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A First Attempt Towards Reliability-
based Calibration of Brazilian 
Structural Design Codes 
This paper addresses the reliability-based calibration of partial safety factors for Brazilian 
design codes NBR8681:2003 (Actions and Safety of Structures) and NBR8800:2008 
(Design of Steel and Steel-Concrete Composite Structures). To the author’s knowledge, 
these codes have never been subject to reliability-based calibration of partial and load 
combination factors. This paper represents a first effort in reaching this goal. The present 
calibration effort is based on actual data for wind loads in south east of Brazil, but uses 
mainly international data for other problem parameters. So far, the investigation is limited 
to structural steel members. The investigation leads to a set of optimized partial safety 
factors, which are compared to partial factors currently used in Brazilian design codes. 
Results show that the optimized set of partial factors leads to more uniform reliability for 
different design situations and load combinations. The investigation includes an analysis 
of the economical impact of replacing the current set of partial factors by the calibrated 
factors found in this paper. It is shown that, with an optimized set of partial safety factors, 
it is possible to maintain the current level of reliability and still produce a 5% average 
reduction in expenditure with structural materials, nationwide. The paper also points to 
general similarities between Brazilian design codes, the new generation of EUROCODES 
and American ANSI/AISC codes. These codes are compared in terms of their ability to 
produce uniform reliability for different design situations. 
Keywords: structural reliability, design codes, code calibration 
 
 
 

Introduction 

1In the late 70’s and early 80’s, ANSI/AISC structural design 

codes have undergone significant improvements, with a migration 

from allowable stress to limit state (partial factor) design. This 

migration process was guided by reliability-based calibration of the 

partial safety factors of the new codes. The calibration was 

conducted ensuring that the safety level of the new codes reflected 

the general safety level of old codes, which was regarded as result of 

collective knowledge and experience-based optimization over the 

years. This process was well documented in the literature 

(Ellingwood et al., 1980; Ellingwood and Galambos, 1982).  

More recently, European design codes also migrated to a limit 

state partial factor format. European Union member states are now 

individually defining the partial safety factors to be used within each 

country. Individual efforts in performing the reliability based 

calibration of these partial factors have been reported (Gayton et al., 

2004; Gulvanessian and Holicky, 2005). 

The Brazilian “Actions and Safety of Structures: Procedures” 

(NBR8681:2003) and “Design of Steel and Steel-concrete 

Composite Buildings” (NBR8800:2008) were also recently 

converted to a limit state partial factor format. Both codes are 

largely based on the EUROCODES, but their conception was not 

accompanied by a consistent (e.g., reliability-based) tropicalization 

of partial safety factors. Adaptations of partial safety factors were 

based on subjective judgment, derived from the experience of 

committee members. The same partial and load combination factors 

are currently being revised in application to the EUROCODES. 

The present paper is a first effort towards verifying the adequacy 

of partial factors currently used in Brazilian design codes. Statistical 

description of resistance and load parameters for the Brazilian 

reality is currently incomplete. There have been no comprehensive 

studies of uncertainties in dead and life loads reported in the 

literature. For these parameters, international data is used in the 

present investigation. Some information on material resistance for 

steel, concrete and wood is available, but in scattered form. This 

                                                           
Paper accepted December, 2009. Technical Editor: Nestor A. Zouain Pereira 

 

information still has to be collected and compiled for future 

calibration work. Statistics for the occurrence of winds in Brazil 

have been reported (Santos, 1989; Riera and Rocha, 1998) and are 

used in the present study.  

The article is laid out as follows. Section 1 introduces the 

subject and locates it in a historical and geographical perspective. 

Section 2 presents the basic formulations of codified limit state 

design, with particular attention to similarities between the 

ANSI/AISC, EUROCODE and Brazilian code formats. Section 3 

presents de statistical data used in the present calibration effort. In 

section 4, the calibration (optimization) problem is formulated. 

Results of a first calibration are presented in Section 5. Section 6 

presents a comparison of different code formats (ANSI/AISC versus 

EUROCODE) in terms of calibration of partial factors. Section 7 

presents a study of the potential economical impact of implementing 

the partial safety factors found in the present calibration effort. 

