
guarantees the accuracy for the numerical solution while reducin In the finite difference context in which the matrix-based artificial

computational costs per iteration (Jameson, Schmidt and Turk |§sipation model is originally presented (Turkel and Vatsa, 1994), its

1981). Furthermore, the MAVR model has also been integrated inf§!Merical implementation is very attractive due to the advantageous
the multigrid framework. In order to achieve lower computational®'™M Of the|Ax| matrix in terms of vector multiplications, Egs. (10)
costs for the multigrid cycles, only the first order artificial dissipation (13). Written in this way, the final dissipation vector is directly

model is used in the coarser mesh levels. This operation is achievéPuted through vector multiplications rather than being necessary
by not computing the bi-harmonic term in Eq. (6) and by settinéo compute and store the complete matrix coefficient. Thus, in Turkel
€2 < €5+ €4 in these levels. and Vatsa (1994), this dissipation model only requires up to 20% more

computational cost per iteration and much less memory overhead,
Matrix switched model (MATD) while providing upwind-like solutions for shock-wave flows.
The artificial dissipation model in the current context is scaled
The formulation for the matrix model (MATD) is similar to With the use of integrated coefficients, such as the scalar coefficient
the previously described one for the MAVR model, except for théhown in Eq. (8). Therefore, the advantage of having the artificial
definition of theA; terms. In this case, the flux Jacobian matricesglissipation contribution computed directly by the product of |thg
as defined in Turkel and Vatsa (1994), are used instead of the scaR@trix and a difference of conserved properties, which uses the form
term inside the summation in Eq. (8). TAgterm, re-interpreted for given in Eq. (10) by Turkel and Vatsa (1994), is destroyed by the
the present cell-centered, face-based finite-volume framewarlhea need to perform the surface integral of the matrix coefficient shown

written as in Eg. (9). Hence, one has to actually form ti#g| matrix in the
present finite volume context. This is the straightforward extension
nf of the scalar option to the matrix one, here tern\@dT Ds;. The
Ai = kzl|AkHSk| ' () finite difference-like option, namel AT D4, in which the attractive
- form of the scaling matrix is used, can be readily obtained by
where replacing thezl (Am-+ Aj) coefficientin Eq. (6) by théAk||Sk| scaling

matrix. Another option in which the advantageous form of the scaling
_ 1 y—1 matrix is kept while still using an integrated coefficient, though in a
A= Al + E(WHMZD_M?’@ ( a2 E1+E2> nonconservative fashion, can also be obtained, here teMAdD;c.
This option is given as

1
+ E(\Al\*\Az\)[EsﬂL(Y*l)Ed : (10)
nb nb
In this equation, the following definitions in teth face are used:  D; = Z S| z {\Ak| [GZ(Qm —Qi)—ea (DZQm— DZQi>] } ‘
K=1 =
[Al] = max(lva+al, VaA) , (14)
[A2] = max(|vh—al, VhA) ,
[Az] = max(|vnl, MA) , (11)  which means that the matrix coefficient computed in the face is
A = |v|+a, directly used in the summation, which allows for the use of the faster

vector products, and the surface integral is obtained through the area
and thek subscript is dropped in order to avoid overloading theof the faces that compose tliwth cell. The three previous matrix-
previous formulation nomenclature. In these definitionsjs the based artificial dissipation forms are addressed in the present work.
normal velocity component, computed &s= Vv - n, where the unit In order to approximate the MATD artificial dissipation terms to
area vector is defined as= S/|S|. Furthermore, in these expressions,an upwind scheme behavior in the vicinity of shock-wave regions,
Vi limits the eigenvalues associated with the nonlinear characteristite recommended value for th€, constant isK, = 1/2 (Turkel
fields wherea¥) provides a similar limiter for the linear characteristicand Vatsa, 1994). Furthermore, it has been observed, during the
fields. Such limiters are used near stagnation and/or sonic linesplication of this method along with the multigrid scheme in highly
where the eigenvalues approach zero, in order to avoid zero artificittetched grids, that it may be beneficial to increasekihgalue to
dissipation. The values recommended for these limiters by Turkel aid = 1/64 (Bigarella and Azevedo, 2005).

316/ Vol. XXXV, No. 3, July-September 2012 ABCM



A Study of Convective Flux Schemes for Aerospace Flows

Convective Upwind and Split Pressure Scheme (CUSP) splitting method. In the present context, the f ROE inviscid numerical
flux in thek-th face can be written as

The Jameson CUSP model (Jameson, 1995a; Jameson, 1995b; 10~
Swanson, Radespiel and Turkel, 1998) is inspired in earlier work on  Pg, = Pe (Qk) — > ‘Ak‘ (Qr—QL), Qx=
flux-vector splitting methods. It is based on a splitting of the flux
function into convective and pressure contributions. In some Sense, ore
the pressure terms contribute to the acoustic waves while the velocity ~— .
terms contribute to convective waves, which makes it reasonable quCt'on' defined as

@ +Qr). a8

’ﬂk} is the Roe matrix associated with tkeh face normal

treat these flux terms differently. ~ 5
Previously, the scalar and matrix-valued artificial dissipation ‘A’ (Qr—QL) = Z \)\j | djrj . (29)
terms have been constructed considering differentials in the conserved j=1

property arrays. For the CUSP model, the artificial dissipation
terms are, instead, chosen as a linear combination of the conser\ég?
property array and the flux vectors. The second-order accurdt®PC
model, artificial dissipation term is re-interpreted for the present cel
centered, face-based finite volume framework as follows:

The authors observe that this form of computing the central

erence portion of the Roe flux is slightly different from the

ﬁtandard calculation shown in Roe (1981). In the present case, the

authors are computing the flux of the averaged conserved property

vector, whereas Roe (1981) calculates the average of the fluxes
nfrq 1 themselves in the original reference. In the present formulatigh,

Di = z {sz*aﬂsk\ (QrR—QL)+ =B (Pex—Pe )-Sk| » (15) represents the magnitude of the eigenvalues associated with the Euler

k=1 2 equations, given as
and .
. |ZA| = diag(|Vn| , [Val s [Val s [Vn+a], [vn—a) . (20)
Mn -~ if [Mn| > ecusp — ) ted o en
ax = M . .
% (Ecusp+ eCUnSP> if [Mn| < ecusp Similarly, r; represents the associated eigenvectors, given by

