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Initial Instabilities of a Granular Bed 
Sheared by a Turbulent Liquid Flow: 
Length-Scale Determination 
The transport of granular matter by a fluid flow is frequently found in nature and in 
industry. When the shear stresses exerted by the fluid flow on a granular bed are bounded 
to some limits, a mobile granular layer known as bed-load takes place, in which the grains 
stay in contact with the fixed part of the granular bed. Under these conditions, an initially 
flat granular bed may be unstable, generating ripples and dunes, such as those observed in 
deserts, but also in pipelines conveying sand. There are evidences that these forms have a 
typical length correlated to their initial wavelength. So, the length-scale of the initial 
linear instabilities is a key point to understand the typical structures observed. This paper 
presents a theoretical study of the initial instabilities on a granular bed sheared by a 
turbulent liquid flow without free-surface effects, when bed-load is present. This study 
consists of a linear stability analysis, taking into consideration fluid flow, relaxation and 
gravity effects, and it is compared to published experimental data. It is proposed here, 
differently from many previous studies, that the initial wavelength of bed-forms varies with 
flow conditions when the fluid is a liquid. 
Keywords: two-phase flow, granular bed, bed-load, instabilities, pattern formation 
 
 
 

Introduction 
1The transport of solid particles entrained by a fluid flow is 

frequently found in nature and in industry. It is present, for example, 
in the erosion of river banks, in the displacement of desert dunes and 
in hydrocarbon pipelines conveying sand. When shear stresses 
exerted by the fluid flow on the granular bed are able to move some 
grains, but are relatively small compared to the grains weight, the 
flow is not able to transport grains as a suspension. Instead, a mobile 
layer of grains known as bed-load takes place in which the grains 
stay in contact with the fixed part of the granular bed. The thickness 
of this mobile layer is of a few grain diameters (Bagnold, 1941; 
Raudkivi, 1976). 

Under the fluid flow, a flat granular bed may become unstable 
and give rise to bed-forms. These forms are initially two-
dimensional, but they may grow and generate patterns such as 
dunes. For instance, such instabilities give rise to the migrating 
aeolian dunes observed in nature, which are one of the mechanisms 
of the expansion of deserts (Bagnold, 1941). The aquatic dunes 
observed on the bed of some rivers are another example. These 
forms create a supplementary friction between the bed and the 
water, affecting the water depth and being related to flood problems. 
In cases where their size is comparable to the water depth, water 
flows can experiment strong depth variations, seriously affecting 
navigation (Engelund and Fredsoe, 1982). In industry, examples are 
mostly related to closed-conduit flows conveying grains, such as 
hydrocarbon pipelines conveying sand. In such cases, the bed-forms 
generate not only supplementary pressure loss, but also pressure and 
flow rate transients (Kuru et al., 1995; Franklin, 2008). 

The stability of a granular bed is given by the balance between 
local grains erosion and deposition. If there is erosion at the crests of 
the granular bed, the amplitude of initial bed undulations decreases 
and the bed is stable. Otherwise, the bed is unstable. If there is 
neither erosion nor deposition at the crests, there is neutral stability. 

The regions of erosion and deposition can be found from the 
mass conservation of grains. The mass conservation implies that 
there is erosion in regions where the gradient of the flow rate of 
grains is positive and deposition where it is negative, so that the 
phase lag between the flow rate of grains and the bed-form is a  
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stability criterion. If the maximum of the flow rate of grains is 
upstream a crest, there must be deposition at the crest and the bed is 
unstable, otherwise the bed is stable. To answer the stability 
question, the mechanisms creating a phase lag between the shape of 
the granular bed and the flow rate of grains need to be known. They 
are three: the fluid flow perturbation by the shape of the bed, the 
relaxation effects related to the grains and the gravity effects. The 
fluid flow perturbation is known to be the unstable mechanism 
(Jackson et al., 1975; Hunt et al., 1988 and Weng et al., 1991), and 
the relaxation and the gravity effects are the stable mechanisms 
(Valance and Langlois (2005) and Charru (2006) in the case of 
viscous flows). 