Section 8 closes the paper with some conclusions. 

Nomenclature 

D = dead load, non-dimensional  

L = live (accidental) load, non-dimensional 

W = wind load, non-dimensional 

La.p.t. = average-point-in-time value of live load 

L50years = fifty-year extreme live load 

W1year  = annual extreme wind load 

W50years = fifty-year extreme wind load 

R[] = general resistance function 

S[] = general load effect function 

Greek Symbols 

γ = partial factor applied on nominal loads and resistances 

φR = partial factor applied on nominal resistance 

ψ  = load combination factors  

Subscripts 

k relative to characteristic value 

n relative to nominal value 

D relative to design value 

 

 



André Teófilo Beck and Antônio C. de Souza Jr. 

120 / Vol. XXXII, No. 2, April-June 2010   ABCM 

Codified Limit State Design 

ANSI/AISC Load and Resistance Factor Design 

The design format used in current ANSI/AISC design codes 

came to be known as Load and Resistance Factor Design (LRFD). 

The general design equation is given by (ASCE, 2006): 
 

D n i ni j nj R n
D Q Q Rγ ⋅ + γ ⋅ + γ ⋅ ≤ ϕ ⋅   (1) 

 

where index n stands for nominal value, γ are partial factors applied 

on (nominal values of) loads, Dn is the (nominal value of) dead load 

(self-weight), Qni is the principal variable load, Qnj is the 

accompanying variable load, Rn is a nominal member resistance and 

φR is a partial safety factor applied on nominal member resistance. 

Reliability-based calibration of partial factors of ANSI/AISC 

codes has been facilitated by the simplicity of these in comparison 

to European and Brazilian codes. This simplicity arises from use of 

a single resistance factor for member resistance, but also from using 

a set of pre-defined load combination equations. A different set of 

partial safety factors is used for each load combination, and the 

combined factored load effects are given by: 
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where SD is the design load, L is the live load (called accidental load 

in Brazilian codes), W is the wind load, S is the snow load and E is 

the earthquake load. 

Determination of load factors for ANSI/AISC codes was also 

simplified by the rule used in load combinations. These codes are 

based on Turkstra’s load combination rule (Turkstra and Madsen, 

1980), where the extreme of one variable load (called principal load 

in the combination) is combined with the average-point-in-time 

value of the accompanying loads. This simplifies the reliability 

problem, which becomes time-invariant, with random load 

processes replaced by (extreme-value) random variables. 

NBR8800 and EUROCODE Formats 

The general format adopted in Brazilian NBR8800:2008 and in 

European design codes uses a single load combination expression: 
 

n
k

D n i ni j j nj

j i R

r
S D Q Q R

≠

   
γ ⋅ + γ ⋅ + ψ ⋅ γ ⋅ ≤   

γ  
∑

 (3) 
 

where S[.] is a load effect function, R[.] is a resistance function, rk is 

a characteristic material resistance, γR is the resistance factor (one 

for each structural material), γi are partial load factors, ψj are load 

combination factors and other symbols are equivalent to Eq. (1). 

Here, one resistance factor is used for each structural material 

involved. The format is more flexible in terms of resistance 

modeling, but less flexible is terms of load combinations, as will be 

shown in Section 6: Calibration in Other Code Formats.  

In this study, load combinations involving permanent and 

variable actions are considered. Accidental (live) and wind variable 

actions are considered in the study, leading to five load combination 

equations, following Eq. (3): 
 

max

D n

D n L n

D D n W n

D n L n W W n

D n W n L L n

D

D L

S D W

D L W

D W L

γ 
 γ + γ 
 = γ + γ
 
γ + γ + γ ψ 
 γ + γ + γ ψ   (4) 

 

The first three combinations are particular cases of the last two, 

when variable loads Ln and/or Wn are zero or non-existent. The first 

three equations are reproduced here for completeness, to stress the 

fact that load combinations involving only some of the variable 

loads are also relevant in calibration of Brazilian design codes. 