B = sign(My)min(1,max(0,2|My|—1)) , (16) o= [ nmu nvtna

a = o +pBM,. wW—nya nO1+a(ny—nyw) ]T ,
In these equationsMp = vn/a is the Mach number in the face rz = [ny nu-na nyv
normal direction, andcyspis a threshold control value introduced nW+na Oy +a(mw-—nau) ]T '
in order to avoid zero artificial dissipation near stagnation lines. The e [ Ny NU+NA Ny—nad 21)
L andR subscripts represent reconstructed neighboring properties of s = L X
the k-th face. The definitions for such properties is presented in n,w nZ®1+a(nyu—nxv) }T ,
the forthcoming section which discusses the MUSCL reconstruction

[1 u+na vina wina H+ga |,

scheme. In the above scheme definitions, ktik subscript, which Fa

indicates a variable computed in the face, has been eliminated in order r

to avoid overloading the equations with symbols. It is important to o

remark here that face properties are computed using the Roe averifi¢re©1 = 0.5v-v. Thes; terms represent the projections of the

procedure (Roe, 1981; Swanson, Radespiel and Turkel, 1998). property jumps at the interface over the system eigenvectors, defined
The centered spatial discretization of the convective fllgesn ~ as the elements of

this scheme, for the present context, is defined as s =L [ Do Alpu) A(pv) Alpw) Ae }T ’ 22)

[1 u—m@a v-n@a w-na H-gna ]T,

nf
Ci= Z Pe (Qx) - Sk , Q== (QL+Qr), (17) where A() represents the corresponding property jump at the
k=1 interface. Moreover, the left eigenvectors are the rows of theatrix,

. . .. which are defined as
which means that reconstructed properties are also used to build the

convective fluxes in the CUSP scheme, here ter@ig&Rc scheme. L = { Ny + w — @4y Ouny

This does not seem to be the approach chosen by other CUSP users n, n,

(Jameson, 1995a; Jameson, 1995b; Swanson, Radespiel &ead, Tur Qv+ Oawn— 7 —Oony |,

1998; Zingget gl., 1999). In the_se references, the_re_spective authors |, = [ ny -+ w —0O4ny  Ouny — %z

apparently define the convective flux operator similarly to the one

presented in Eq. (5), that is, reconstructed properties are only used

to build the disgipation terms gnd constant p_roperty distri_bution is 13 = { n,+ %a“vu —Oun; Ouny+ %

assumed to build the convective terms. This approach is named n

CU SRy in the present context and it is compared to the here proposed OV~ Oowny  —Opn; |, (23)

fully reconstructed approach, as defined in Eq. (17). s = [©30,—F —Ou—%
—egv—% —egw—% 93 ] s

s = [ O3@1+% 7@3U+%

Upwind Roe flux-difference splitting scheme (f ROE) —Ogv+ % —Oaw+ R 03],

NI =

Ouvny  Ouwny+ % —@ony |,

Upwind Spatial Discretization Scheme

General definition of the scheme. The upwind discretization in with ©, = (y — 1)/a2, O3 = 0,/2 and®, = ©10;. In the above
the present context is performed by the Roe (1981) flux-differenadefinitions, thek-th subscript, which indicates a variable computed
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in the face, is eliminated in order to avoid overloading the equations MUSCL reconstruction
with symbols.

In the classical form in which the f ROE scheme is presented, such To achieve 2nd order accuracy in space for the CUSP and f ROE
as in Eq. (18), the underlining argument is the numerical flux concegighemes, linear distributions of properties are assumed at each cell
as also found in other upwind scheme examples (Azevedo, Figueirai@acompute the left and right states in the face. Such states are
Silva and Strauss, 2010; Steger and Warming, 1981). Therefate, edepresented by the andR subscripts, respectively, in the CUSP and
time the numerical flux is built, the inherent numerical dissipation i§ROE definitions.
also evaluated. In an explicit Runge-Kutta-type multistage scheme, The linear reconstruction of properties is achieved through the van
this fact means that the Roe matrix defined in Eq. (19) is computed ireer (1979) MUSCL scheme, in which the property at the interface is
all stages. The present authors rather understand the f ROE schemeltained through a limited extrapolation using the cell properties and
the sum of a centered convective flux, defined as in Eq. (17), and Hreir gradients. In order to perform such reconstruction at any point
upwind-biased numerical dissipation contribution, that is given by inside the control cell, the following expression is used for a generic

elementg, of the conserved variable vect@, in Eq. (1),

nf
1~
Di= ¥ 5|A|(Qr—Qu)ISd- 24) qxy2=q+0q-F, 28)
k=1

Theref the attracti h it ; ati ¢ twhere(x,y, z) is a generic point in thieth cell; g; is the discrete value
erelore, the atlractive, cheaper, aiternate computation o Ip?the generic property in thei-th cell, which is attributed to the cell

numerl_cal d'ss'pﬁ“f’“ in the n_1u|t|stage scheme, as already used cérntroid;Dq is the gradient of property; andr is the vector distance
the switched artificial dissipation schemes, can also be extended 1qr.

- . . ) the cell centroid to that generic point.
the upwind flux computation. A detailed comparison between the 9 P

S ) : Gradients are computed with the aid of the gradient theorem
classical implementation, nam@Dk;,, and the alternate multistage (Swanson and Radespiel, 1991), in which derivatives are converted
option, termedROE;y, is further assessed in the present work. Al ' '

. . . . . - Mnto line integrals over the cell faces such as
analysis of numerical solution quality and computational costs is also

performed.
(@) 1 @dvzi/ qi-dS, (29)
ox); ViJv ox Vils
Roe averaging. Similarly as in the CUSP scheme, properties in the
volume faces are computed using the Roe (1981) average procedyifiere 15 represents the unit vector in thedirection, andV; and
The conserved properties in the faces are defined such that the flyXare thei-th cell volume and external face area, respectively. In
in that face can be represented by a parameter vector, resultingtiie: present work, the control volum¥, to perform the gradient