A “hydrodynamic stability” approach (Drazin and Reid, 2004) 
may be employed to address the stability of a sheared granular bed 
if some assumptions are made (described in the following sections). 
Many works on the stability of granular beds sheared by a fluid 
were made in the last decades using this approach (Kennedy, 1963; 
Engelund, 1970; Richards, 1980; Elbelrhiti et al., 2005 and Claudin 
and Andreotti, 2006, for instance). A remarkable overview of this 
kind of work can be found in Engelund and Fredsoe (1982). 

It must be noted that the granular matter in itself is one of the 
challenging problems in physics today, so that our knowledge about 
it is confined to fundamental physics (Duran, 1999). As with any 
fundamental problem of this kind, the interest here is in finding 
correlations and tendencies between the relevant parameters, both 
theoretically and experimentally. Determination of the precise 
values of wavelength, growth rate and celerity as observed in nature 
is not possible yet. 

This paper presents a stability analysis for the specific case of 
granular beds sheared by turbulent boundary-layers of liquids. The 
purpose of this analysis is to obtain some tendencies for the growth 
rate, the celerity and the length-scale of the initial instabilities 
appearing on the granular bed in this specific fluid flow condition. 
In particular, this analysis shed light on the length-scale of the 
generated bed-forms whenever the fluid is a liquid, and it seems to 
be corroborated by some published experimental data. Figure 1 
presents the dimensions involved in the studied problem. 
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Figure 1. Granular bed sheared by a fluid flow. U is the mean velocity of 
the fluid, UP is the mean velocity of grains, h is the height of the fixed bed, 
ε is thickness of the moving bed, c is the celerity of the bed-forms, λ is the 
wavelength of the bed-forms and δ is the boundary-layer thickness. In the 
present paper, c << UP << U, ε << h, Re δ = δ u*/ ν > 102 and, if η is the 
amplitude of the bed-forms, η/λ << 1 and η/δ << 1. u* is the friction velocity 
(defined in the following sections) and ν is the kinematic viscosity. 

 
The next two sections present a linear stability analysis for a 

granular bed sheared by a turbulent liquid flow (without free-surface 
effects). The obtained wavelengths are compared in the following 
section to some published experimental data. A conclusion section 
follows. 

Nomenclature 

A  = constant 
B = constant 
c = phase velocity, m.s-1 
d = mean grain diameter, m 
g = acceleration of gravity, m.s-2 
H = channel height, m 
h = local height of the granular bed, m 
i = imaginary number 
k = wave-number, m-1 
L = length-scale, m 
Q = volumetric flow rate of grains by unit of width, in the 

basic state, m2.s-1 
q = local volumetric flow rate of grains by unit of width, m2.s-1 
u = fluid velocity, m.s-1 

*u   = shear velocity, m.s-1 
US = grain settling velocity, m.s-1 
Up = mean grain velocity, m.s-1 

Re = Reynolds number ( )νHURe =  

Reδ = friction Reynolds number 
⎟
⎠
⎞⎜

⎝
⎛ = ν

δ
δ

*uRe  

Rep = particle Reynolds number ⎟
⎠
⎞⎜

⎝
⎛ = νμ

τ2dRep
 

Res = settling Reynolds number 
⎟
⎠
⎞

⎜
⎝
⎛ = ν

S
S

dURe  

t = time, s 
x = horizontal (longitudinal) coordinate, m 
y = vertical coordinate, m 
y0 = rugosity height, m 
Greek Symbols 
δ = boundary-layer thickness, m 
ε = thickness of the moving bed, m 
η = amplitude of the initial instabilities, m 
κ = von Kármán constant 
λ = wavelength of the initial instabilities, m 
µ = dynamic viscosity, Pa.s 
ρ = density, kg.m-3 
σ = growth rate, s-1 
τ = shear stress, Pa 
ν = kinematic viscosity, m2.s-1 