Dead and Live Loads 

Actual data on dead and live load uncertainty is not available for 

the Brazilian reality. In this investigation, it is assumed that no 

significant differences exist in dead and life loads between Brazil 

and what is reported in international references. This assumption 

should be investigated in the future.  

Dead and live load statistics used in this paper are based on data 

reported by Ellingwood et al. (1980), as presented in Table 1. 

NBR8681 Code Format 

The general design format adopted in Brazilian code 

NBR8681:2003 differs slightly from the format adopted in 

NBR8800: 
 

n

k
D n i ni j nj

j i R

r
S D Q Q R

≠

   
γ ⋅ + γ ⋅ + ψ ⋅ ≤   

γ     
∑

 (5) 
 

The symbols are similar to those used in Eq. (3). In this format, 

the partial factor for the principal variable action is multiplied by the 

combination value of the secondary variable action. In the author’s 

understanding, and from a theoretical point of view, there is no 

justification for this format; hence the NBR8800 format should be 

preferred. Reliability indexes obtained for current and for calibrated 

factors, for these two formats, are compared in Section 6.  

The load combination equations corresponding to Eq. (4) are: 
 

max

( )

( )

D n

D n L n

D D n W n

D n L n W n

D n W n L n

D

D L

S D W

D L W

D W L

γ 
 γ + γ
 
 = γ + γ
 
γ + γ + ψ 
 γ + γ + ψ   (6) 

Comparison of Code Formats 

The symbols used in this paper to describe the different code 

formats differ somewhat from the symbolism used in each of the 

described codes. This was done on purpose, since our objective is to 

stress the similarities between the code formats, and later compare 

these formats (see Section 6).  

One of the main differences between the ANSI/AISC and 

Brazilian (or European) code formats is the way the partial 

resistance factor is applied. In ANSI/AISC codes, a single partial 

resistance factor is applied to nominal member resistance. In 
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Brazilian and European design codes, a different partial resistance 

factor is used for each structural material. It is widely accepted 

(Kogut and Chou, 2004; Mohamed et al., 2001) that the ANSI/AISC 

format lacks flexibility, and results in non-uniform reliability in 

problems involving more than one structural material (for example, 

reinforced concrete or steel-concrete composites).  

Use of a single resistance factor in ANSI/AISC codes makes the 

reliability-based calibration easier. In calibration of EUROCODES, 

fixed sensitivity factors have been used to split the load and 

resistance parts of the problem (Holicky, 2008), so that calibration 

can be performed separately. 

Differences between different code formats, with respect to 

resistance modeling, are not explored herein, but will be addressed 

in future studies. The present study is limited to structural steel 

members. Moreover, in the present study, a linear resistance model 

R[.] is assumed, hence the partial resistance factors in the 

ANSI/AISC and Brazilian formats become equivalent: 
 

1
R

R

= ϕ
γ

 (7) 
 

The present study explores differences related to load 

combinations in distinct code formats. In this regard, it is noted that 

the ANSI/AISC code format is more flexible than the European or 

Brazilian counterparts, since it uses one set of partial factors for 

each load combination equation, whereas Brazilian codes use one 

single set of partial (and combination) factors for all load 

combination expressions.  

The general format of the ANSI/AISC code, for load 

combinations involving live and wind loads, would lead to the 

following design equations:  
 

1
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γ + γ + γ 
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These are not the design equations of the ASCE:2006 code, 

Eq. (2). Equation (8) is the ANSI/AISC equivalent to Eqs. (4) and 

(6). It is noted that this format, which uses different load factors in 

each load combination, has 11 degrees of freedom, whereas 

combinations (4) and (6) have 5 degrees of freedom each. This 

difference between design code formats is explored in Section 6. 

Statistics of Load and Resistance Parameters 

Structural Steel Members 

Statistics on structural steel member resistance is taken from 

Ellingwood et al. (1980). Statistics for different steel members 

(tension members, compact beams, concentrically loaded columns 

and beam columns) do not vary too much. Hence, as approximation, 

a single set of structural steel statistics is used in the present 

calibration effort: mean of 1.18Rn, coefficient of variation (c.o.v.) of 

0.15. This c.o.v. accounts for material uncertainty and model error. 

The mean of 1.18 Rn is already adjusted to take into account the rate 

of loading, for combinations involving wind. These values are in 

agreement with results reported by Pimenta et al. (2008) regarding 

bending of steel beams in Brazil. 