P =P(w) andQ = Q(w), wherew is the parameter vector. This computation is chosen to be théh cell itself. This approach yields a

parameter vector is chosen in Roe (1981) as formulation that is identical to the one for calculations of the RANS
viscous terms. This procedure differs from the method proposed by
w=,/p [ 1 u v w H }T . (25) Barth and Jespersen (1989), in which an extended control volume is

assumed, but it is simpler and similar results are achieved (Azevedo,
This definition allows the exact solution of the problem proposefi9uéira da Silva and Strauss, 2010). Therefore, the expressions fo
by Roe (1981), in the form of Eq. (19). Conserved properties ifkthe the reconstructed properties in tk¢h face can be written as
th face are obtained through the previous parameter vector definition,

resulting in (k=0 +¥ilgi ‘Tki,  (dR)k =0m+¥mIdm Tkm,  (30)
Wi, + Wi wherellg; andOgn, are the gradients computed for thin cell and its
dj, = pki\/pT_-i- R’ Pk = +/PLPR (26) neighboringm-th cell, respectively); andy, represent the limiters

in these cells; andy; andTyy, are the distance vectors from théh

wherew; is a component of the parameter vectat, andg; is a and m-th cell centroids, respectively, to theth face centroid. The

component of the conserved property veogr, right-hand side cell, represented by timesubscript in the previous
definitions, can be both an internal or a ghost cell. If the gradients
- o are correctly set in the ghost cells, this formulation directly allows for
Stability and robustness enhancement. Similarly to the MATD  ocqntryction in the boundary faces similarly to internal faces. This

artificial dissipation scheme, the eigenvalues for the Roe scheme, Elocequre guarantees high discretization accuracy in the boundary
(20), can be clipped to avoid zero artificial dissipation near stagnatiQQ..s as well as in internal faces

points or sonic speed regions. In the Roe scheme case, the eigenvaluesrhe 1st-order CUSP or fROE schemes can be readily obtained

are smoothly clipped to therog threshold value such as by setting the limiter value to zero in Eq. (30). This operation
is equivalent to writingQ_. = Q; and Qr = Qm in the previous

My, , if Mj; > eroE formulation. The integration of MUSCL-reconstructed schemes with
My, = M3 : 27 igri is si i i
A 1 (6R0E+ SRQE) it My, < eroe, (27)  the multigrid framework is simply accomplished by computing the
2nd-order scheme in the finest grid level and the 1st-order one in the

other coarser levels. This approach guarantees lower computational
with M, = |Aj|/a. The threshold value is entered by the user, and itosts for the multigrid cycles while maintaining the adequate accuracy
is usually set aroundrog ~ 0.05. For more complex geometries, for the solution at the finest mesh level.
mainly with bad cells in the mesh, robustness is enhanced with The limiter options that are available in the present context are
erog ~ 0.15. the minmod, superbee and van Albada limiters (Hirsch, 1991). The
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2 ‘ L7 where
— mlnmobd .
r |-- superbee i b _ .
- van Albadg it qi+ = max(inQneighborQ , ¢ =min (QhQneighbors) . (34)
1.5+
The Barth and Jespersen (1989) limiter computation ini-tie
r cell is initiated by collecting the minimung;”, and the maximum,
o', values for the generigvariable in thé-th cell and its neighboring
= 1 cell centroids. A limiter is computed at eagtth vertex of the control
| volume as
05L min (1,nung;,/ders;) , if demy >0,
Pj(®) =< min(1,nung,/derg;) , if dersy <0, (35)
L 1 , ifdemgy=0,
0 where
Figure 1. Limiter functions. dersy = (Gi)j—Gi,
nung; = g —q, (36)
respective 1-D definitions for these limiters are nung; = ¢ —G.
min(®, 1) , The j-th vertex property is extrapolated from theh cell centroid
P (D) =<{ maxmin(2®,1), min(®,2)), (31)  Wwith the aid of Eq. (28), such dsj)j = g; + Uq-Tji, whereTj; is the
(P2 ®) /(@2 41) , distance vector from theth cell centroid to thej-th vertex. Barth

and Jespersen (1989) argue that the use of the property in the cell
and the respective function plots are shown in Fig. 1. The totakertices gives the best estimate of the solution gradient in the cell.
variation diminishing (van Leer, 1979; Barth and Jespersen, 198%he limiter value for thé-th control volume i, is finally obtained
region is limited between the minmod and the superbee curves. #3 the minimum value of the limiters computed for the vertices. The
the previous equationg) is defined as the ratio between the gradientgontrol volume limiter,i;, is eventually used to obtain the limited
of adjacent control volumes in the interface, which in a 1-D finitereconstructed property in the face, as shown in Eq. (30).
difference context yields

— o . oy General multidimensional limiter implementation (MU SClLge).
= P12 = (G W)/ (@ =a-1) - 32 The current extension of the 1-D Iirr?iters to the rrgultidimé?l;ional
One should observe that the minmod and superbee limiters require tr&se is originally based on the work of Barth and Jespersen (1989).
evaluation of maximum and minimum functions, which characterizeloreover, Azevedo, Figueira da Silva and Strauss (2010) alsorgrese
these limiters as nondifferentiable. The van Albada limiter, on theome insights into this effort in a 2-D case. The present work,
other hand, is continuously differentiable. This aspect is discussé@wever, presents a further extension of the methodology of Azevedo

further in the forthcoming paragraphs. Figueira da Silva and Strauss (2010). This extension is aimed at
allowing the user the choice of any desired limiter formulation. Barth
Limiter formulations and Jespersen (1989) proposal is a complete limiter implementation

in itself, and it has some advantages as well as disadvantages. One of

In a similar sense as discussed for the fROE upwind schemguch disadvantages is that it is not a continuous limiter. This aspect is
the usual way of computing limiters is to perform such calculationjiscussed further in the present work. In order to allow for a general
every time the new numerical flux should be updated. The limitefultidimensional limiter implementation, a further extension to the
computation work, though, is a very expensive task, amounting tQork of Barth and Jespersen (1989) is here proposed.
more than half of an iteration computational effort, in the present The difficulty in implementing a TVD method in a
context. Therefore, the idea of freezing the limiter along with thenultidimensional unstructured scheme is related to how to define the
dissipation operator at some stages of the multistage time-steppigigadient ratio,®. The definition for® in Eq. (32) is suitable for a
scheme seems to be very attractive in terms of possible computatiofiglte-difference context. Nevertheless, if one considers Eq. (32) as
resource savings. This possibility is proposed and addressed in terfhs ratio of the central- to the upwind-differenceqpboth evaluated
of numerical solution quality and computational resource usage in th the interface + 1/2, and also considering the bounding definition
present work. Limiter computation options are now discussed in ther the property in the face in Eq. (33), then a generalization of Eq.