ξ = integration variable, m 
ω = frequency, s-1 
Subscripts 
d relative to deposition 
drag relative to the inertial scale 
dune relative to a dune 
g relative to the acceleration of gravity 
k relative to the Fourier space 
max relative to the most unstable (amplified) mode 
0 relative to the basic state 
p relative to grains 
s relative to settling 
sat relative to the saturated regime 
x relative to the real space 
Superscripts 
^ perturbation 

Linear Stability Model 

This paper presents a stability analysis of the initial bed-forms 
on a granular bed under a turbulent liquid flow, without free-surface 
effects. The analysis presented here is two-dimensional, which is 
justified by taking into consideration the Squire’s Theorem for 
parallel flows (Drazin and Reid, 2004): the most unstable modes in 
parallel flows are two-dimensional. 

A granular bed is not a continuum media, limiting the definition 
of small perturbations (undulations) on the bed surface and the 
employment of a continuum spectrum of normal modes (which are 
the basis of linear hydrodynamic stability analysis, Drazin and Reid 
(2004)). This limitation can be handled by supposing that the 
granular bed undulations need only to be smaller than some fluid 
flow scales (as the flow depth or the logarithmic layer of a turbulent 
boundary-layer, for example), as done by many authors (Kennedy, 
1963; Engelund, 1970; Richards, 1980; Elbelrhiti et al., 2005 and 
Claudin and Andreotti, 2006). The same assumption is made here. 
To proceed with the analysis, the equations describing the problem 
are first presented. 

Fluid Flow Perturbation 

An undulation on a granular bed, such as a ripple or a dune, 
perturbs the fluid flow. The perturbation of a turbulent boundary-
layer by a hill with small aspect ratio was analytically found by 
Jackson and Hunt (1975) and by Hunt et al. (1988). Their results 
were later applied to forms with higher aspect ratio by Weng et al. 
(1991). Jackson and Hunt (1975), Hunt et al. (1988) and Weng et al. 
(1991) found that the perturbed shear stress is shifted upstream the 
dune crest. Sauermann (2001) and Kroy et al. (2002) simplified the 
results of Weng et al. (1991) and obtained an expression containing 
only the dominant physical effects of this perturbation, making clear 
the reasons for this upstream shift. For a hill with a height h, a 
surface rugosity y0 and a length 2L between the half-heights (total 
length ≈ 4L), they showed that the perturbation of the longitudinal 
shear stress (dimensionless) is 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂+

−
∂

= ∫ hBd
x

hAˆ x
x

x ξ
ξπ

τ
1   (1) 

 
where ξ is an integration variable and A and B are considered as 
constants, as they vary with the logarithm of L/y0 (the variable used 
in the Jackson and Hunt (1975) gauge functions). Variations in three 
orders of magnitude of L/y0, L/y0 = 103, L/y0 = 104 and L/y0 = 105, 
give A = 4.0, A = 3.6 and A = 3.3 and B = 0.63, B = 0.46 and B = 0.36, 
respectively. This means that changes in the length of the hill 
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(keeping the same rugosity) by three orders of magnitude have small 
effect in both A and B, which maintain the same order of magnitude. 
For a fixed bed, y0 = d/30. For a moving bed, y0 ≈ d in the case of 
gases and y0 ≈ d/10 in the case of liquids (Raudkivi, 1976). 

The first term in the RHS of Eq. (1), the convolution product, is 
symmetric, similar to the potential solution of the flow perturbation 
by a hill. It comes from the pressure perturbations caused by the hill. 
The second term in the RHS of Eq. (1), which takes into account the 
local slope, is anti-symmetric. It comes from the non-linear inertial 
terms of the turbulent flow and can be seen as a second order 
correction of the potential solution, with minor changes in the 
magnitude of the first order solution, but causing an upstream shift. 
The perturbed fluid flow is then the unstable mechanism. The 
perturbation of a turbulent boundary-layer was experimentally 
measured by Sauermann et al. (2003) in the aeolian case and by 
Franklin (2008) in the aquatic case, and it agrees with Eq. (1). In the 
Fourier space, Eq. (1) may be written as (dimensionless) 