Table 1 summarizes statistics of load and resistance variables 

considered in this study. In Table 1, L50years and W50years are the 50 

year extreme live and wind loads, respectively, which are generally 

combined with the annual extreme wind (W1year) and with the 

average-point-in-time live load (La.p.t), following Eq. (13). 
 

Table 1. Statistics of resistance and load variables. 

Variable mean c.o.v. distribution 

Res. of steel members 1.18 Rn 0.15 lognormal 

Dead load 1.05 Dn 0.10 normal 

Life load: 

La.p.t. 0.25 Ln 0.55 Gamma 

L50years 1.00 Ln 0.25 Gumbel 

Wind load 

W1year 0.33 Wn 0.47 Gumbel 

W50years 0.90 Wn 0.34 Gumbel 

Wind Loads in Central-South of Brazil 

Statistics of annual extreme storm winds for the central-south of 

Brazil have been reported by Santos (1989) and Riera and Rocha 

(1998). Wind speed series of 15 to 29 years, recorded on 11 

meteorological stations, were used by Santos (1989) to divide the 

central-south of Brazil in 5 meteorological provinces. The author 

constructed regression curves, which allow one to evaluate mean 

and standard deviation of maximum annual wind speeds at any 

location within the 5 provinces, according to type of storm and wind 

direction. Maximum annual wind speeds, independent of storm type 

and direction, can also be evaluated.  

The present study is based on evaluation of the model of Santos 

at 16 locations (11 meteorological stations and geometrical centers 

of 5 provinces). Mean and standard deviation of maximum annual 

wind speeds were evaluated at these locations and fitted to Gumbel 

distributions. These were then converted to 50 year extremes using: 
 

( )
50years 1year

50

( ) ( )
W W

F x F x=
  

 

By comparing the mean of extreme wind speeds at the 16 

locations with nominal (design) wind speeds (NBR6123:1988), the 

wind statistics shown in Table 2 were obtained. 
 

Table 2. Statistics of wind speeds. 

Variable mean* c.o.v. distribution 

Wind 

speed: 

V1year 0.57 Vn 0.21 Gumbel 

V50years 0.95 Vn 0.13 Gumbel 

*where Vn is the nominal (design) wind speed, following NBR6123:1988. 
 

Wind speed statistics were converted into wind pressure, using: 
 

21

2
W c V= ρ⋅ ⋅

 (9) 
 

where ρ is air density and c is an aerodynamic coefficient, 

accounting for shape, gust (turbulence) and exposition. The 

quadratic relation between wind speeds and wind pressures applies 

to bias factors. Bias factors for wind pressure, presented in Table 1, 

were obtained from: 
 

2

W V

n nW V

 µ µ
=  
   (10) 

 

Due to the quadratic relationship, the coefficient of variation of 

wind pressure (VW) is obtained as VW ≈ 2·VV, for a deterministic 

coefficient c. The uncertainty of shape (Va), gust (Vg) and exposition 

(Vr) factors is taken into account by means of a second moment 

mean value approximation (JCSS, 2001): 
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2 2 2 2 2(2 )W a g r VV V V V V= + + + ⋅
 (11) 

 

This leads to the wind pressure statistics reported in Table 1 

(Souza Jr., 2009). As pointed out by Riera and Rocha (1998), 

modeling both wind speeds and pressures by Gumbel distributions is 

formally inconsistent. However, Ellingwood et al. (1980) found that 

incorporation of uncertainties in aerodynamic coefficients leads to 

best fit of wind pressure data by Gumbel distributions. 

Reliability-Based Code Calibration  

Reliability-based code calibration is the determination of the 

partial safety factors in Eqs. (1), (3) or (5), in order for the range of 

structural designs resulting from these equations to present minimal 

variations with respect to a pre-selected target reliability level (βT).  