forthcoming subsections. (32) to thek-th face of thei-th cell of an unstructured grid can be
obtained as

Barth and Jespersen multidimensional limiter implementation £ o) /P

(MUSClLgy). In this method, the extrapolated property in thh O = (D)= w , (37)

face of the-th cell is bounded by the maximum and minimum values (G )k —a) /[l

over thei-th cell centroid and its neighbor cell centroids (Barth and
Jespersen, 1989). This TVD interpretation can be mathematlcaﬂ‘fherequ is defined in Eq. (34) and the extrapolated property in the
written as face,(qi)k, is given by

o <(k<q . (33) (G)k = G + 0o - Fi - (38)
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In the previous definitiongy; is the vector distance from tlieh cell . Cel vert ex
centroid to itsm-th neighbor cell centroidry; is the vector distance .
from thei-th cell centroid to thé-th face centroid. x Face centroid

In this formulation, considering a quasi-uniform grid, in which
[Fmil = 2|Fki|, the numerator of in Eq. (37) can be rewritten as

1 1
T —a) ~ g (et -a) = @
[Fmil 2|rii|

1 (qii“'Qiqi): oO—X—0

> (39)

[Fidl
1 +
= |rki‘(qk Q|) ) X x@
whereqf are the maximum and minimum properties, in the sense of @
Eq. (34), though obtained at the centroid of the faces that compose the
i-th control volume. Theqf variables can be mathematically defined

as @ XK ®

— f Figure 2. Overview of the original and modified limiters in a 2-D a lication.
CI;_ = max(Qi»Qfaces) ) Qe = min (Qi,QfaceQ ) (40) 9 9 PP

where the property in the facegsaces IS the arithmetic average
of the properties in the neighboring cells, as in Eq. (5). Th
multidimensional gradient ratio for an unstructured grid face is finall

f this formulation, the mesh interval§i| and || cannot be
¥ancelled as in Eq. (39). Moreover, as exemplified in Fig. 2, the

obtained as distance ratio, |Fy;|/|Fji|, is lower than one, which results is an
num'/den , ifden>0, implemented gradient ratio that is smaller than the correct one. This
®=4 nunr/den , ifden<O, (41)  difference yields smaller limiter values, which can be interpreted as an
1 , ifden=0, undesired increase of diffusivity in the limiter implementation. This
where issue can be avoided with the use of extrapolated face properties, as
proposed in Egs. (41) and (42).
den = (gi)k—Gi, Thus, the complete definition for the current multidimensional
num = g/ -q, (42) limiter is finally presented. The computation of the limiter in tkté
num = g —q. cell is initiated by collecting the minimung,, and the maximum,

g, values for the generiq variable in the centroid of the faces
We now take the already presented Barth and Jespersen (1985 compose this-th cell, according to Eq. (40). Thieth face

limiter formulation, though defined for theth cell face rather than generic propertqu, for instance, is defined aK = (ql + qm)/zl

the originally described cell vertex situation, and compare it with thg/here them-th cell shares thé&-th face with thei-th cell. Eor each

previous generic gradient ratio definition. With the aid of Eq. (39), ik-th face centroid, the property )k = 0 (X, Vi Z) in that centroid is

can be concluded that the Barth and Jespersen limiter can be reWritm[’apo|ated as in Eq (38) The gradient ratio necessary to Compute

in terms of the previous generic gradient ratio as the limiter value is obtained through Eq. (41). A limiter is computed
min(1,2num*/den) , ifden>0, at each face of the gontrol volgme. The Iimitgr value for the
P (@) ={ min(L,2num /der) , if den<0, (43) th control volume is finally obtained as the minimum value of the
1 . ifden=0, limiters computed for the faces.

with den nunt™ andnunt previously defined in Eq. (42). From the - . . . .
. : .~ Smooth multidimensional limiter implementation. The
previous result, it can be observed that the Barth and Jespersen limiter

o . nondifferentiable aspect of the minmod, superbee and Barth
recasts the superbee limiter in the<Gp < 1 region, for a 1-D case. asp P e .
S ) . . and Jespersen limiters poses some numerical difficulties in
Similar conclusions have already been presented in the literature, RS S X . . . .
. their utilization for practical numerical simulations. Their
in Bruner (1996).

The advantage of the gradient ratio definition in Eqs. (41) and (4 iscontinuous formulation allows for limit cycles that hamper

. . - . L T e convergence of upwind inviscid and viscous flow simulations to
is that it can be directly used in any other limiter definition, such as th . o
. . Steady state (Venkatakrishnan, 1995). Furthermore, such limiters
ones presented in Eq. (31). It can also be used to recast the origina . - . . ; .
= . . . fe also insensitive to the relative magnitudes of the neighboring
Barth and Jespersen limiter formulation, as previously discussed, wi

a slight modification though. As also discussed, the original Barth ar%'adlents. This problem can be found in shock wave regions,

- L .~ Where nondifferentiable limiters may present oscillations, or even
Jespersen limiter uses extrapolated properties in the nodes to build the - . :

. . . oo In,apparently smooth regions, such as farfield regions, where such
gradient ratio, while extrapolated properties in the faces are preferred . .
> . ) D imiters may respond to random machine-level noise.
in the current implementation. Considering the Barth and Jespersen . . : .

One option to work around this problem is to freeze the limiter

vertex choice in the current gradient ratio definition (Eq. (41)), it Caleor some code iterations or residue drop, but this technique
be observed that

seems to not always work and to be highly problem dependent

(correc) _ nun- /|7l _ IFiil (num‘t) _ @(D(implementem (Venkatakrishnan, 1995). Such characteristics may also inhibit its
dery|riil Ml \ den Ikl application in actual production environment because of the need for

. (implementedi _ mq)(conect) user input in setting the limiter freezing operation for the simulation

IFjil ' (44)  of interest.
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Another option is to use differentiable (or continuous) limiters  With the chosen computational meshes, the authors attempt to
instead of the ones which require maximum and minimum functiongddress the behavior of the numerical code with grid characteristics
Some examples can be found in Venkatakrishnan (1995), for instanseich as refinement and topology. This evaluation is performed for
In that work, the continuous limiters are also augmented with the four flux schemes available in the current code, namely the
control parameter to drive the smoothness of the limiter in smalMAVR, MATD, CUSP and fROE schemes. For the CUSP and f ROE
amplitude oscillation regions, and also to allow for a smootlschemes, the van Albada limiter is chosen.
transition from limiting to nonlimiting state. In that formulation In this work, 2nd-order-accurate approximations for convective
(Venkatakrishnan, 1995), this limiter control is made grid-dependeffiux computations are available. Hence, the numerical error of the
in order to sensitize the local gradients to the local grid sizenethod as function of the mesh spacing can be written as
therefore eliminating small extrema oscillations. Although such

) . 2
control actually allows for machine-zero convergence, it seems that €rrortJAx®, (46)

it somehow poses a trade-off between convergence and obtainin% ) ) ) )

monotone (oscillation-free) steady-state solutions. whereAx, in the current study, is taken as the arithmetic average of

The option chosen in the present work is to remove the gria“? cubic root of the ceIIvqume:s, for each ofthe previously described
dependence of the limiter control and to add, instead, a constd#ids: If one takes the logarithm of both sides of Eq. (46), that
threshold value. The van Albada limiter, rewritten for suchfduation can be rewritten as
modification, is given by log (error)1 2 log(Ax) . 47
numt (num® +den) + epim

nunt2 -+ der? + epm

Y (num®, den) = , (45)  The logarithm of the theoretical error of the method has a slope of
two when plotted against the logarithm of the grid spacing. The actual

wheree v is the constant limiter control, chosen agy = 1074  spatial accuracy of the method, however, may be different from that

in the present work. This Option seems to be appropriate for emresented in Eq (47) The actual error can be written for a general

aerospace cases considered by the present and other developrfi@f€ as

groups (see, for instance, Oliveira, 1999), always allowing maehine

zero steady-state convergence for monotone numerical solutions. 109 (erront aclog(Ax) , (48)

These aspects are further analyzed in the results of the present work. . . .
P Y P Wlﬁ“lereoc is the slope of the actual spatial accuracy curve that is

attained with the implemented scheme. The error is here taken as the
RMS value of the difference between the prescribed and numerical

The flux computation schemes presented in the previous sectioqﬁns'ty fields.

are applied to inviscid and viscous flows about typical aerospace
configurations. Firstly and foremost, the actual order of accuracy of Table 1. Error slopes for different mesh and flux scheme settings
the discretization scheme is assessed. The influence of the numerical

Results and Discussion

schemes on shock-wave resolution is, then, addressed with a 1-D Hexahedra Tetrahedra
shock-tube problem, and a transonic inviscid flow about a typical MAVR 2.19 0.87
supercritical airfoil. Boundary layer flows are also addressed, for MATD 2.12 0.26
subsonic laminar flows about a flat plate configuration, with Reynolds Cusp 2.00 1.00
numberRe= 10° and Mach numbeMs, = 0.254. fROE 2.00 1.00

Discretization order of accuracy
The resulting slopes are collected in Table 1. From these results,
The current method for assessing the discretization order @fcan be observed that all flux schemes sustain the nominal 2nd-
accuracy is based on the verification methodology presented Byder accuracy for the uniformly-spaced hexahedral meshes Th
Roache (1998) and the discretization order of accuracy estimati@fder of accuracy deteriorates for the tetrahedral meshes. The
procedure from Baker (2005). In the current methodology, acgour switched artificial dissipation schemes (MAVR and MATD) present
term carrying information of a generically prescribed solution for théarger accuracy losses than the MUSCL-reconstructed counterparts
RANS equations is explicitly added to the RHS operator in order tfCUSP and fROE). The latter schemes present less mesh topology
drive the numerical solution to the prescribed one (Roache, 199&)ependency, which is an indication of increased robustness that one

The difference between the converged computational solution and th@uld like to have under highly-demanding or even inadequate mesh
original one is taken as a measure of the accuracy of the methqg||s.

as well as a confirmation of the correctness of the implementation |n Mavriplis (1997), it is argued that routine upwind schemes,
(Baker, 2005; Bigarella, 2002). such as the ones here used, are commonly applied in “a quasi-one-
For this verification effort, the chosen physical domain is aimensional fashion normal to control-volume faces”. Although
hexagonal block with unit sides. Several grid configurations are usele reconstruction and limiter formulations used in the paper are
for the simulations, including different number of grid points andruly multidimensional, the background upwind flux schemes are not,
different control volume types. The following sets of grids are used:and they “may misinterpret flow features not aligned with control

1. Uniformly spaced hexahedral meshes with-2Z5 x 25, 50x volume interfaces” (Mavriplis, 1997). The current authors attribute

50 50 and 75¢ 75 75 points; the observgd Iqss .Of accuracy in Fhe tetrahedral grid cases analyzed
before to this misalignment behavior.
2. Two isotropic tetrahedral meshes with 225 x 25 and 50x The dependency of the discretization accuracy on mesh cell
50 x 50 control points in the domain edges. type and topology is acknowledged in the literature, as discussed
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by Mauvriplis (1997), Deconinck, Roe and Struijs (1993), Sidilkover i
(1994), Peroomian and Chakravarthy (1997), Deconinck ande2egr 16 |~ Anawtical

— MATDsf
(1999), Jawahar and Kamath (2000), and Drikakis (2003). These - MATDde

references, in particular, present efforts towards the developofent 5 | == MATDnc |
numerical schemes that are less sensitive to mesh topology, and that12
present native multidimensional “cell-transparent” behavior. This isg-
certainly an interesting development to be brought to the current codé

context, but it is beyond the scope of the present work.

SUre!