Different design situations, covered by the code being 

calibrated, have to be considered. This includes structural elements 

under tensile, compressive or bending loading, instability of 

columns, and so on. This also includes designs resulting in distinct 

ratios between the different loads being combined. Hence, it is 

customary in load calibration work to consider different ratios 

between live and dead loads (Ln/Dn) and between wind and dead 

loads (Wn/Dn).  

The calibration of partial factors to be used in a given design 

code is accomplished by solving an unconstrained optimization 

problem:   
 

( )
2

1 1

minimize: min[ ]
n m

T ijk ij
k

i j

wΨ β β
= =

= − ⋅∑∑
 (12) 

 

where n and m are the number of load ratios (design situations) 

considered, βT is the target reliability index, βijk is the reliability 

index for design ij and for the kth load combination. Expression (12) 

does not penalize reliability indexes that are below the target, as 

proposed by Sorensen et al. (1994). 

For each load ratio considered, a different weight is used in the 

combination (wij in Eq. (12)), according to the relative significance 

of that load ratio in actual code use. Load ratios and weights used in 

this paper are shown in Table 3. These values were adapted from 

Ellingwood et al. (1980). 
 

Table 3. Weights of the different load ratios considered in the calibration. 

wij Wn/Dn 

Ln/Dn 

 0.0 0.5 1.0 1.5 2.0 3.0 5.0 

0.0 40 10 20 25 35 7 3 

0.5 10 20 30 35 45 17 13 

1.0 20 30 40 45 55 27 23 

1.5 25 35 45 50 60 32 28 

2.0 35 45 55 60 70 42 38 

3.0 7 17 27 32 42 14 10 

5.0 3 13 23 28 38 10 6 

 

The reliability problem corresponding to each design situation 

is constructed from the nominal loads. For example: considering a 

unitary (non-dimensional) nominal dead load Dn = 1, load ratios 

Wn/Dn = 1 and Ln/Dn = 1, using Eq. (4) (load combinations for 

NBR8800) and partial factors recommended in this code 

(reproduced in Table 3), one obtains the design load as 3.8 units. 

Using the resistance factor, the nominal resistance is obtained as 

Rn = 1.1·3.8 = 4.18. From the nominal values of loads and 

resistances, and using the data presented in Table 1, statistics of 

the random variable loads and resistances are “re-constructed”. 

These are used in the reliability analyses.  

Two linear limit state functions are used in the reliability 

analyses: 
 

1 50years 1year

2 a.p.t. 50years

( ) ( ) 0

( ) ( ) 0

g R D L W

g R D L W

= − + + =

= − + + =

X

X
 (13) 

 

where X is a vector of random variables. 

These two equations account for the five load combination 

cases, Eqs. (4) and (6), since some load ratios are zero (following 

Table 3). It is interesting to note the equivalence between limit state 

functions used in reliability analyses (Eq. (13)) and the 

corresponding code design equations (Eqs. (1), (3) and (5)). This 

equivalence explains why modern codes are said to be based on 

“limit state design”. 

The limit state functions, Eq. (13), define boundaries which 

divide the failure and survival domains: 
 

{ | ( ) 0}    is the failure domain

{ | ( ) 0}    is the safety domain

f

s

g

g

Ω = ≤

Ω = >

x x

x x
  (14) 

 

For each limit state, the failure probability is evaluated as: 
 

[ ( ) 0] ( )

f

fP P g f d
Ω

= ≤ = ∫ Xx x x

 (15) 
 

Equation (15) is solved via de First Order Reliability Method 

(FORM), using the StRAnD (Structural Reliability Analysis and 

Design) program (Beck, 2008). This solution involves a 

transformation of the random variables to the standard normal 

space, and a search for the most probable failure point, or design 

point. The reliability index β is the (minimal) distance between the 

design point and the origin of the standard normal space. The 

reliability index is related to the failure probability by the 

expression:  
 

[ ]fP = Φ −β
 (16) 

 

For the two limit states considered herein (Eq. (13)), and 

following Turkstra’s rule, the reliability index for design situation ij 

is given by the smallest value between the two load combinations: 
 

1 2
min[ , ]

ij ij ij
β β β=

 (17) 
 

The optimization problem (Eq. (12)) is solved using a particle 

swarm optimization (PSO) algorithm, implemented in the StRAnD 

program. 

Calibration Results for NBR8800 and ββββT = 3.0 

Partial Factors to Obtain ββββT = 3.0 Exactly 

Recent studies by the authors (Beck and Dória, 2008; Oliveira et 

al., 2008; Beck et al., 2009) reveal that the reliability index of 

structures designed according to Brazilian code NBR8800:2008 lie 

in the range from β = 2.3 to β = 4.5. Therefore, in this study, the 

target reliability index was first selected as βT = 3.0. 

A preliminary analysis was made to find the partial safety 

factors that would lead to the target reliability index exactly, in the 

NBR8800 code format (Eq. (4)). Results of this analysis are shown 

in Figs. 1 and 2. Partial factors shown in these figures serve as a 

guide to the fixed set of partial factors to be found in the calibration 
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process. The figures show nearly constant partial factors for 

resistance and dead loads (γR = 1.1, γD = 1.1), and some variation on 

the ideal partial safety factors for the variable actions. 
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Figure 1. Partial safety factors to obtain βT = 3.0 exactly in D+L+W load 
combination, L main load. 
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Figure 2. Partial safety factors to obtain βT = 3.0 exactly in D+L+W load 
combination, W main load. 

Calibration Results for NBR8800  

Reliability-based calibration of the partial factors used in design 

code NBR8800 amounts for finding the set of five partial and 

combination factors in Eq. (4), plus the resistance factor γR, in order 

to produce the smallest variations of reliability indexes with respect 

to the target reliability.  

The problem is not easy to solve when the six factors are sought 

simultaneously. Some convergence problems were encountered 

since the “optimum” dead load factor γD, for combinations involving 

only dead load (Ln/Dn = Wn/Dn = 0), is quite different from the 

“optimum” γD for combinations involving variable actions. Hence, 

the author’s experience in preliminary calibration runs was used to 

fix the values γR = 1.10 and γD = 1.35. The optimization process 

was then run again to find the remaining partial factors. Results are 

presented in Table 4. In Table 4, the partial factors found in the 

present calibration effort are compared with the factors currently 

used in Brazilian design code NBR8800:2008.  
 

 

 

 

Table 4. Partial safety factors for Brazilian codes and calibrated in this paper. 

Partial or  

comb. factor 

NBR8800 

NBR8681 

Calibration 

 for βT = 3.0 

Calibration 

 for βT = 2.8 

γR 1.10 1.10 1.10 

γD 1.35 1.35 1.30 

γL 1.50 1.65 1.50 

γW 1.40 1.70 1.60 

ψL 0.70 0.30 0.30 

ψW 0.60 0.30 0.35 

γL ·ψL 1.05 0.50 0.45 

γW ·ψW 0.84 0.51 0.56 

 

Table 4 shows significant differences between the partial factors 

currently in use and the factors found through the calibration 

process. It is observed that the calibrated factors are larger for the 

principal loads (γL and γW), but the combination factors are 

significantly smaller, resulting in significantly smaller values of the 

accompanying variable action (product γ·ψ).  

Reliability indexes resulting from use of these partial factors are 

compared graphically in Figs. 3 and 4. Figure 3 shows reliability 

indexes obtained for all designs (load ratios) considered, with β 

given as the minimum between the two (formally, five) limit state 

(or load combination) equations. The design load is the largest 

amongst the combinations considered (following Eq. (4)), and the 

reliability index is the smallest between the two limit state equations 

(Eq. (13)).  

In Figure 3, reliability index results are shown for all design 

situations. Figure 4 shows only the lower and upper bounds of these 

indexes, in terms of load ratios Wn/Dn (left) and Ln/Dn (right). The 

bounds show the uniformness of (or lack of) reliability indexes 

obtained using the different sets of partial safety factors.  

In Figures 3 and 4, it can be clearly seen that the calibrated set 

of partial and combination factors leads to more uniform reliability 

indexes. Moreover, the average reliability index obtained with the 

calibrated set is larger than the average reliability obtained with the 

current set of factors. 