1-D shock tube

dimension

Computations of 1-D shock-tube inviscid flow cases are
considered. Numerical results are compared to the analytical solution
for this problem. For the numerical simulations, an equivalent 3- | | | |
D grid composed of a line of 500 hexahedra is used. The initial . 03 04 L 0.5 0.6 0.
dimensionless density condition for the left half part of the shock ) )
tube ispk; = 1, whereas on the right halpR; = 20. The reference (2) Dimensionless pressure.
conditions are taken in the initial state of the low pressure side of g
the shock tube. Equal temperatures are assumed at both sides of the

N
~

. . . . . . L |+— Analytical ]
shock tube. Several other simulations with different density ratios _ MAT{)Sf
have also been performed and the results are essentially similar to the16 |--- MATDfd -
ones presented in the forthcoming analyses. A constant dimensionle§s ~- MATDnc

time step ofAt = 102 is used for this transient solution, and the é

forthcoming plots are taken it= 0.1. 0 12 .
% i

MATD results. The three possible implementation forms of the g 8 |

MATD atrtificial dissipation method are here assessed. NIAG Ds¢ E |

option is the straightforward extension of the nominal finite-volume
scalar artificial dissipation (MAVR) to a matrix version. The 4
advantageous implementation form as found in a finite-difference
context cannot be used due to the necessity of performing a surface

integral of the scaling matrix. Another option, nameéAT Dsg, 92 6_3 6_4 0‘.5 0‘,6 0.7
uses this attractive finite-difference-like implementation form, which x/L
unfortunately is not in accordance with the current finite volume (b) Dimensionless density.

artificial dissipation framework formulation. This option is only Figure 3. Property distributions along the shock tube obtained with
considered here to verify this previous assertive. Finally, a mixegifferent MATD model options.
version that allows for a surface-integrated scaling matrix, though in a
nonconservative form, with the same advantageous finite-difference
like matrix implementation, here term&AT Dnc, is suggested. multidimensional limiter implementation. The limiter computation is
Dimensionless pressure and density distributions along the tubgly performed in alternate stages of the Runge-Kutta time step.
longitudinal axis are presented in Fig. 3. One can clearly observe in Swanson, Radespiel and Turkel (1998) argue that the original
this figure that all MATD options allow for pre- and post-discontinuityCUSP scheme formulation, here tern@d SRy, does not nominally
oscillation to build up. The less correMAT D4 option presents provide oscillation-free shocked-flow results. The current authors
much larger oscillations, whereas tMAT Dy option presents the believe this behavior is due to the computational form of the centered
lowest levels of oscillation. All options, however, correctly follow theconvective fluxes, which uses constant properties in the cells in the
analytical result trends. In terms of computational resource usagje, t@riginal formulation. The authors believe that the use of reconstructed
finite-difference-like implementation does present advantages owvefoperties in the faces to build such fluxes may overcome such
the finite volume form. ThéAT D4 and MAT D¢ options require limitation. These arguments are corroborated by the pressure and

about 30% less computational time than BAT Ds formulation for ~ density results presented in Fig. 4. Both CUSP implementation
this test case. options compare very well with the analytical solution. It can be

observed in Fig. 4 that the origin@lU SRy; formulation does allow

. . . oscillations to build up near discontinuities, while the proposed
CUSP results. The CUSP scheme implementation options are her&USl-?ec option prevents such undesired behavior. Furthermore,

addressed. Th@USRy formulation (Jameson, 1995a; Jamesonthe latter option also exhibits a crisper representation of the high-

1995b; Swanson, Radespiel and Turkel, 1998) uses constarryrop ressure-side expansion region. Finally, @SR implementation

distributions in the cell to build the centered convective fluxesp B = . . .
. ) fequires less than 10% additional computational time than the original
whereas theCUSR.c option proposed in the current work uses q 0 P 9

o ormulation to compute the current test case.
reconstructed properties in the faces to compute such fluxes. T%e P

dissipation formulation is identical between both options, and a value
of ecysp= 0.3 is chosen for the CUSP constant. The van Albad&ROE results. The classical numerical flux implementation of

limiter is used here in the reconstruction process within the proposéite Roe flux schemef ROE;,) is compared to the here proposed,
cheaper implementatiorf ROE,;) that uses the concept of centered
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Figure 5. Property distributions along the shock tube obtained with
different f ROE scheme options.

Figure 4. Property distributions along the shock tube obtained with
different CUSP scheme options.

convective flux plus upwind artificial .dissipatior.\ terms compute.d |r|1 the numerical solutions can be observed in the results, regardless
alternate stages of the Runge-Kutta time marching procedure. L|m|té]{ he limiter formulation used. The comparison with the 'analytical
settings are exactly the same as used for the previous CUSP sche s o S . .

. - L solution is also very good, with treaiperbedimiter presenting crisper
simulations. Pressure and density distributions for the Roe SCherﬂfg‘écontinuities as expected, due to its less diffusive formulation. As
are presented in Fig. 5. Numerical solutions compare very we ready di ’ d hp h’ d limi h ’ b
with the analytical one, and no oscillation near discontinuities cal ready discussed, the Barth and Jespersen limiter recasts the superbe

be found in the numerical solution. It is interesting to observe that nbm'ter inthe 0< ® < 1 range, in the 1.D case. This is confirmed

differences betweefiROE,, and fROE;; options can be observed. In Fig. 6, since the former limiter results are virtually identical to

The fROK,5 scheme, however, is about twice as expensive as tﬁge latter ones. The van Albada limiter result_s I_|e within the_more-
. . . and the less-diffusive minmod and superbee limiters, respectively, as
fROE,; implementation, proposed in the present paper.

expected. It should be remarked here that its augmented smoothness

cannot be demonstrated in this transient case since it is a feature
MUSCL results. The original Barth and Jespersen multidimensiona@esigned for steady problems.

limiter (MUSClgj) is compared to the generic multidimensional
implementation U SClge) proposed in the work. The minmod, van
Albada and superbee limiters are considered in order to demonstrate
the capability of the current multidimensional reconstruction scheme Similar analyses, as performed for the 1-D shock tube, are now
to handle various limiter types. For this study, HiROE,;; scheme is considered for a multidimensional case. Transonic inviscid flows
used with limiter computations at alternate stages of the Runge-Kutdout the Boeing A4 supercritical airfoil (Nishimura, 1992) are
scheme. Pressure and density results for the previous limiter optiocisosen for such analyses. A C-type grid with 2004 cells over

are shown in Fig. 6. One can clearly observe in this figure that the profile and along the normal direction, respectively, is considered.
correct solution is obtained for all cases, which demonstrates that tAeview of this configuration can be found in Fig. 11 for another grid
current multidimensional reconstruction scheme does allow for thesed in further studies in the paper. The farfield extends to 20 chords
use of various limiter formulations. In general, no oscillatory behavioaway from the profile. The freestream Mach numbevlis= 0.768

2-D supercritical airfoil
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Figure 6. Property distributions along the shock tube obtained with Figure 7. Simulation results for the supercritical airfoil obtai ned with
different limiter implementation options. different MATD model options.