The set of calibrated partial factors is an optimum (or, at least, a 

better) set, in comparison to what is currently used in Brazilian 

design codes. Of course, this observation must be subject to further 

confirmation, given the limitations of the present calibration effort. 

Since there is no evidence of previous calibration or of proper 

tropicalization of partial safety factors used in Brazilian design 

codes, the results obtained in this paper are very significant, and 

should be regarded as a stimulus for further investigation. 
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Figure 3. Reliability indexes for Brazilian NBR8800 code and for calibrated 
partial factors (βT = 3.0). 
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Figure 4. Reliability index bounds for Brazilian NBR8800 code and for 
calibrated partial factors (βT = 3.0). 

Calibration in Other Code Formats 

In this section, the calibration procedure is used to find the 

optimum set of partial factors in the NBR8681 and ANSI/AISC 

code formats. 

Calibration in the NBR8681 format (Eq. (6)) actually resulted in 

the same set of partial factors presented in Table 4 (second column for 

βT = 3.0). Clearly, this is due to the fact that partial factors γL and γW 

found in the calibration for NBR8800 are very similar. Figure 5 shows 

that both formats, using the calibrated factors, lead to virtually the 

same range of variation of reliability indexes. In Figure 6, the two 

design formats are compared when using the set of partial factors 

currently in use in the Brazilian codes. The differences between the 

two formats are more noticeable in this case, although still acceptably 

small.  

It turns out that, in practice, the two design formats (NBR8800 

and NBR8681) are equivalent. The authors, however, still consider 

that the format of NBR8800 is more logical, since it maintains the 

theoretical independency between the partial factors for principal 

and accompanying variable actions. 

For the purpose of illustration, the calibration was also done in 

the ANSI/AISC code format, that is: using a different set of partial 

factors for each load combination equation (Eq. (8)). The resulting 

calibrated partial factors are γR = 1.10 (or φR = 0.91) and: 
 

 

0 1 2 3 4 5

1,6

1,8

2,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

3,6

B
et

a

W
n
/D

n

Calibrated factors       Calibrated factors   

(NBR8800 format): (NBR8681 format)

 maximum betas  maximum betas

 minimum betas  minimum betas

 

0 1 2 3 4 5

1,6

1,8

2,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

3,6

Calibrated factors       Calibrated factors   

(NBR8800 format): (NBR8681 format)

 maximum betas  maximum betas

 minimum betas  minimum betas

B
et

a

L
n
/D

n  

Figure 5. Reliability index bounds for calibrated partial factors (βT = 3.0), 
NBR8800 and NBR8681 code formats. 
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These load combinations are equivalent to those used in 

calibration of Brazilian codes, but they can be grossly compared with 

the partial factors currently in use in ANSI/AISC codes, Eq. (2). In 

their calibration effort, Ellingwood et al. (1980) also found the 

“optimum” partial factor for dead loads to be equal to 1.10, as in the 

present study. They, however, preferred to set the dead load factor to 

1.2, following Eq. (2). 

The range of reliability indexes obtained using the partial factors 

calibrated in the NBR8800 and ANSI/AISC code formats are 

compared in Fig. 7. It can be seen that the ANSI/AISC format leads 

to greater uniformity of reliability indexes. This happens because 

the ANSI/AISC format is more flexible in terms of representing the 

different load combinations. As argued above, the ANSI/AISC 

format has 11 degrees of freedom to deal with the same load 

combinations that, in the Brazilian format, takes 5 partial safety and 

combination factors. This difference in flexibility leads to the results 

observed in Fig. 7. 
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Figure 6. Reliability index bounds for partial factors currently in use in 
Brazilian codes NBR8800 and NBR8681. 

 

Economical Impact 

In this paper, a set of “optimal” partial safety factors for 

Brazilian design codes NBR8800 and NBR8681 is obtained. This 

set is optimum in the sense that it produces more uniform reliability, 

in comparison to the partial factors currently in use in these codes.  