and the angle of attack is= 1.4 deg. In the present simulations, three

grid levels in a “v” cycle, with one iteration before and after propertyPth 0Ptions, which include some surface integration in the definition
restrictions and prolongations, are used in the multigrid method. Tf% the scaling terms of the art_|f|0|a| d|5$|pat|on, NamigAT Dst "’F“d
CFL number in all flux computation schemes is seCieL = 1.25. MAT Dhc, converge well for this case, while tAT Dyg formulation

The numerical schemes are evaluated at a multidimensional shockggSents convergence stall due to the oscillatory behavior of the

flow in order to assess their capability at correctly solving such te§P|Ut'°n'

cases. Moreover, numerical results are not compared to expéaimen

ones in this case because viscous terms and turbulence modeling@tSP results. The CUSR;; andCU SRec scheme options are here

not included in the present calculations. addressed. Numerical settings are taken similarly to the previous 1-
D shock tube caseCp distributions and residue histories for these

MATD results. The three possible implementation forms of theCases are presented in Fig. 8. As already observed in the 1-D case,

MATD artificial dissipation method, nameMAT Ds, MAT Dy 4 and the originalCU SRyt implementation allows for oscillations to build
MAT Dnc, are here assessed. Pressure coefficient distributions and H%in the solution. This undesired behavior is avoided with the use of
residue histories are presented in Fig. 7. It can be observed in Flgconstructed properties in the faces to compute the convective flux

7(a) that the thre€ p distributions present differences. TNATDg; ~ €ms- The convergence of &) Skec option seems to be more
results seem to present a larger amount of dissipation MAED;q ~ "OPuSt than th€U SRy implementation, mainly because of the lack
option presents several oscillations near the shock wave discontinufgf.2Scillatory structures in the numerical solution.

This observation corroborates the assertive that the present switched

artificial dissipation model is calibrated to receive only surfacefROE results. The classical numerical flux implementation of
integrated coefficients, which is not the case forM&T Ds4 option.  the Roe flux scheme fROE;,) is compared to the proposed,
The MAT D¢ formulation avoids such oscillation problem while computationally cheaper,fROE,; implementation.  Numerical
allowing less dissipative results at lower coste,, approximately settings similar to those used in the 1-D shock tube case are also
30% cheaper than thdAT Ds; option. Residue histories show that considered for the present study. As already expected, no large
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. . different fROE scheme options.
different CUSP model options.

with the superbee and the Barth and Jespersen limiters present crisper
differences can be observed between the two solutions, in termsdi§continuities, as already observed in the shock-tube case. As also
both numerical resolution of the flow propertiég,, airfoil pressure already observed, the van Albada limiter results lie within those of the
coefficient in this particular case, and residue histories, as shownnmnmod and superbee limiters.
Fig. 9. ThefROE,; option, however, converges in almost half the It is interesting to observe in the residue histories in Fig.
computational time used by the classid®OE,, implementation. 10(b) that the minmod, Barth and Jespersen and superbee limiters
The reader should observe that Fig. 9(b) is showing the residypeesent residue stall. As already discussed, this behavior is due
histories as a function of multigrid cycles. However, thROE,; to their discontinuous formulation, which involves the evaluation
option costs almost half the computational time of thROE,, of maximum and minimum functions. The continuous van Albada
option per multigrid cycle. These results, once again, show thaption, on the contrary, allows for automatic residue convergence,
the same quality of numerical solution and convergence rate can that is, convergence without the need for user inputs such as limiter
obtained with the proposed implementation method at much lowéreezing.
computational resource usage.

Grid refinement study. The previous 2-D airfoil case is revisited for
MUSCL results. The original Barth and Jespersen multidimensionah mesh refinement study. In these analyses, the MATD model stands
limiter (MUSClg;) is compared to the here proposed generidor the MAT Dy option; the CUSP model is actually ti&J SRec
multidimensional implementationMUSClge). The minmod, van option with the van Albada limiter computed at alternate stages of the
Albada and superbee limiters are considered within the generfRunge-Kutta time stepping scheme; and the f ROE scheme represents
multidimensional reconstruction scheme. Numerical settings simildéihe fROE,; implementation with the same previous CUSP limiter
to those used in the 1-D shock tube case are also considered for #ettings. Three C-type grids, with 1824, 150x 40 and 255« 64
present studyC p distributions and residue histories for these casesells over the profile and along the normal direction, respectively, are
are presented in Fig. 10. No oscillatory behavior in the numericaised. A view of the grid with 25% 64 cells can be found in Fig.
solutions can be observed in all presented results. The solutioh%. Pressure coefficient distributions over the profile, obtained with
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Figure 10. Simulation results for the supercritical airfoil obta ined with (b) Cpdistributions.
different limiter implementations.
Figure 11. 2-D view of the grid over the supercritical airfoil with 255x 64

cells, and respective wall Cp distributions obtained with different flux
computation schemes.

the previously discussed flux computation schemes, are presented in
Fig. 11(b) for the 255 64-cell computational grid. One can observe
in this figure that all numerical schemes yield results that are vemjuch less pronounced in these cases. The numerical results obtained
similar to each other at computing a crisp shock-wave discontinuityith both models are comparatively much similar to each other, with
and overall pressure distributions. These computational results cae CUSP scheme presenting slightly better results.
therefore, be considered as a reasonable reference solutiomtfaarfu
comparisons in the paper. Subsonic flat plate

It should also be remarked here that the numerical results
are not compared to experimental results because an inviscid The present effort has been strongly motivated by an anomaly
approximation is considered for the numerical simulations, which i®und in previous simulations of subsonic flat-plate boundary layers,
not representative of the actual turbulent viscous wind-tunnel floumore precisely, in the bend of the boundary layer profile (Strauss,
The main interest here is the behavior of the numerical schemes2fi01). Further studies associated this issue to the explicitly added
computing shocked flows at successively refined computational gridatificial dissipation terms for the centered flux computation scheme,

Pressure coefficient distributions over the profile obtained withs reported by Bigarella (2002). A dependency of the numerical
different meshes and flux computation schemes are presented in Fglution with the computational mesh topology and refinement has
12. In this figure, one can observe that the MAVR scheme preseratso been observed. Although Bigarella (2002) reports this problem in
considerable variations in the results as the grid is refined. Moreoverdifferent context, namely a finite difference code, the same issue can
the shock wave position also varies considerably with grid refinemerglso be found with the present finite volume formulation (Bigarella,
More consistent results can be obtained with the MATD modeMoreira and Azevedo, 2004). Moreover, Bigarella, Moreira and
Differences among the solutions are much smaller in this case aAdevedo (2004) also discuss a detailed analysis of mesh topology
the shock wave position presents less changes with grid refinemefa: such boundary layer flows. Such work has shown that an
The CUSP and fROE schemes present even more consistent resdtiequate mesh topology for boundary layer flows should respect
and the variations in the numerical solution with grid refinement areertain characteristics, which are described in the next paragraph.
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Figure 12. Wall Cp distributions over the supercritical airfoil obtained with

different flux computation schemes and computational grids.
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Figure 13. 2-D views of the grid over a flat plate with 20 points insid e the
boundary layer.