A recommendation of change in the partial safety factors used in 

these codes must be accompanied by an analysis of the economical 

impact of such changes. The weights used to describe the relative 

importance of each design situation (Table 3) can be used for this 

purpose. 

Considering a unitary nominal dead load (Dn = 1) as reference, 

the distinct load ratios shown in Table 3 and the partial factors 

currently in use in the codes, a weighted sum of design loads is 

obtained as: 
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Figure 7. Reliability index bounds for calibrated partial factors (βT =3.0), 
NBR8800 and ANSI/AISC code formats. 

 

This weighted sum of design loads can then be compared with 

the same sum obtained with the calibrated partial safety factors. The 

difference in the weighted sums is a measure of the impact of 

changing the partial safety factors. The economical impact can be 

assumed to be proportional to this weighted sum of design loads. 

Applying this procedure to the partial safety factors shown in 

Table 4 (and calibrated for βT = 3.0), it is found that the calibrated 

set produces an increase of 1% in the weighed sum of design loads, 

in comparison to the partial factors currently in use 

(NBR8800:2008). Figure 4 shows that this increment in design 

loads is associated with an increase in the lower range of reliability 

indexes. The calibration not only produces more uniform reliability, 

but also a slight increase in reliability levels. 

The calibration procedure was repeated for a target reliability 

index of βT = 2.8, which is compatible with the lower range of 

reliability indexes obtained with the current partial factors of 

NBR8800. The range of reliability indexes obtained with this new 

set of partial factors is compared with NBR8800 in Fig. 8. The 

figure shows that the set of partial factors calibrated for βT = 2.8 

produces more uniform reliability, which is greater than or equal to 

what is obtained with the coefficients of NBR8800.  

The set of partial safety and combination factors obtained in the 

calibration with βT = 2.8 is shown in the third column of Table 4. 

This new calibrated set maintains current reliability levels, but 

produces a reduction of the order of 5% in the weighted sum of 

design loads. To understand the impact of this result, we must recall 

that it is assumed to be equivalent to a 5% reduction in expenditure 

with structural materials nationwide. 
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Figure 8. Reliability index bounds for Brazilian NBR8800 code and for 
calibrated partial factors (βT = 2.8). 

Conclusions 

This paper presented an investigation of partial safety factors 

used in Brazilian design codes NBR8681:2003 and NBR8800:2008. 

A reliability-based calibration of partial safety and combination 

factors used in these codes was performed. The calibration effort 

resulted in an optimized set of partial factors, which was shown to 

produce more uniform reliability for different design situations, in 

comparison to the partial factors currently in use in these codes. 

The calibration performed for a target reliability index of βT = 3.0 

resulted in more uniform reliability, and in a slight increase in mean 

reliability levels, at a "cost" of a 1% increase in average design loads. 

For a target reliability of βT = 2.8, the calibration produced more 

uniform reliability, which is equal to or greater than the current 

minimum reliability levels, and with a reduction of nearly 5% in the 

weighted sum of design loads. The economical impact of this 

reduction is quite significant. 

In the set of partial and combination factors calibrated for βT = 2.8, 

the wind load factor (γW) is increased from 1.4 to 1.6, but the 

combination values of secondary loads are reduced. The combination 

value for live load as secondary action is reduced from 1.05 to 0.45, 

and the combination value for wind is reduced from 0.84 to 0.56. 

For this new, optimized balance of partial and combination factors, 

more uniform reliability is obtained, with a 5% reduction in average 

design loads.  

The study has also shown that the ANSI/AISC code format, 

which uses one set of partial factors for each load combination 

expression, is more flexible than the Brazilian or EUROCODE 

formats, where a single set of partial and combination factors is 

used. The larger flexibility of ANSI/AISC codes in representing the 

different load combinations results in more uniform reliability. 

Results obtained in this paper have to be confirmed by further 

investigation, due to limitations of the present calibration effort. 

Further investigation is already underway, and includes other 

structural materials as reinforced concrete, steel-concrete 

composites, masonry and timber structures. Since partial factors on 

structural materials are expected to account for different 

uncertainties in structural materials, the calibrated partial factors for 

loads obtained in this paper are expected to change only marginally. 
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