The corresponding mesh generator places a user-provided number
of computational cells inside the boundary layer. These cells are
evenly spaced along the wall-normal direction, and they extend to
a user-defined heightjmax given by a Blasius-transformed length,
which is defined ag) = (y/x) /Re. Therefore, the physical height
of the boundary layer points varies with the longitudinal position,
following the theoretical growth of the boundary layer up to the value
of nmax. This grid construction allows the user to keep a constant
number of points inside the boundary layer along the flat plate length.
In the actual implementation, however, in order to avoid numerical
difficulties near the plate leading edge, this assertive is valid for
the last three quarters of the flat plate length. This specific grid
construction requires the knowledge of the flow Reynolds number,
which should be correctly provided by the user. The plate length is
fixed as one and the grid extends two lengths upstream of the plate
leading edge, and one length along the normal direction. Outside
the boundary layer, an automatic exponential growth guarantees the
normal direction length extension and a sufficiently low number of
control volumes. One quarter of the number of points specified by the
user for the longitudinal direction is placed in the two-length space
ahead of the plate, and the remaining points are placed along the
plate longitudinal direction. These points are clustered near the flat
plate leading edge in order to account for the larger gradients that are
expected in this region.

Hence, subsonic laminar flows about a flat plate configuration,
with Reynolds numbeRe= 10° and Mach numbel, = 0.254, are
addressed. Three consecutively refined grids are generatedsor th
flow case. For the present study, different number of cells inside the
boundary layer, namely 10, 20 and 40 cells, are considered, with 30
cells outside the boundary layer. The user-defined boundary layer
height in terms of the Blasius transformed coordinatgigx= 6. All
grids have 81 points along the longitudinal direction. A view of the
grid with 20 points inside the boundary layer can be found in Fig. 13.
Figure 14 presents boundary layer results obtained with the previously
described computational grids. The flux schemes considered in these
analyses are the same used in the previous 2-D airfoil subsection.
Centered- and upwind-scheme results have been considered in this
figure, and they are compared to the theoretical Blasius solution. It
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Figure 14. Laminar boundary layer profiles over a flat plate obta ined with
different flux computation schemes and computational grids.
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is interesting to observe that the upwind fROE scheme, as well as
the centered MATD and CUSP models, guarantee the correct solution
with all tested grid configurations. The MAVR centered scheme
presents an anomaly in the bend of the boundary layer profile for the
grids with a smaller number of points in the boundary layer, as also
verified by Bigarella, Moreira and Azevedo (2004). The oscillation,
nevertheless, decreases with the increasing number of points inside
the boundary layer. It is only with the 40-point grid configuration that
the correct solution can be obtained with the MAVR model.

Concluding Remarks

The paper presents results obtained with a finite volume
code developed to solve the RANS equations over aerospace
configurations. Several flux computation schemes are considered in
the paper. The convective fluxes can be computed by either a centered
scheme plus explicitly added artificial dissipation terms, or the Roe
upwind scheme. For the centered scheme, three artificial dissipation
models are addressed, namely a scalar and a matrix version of a
switched model, and the CUSP scheme.

Multidimensional interpolation is used in order to achieve second-
order accuracy for schemes that require property reconstruction.
An extension to the work of Barth and Jespersen is proposed and
evaluated in the paper. Such extension aims at decreasing the level of
dissipation added by the original limiter formulation, which has been
verified in the presented results. As a byproduct of such effort, wario
limiter formulations can also be used within the multidimensional
unstructured code structure. A smooth limiter option is also
proposed and used to achieve machine-zero convergence of menoto
numerical solutions without user interference.

Several formulation and implementation approaches for such
methods are proposed and assessed in the paper in order to enhance
robustness, numerical accuracy and computational efficiency of the
numerical tool for aerospace flow cases. Comparisons of nurherica
boundary layers for a zero-pressure gradient flat plate laminar flow
with the corresponding theoretical Blasius solution show the level
of accuracy that can be obtained with the present formulation. It is
observed that the scalar artificial dissipation model presents a very
large dependency on the grid density. For this model, about 40 cells
inside the boundary layer are required to correctly solve the boundary
layer flow. The matrix artificial dissipation model, as well as the
CUSP and the Roe schemes, require only 10 points to achieve the
same level of accuracy. The grid-independent converged solutions
for all methods, are very close to the theoretical Blasius solution.

The code is also able to correctly solve for more complex flows,
such as the transonic flow about a typical supercritical airfoil. The
ability of the flux computation schemes in calculating shock waves
in the solution is assessed in the present study, in particular with
regard to the dependency with grid density. It is observed that more
consistent solutions can be obtained with the Roe and CUSP schemes,
to which small variations with grid refinement are verified. The
scalar artificial dissipation model is not so effective in these analyses,
and a considerable dependency of the numerical solution with the
grid configuration is observed. The matrix version of the switched
artificial dissipation model presents more consistent results than its
scalar counterpart.

The numerical schemes proposed in the paper compose a set
of methods for accurately solving complex flow phenomena typical
of aerospace flow applications. Numerical robustness, accuracy
and efficiency could be obtained with the proposed implementation
options. The schemes and the experience acquired in the present
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study have advanced the capability of simulating the transonic amt Accuracy and Multigrid Convergence”|nternational Journal  of
supersonic viscous flows of interest to IAE, which motivated th&omputational Fluid Dynamics/ol. 4, pp. 171-218.

current effort.
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