 
( )iBkkAhˆk +=τ  (2) 

 
where k = λ-1 is the longitudinal wave-number (λ is the wavelength) 
and i is the imaginary number. If the perturbation is supposed small 
compared to a basic flow, the fluid flow over the bed can be written 
as a basic flow, unperturbed, plus a flow perturbation. For the shear 
stress on the bed surface 

 
( )τττ ˆ+= 10  (3)  

 
where τ0 is the shear stress caused by the basic flow on the bed and 
τ̂  is the shear stress (without dimension) caused on the bed by the 
perturbation of the fluid flow. For a developed turbulent liquid flow 
over a granular bed, the basic flow is a rough turbulent boundary-
layer, which has the well known logarithmic profile 

 

⎟
⎠
⎞

⎜
⎝
⎛=

0y
yloguu *

κ
 (4) 

 
where κ is the Kármán constant, y0 is the rugosity height, u(y) is the 
unperturbed velocity profile and u* is the friction velocity, defined 

as 2
1

2
1
0

−
= ρτ*u . The shear stress of the basic flow τ0 is obtained 

from Eq. (4) and the perturbation τ̂  from Eq. (1) or (2). 

Saturated Flow Rate of Grains 

In a steady state regime, and without spatial variations, the fluid 
flow and the flow rate of grains are in equilibrium. The fluid flow 
entrains a certain amount of grains, which gets momentum from the 
fluid and dissipate it by shearing and by impacts with the fixed part 
of the granular bed. The fluid flow capability to transport grains is 
limited by this feed-back mechanism, and equilibrium is reached if 
there is enough length (or time) to the development of this 
interaction. The flow rate of grains in this equilibrium situation is 
known as “saturated flow rate of grains”. Bagnold (1941) showed 
that, far from the incipient motion of grains, 

 

2
3

τ~qsat  (5) 
 

where qsat is the volumetric flow rate of grains by unit of width. If 
the fluid flow perturbation is given by Eq. (3) (from Jackson and 
Hunt, 1975; Hunt et al. 1988 and Weng et al., 1991) 

 

( ) 2
3

1 τ̂~Q
q

sat
sat +  (6) 

 
where Qsat is the volumetric flow rate of grains by unit of width over a 
flat surface (basic state). A linear expansion can be made in Eq. (6), as 
suggested by Andreotti et al. (2002) 

 

( )iBkkAh~Q
q

sat
sat ++ 2

31  (7) 

Relaxation Effects 

In the case of a fluid flow over an undulated bed, the shear stress 
caused by the fluid on the bed is always changing. The flow rate of 
grains will lag some distance (or time) with respect to the fluid flow, 
being then a stable mechanism. This distance is usually called 
“saturation length”, Lsat. 

A simplified expression taking into account this relaxation 
effect can be obtained from the erosion-deposition model of 
Charru et al. (2004): 

 

sat

sat
x L

qqq −
=∂   (8) 

 
Equation (8), describing the relaxation of the flow rate of grains 

in varying fluid flow, is similar to the one obtained by dimensional 
considerations by Andreotti et al. (2002). A different equation was 
found by Sauermann et al. (2001), based on their continuum 
saltation model (not shown here). 

Hersen et al. (2002), Andreotti et al. (2002), Kouakou and 
Lagrée (2005), Valance and Langlois (2005), Elbelrhiti et al. (2005) 
and Claudin and Andreotti (2006) consider that the saturation length 
has an inertial origin and is proportional to the traveling distance of 
individual grains, given by Ldrag = d ρp/ρ, where ρp is the density of 
one grain. Parteli et al. (2007) found that, in the case of aeolian sand 
transport, 2−

*dragsat uL~L . In these expressions, Ldrag is an inertial 

length-scale obtained when the density of the grain material is many 
times larger than the density of the fluid, ρp >> ρ. It is then pertinent 
when the fluid is a gas. When the fluid is a liquid, however, ρp ≈ ρ 
and it was argued by Charru (2006) and Franklin (2008) that this 
length-scale can no longer be applied. Instead, a relaxation length 
based on the deposition of an individual grain must be used, Ld : 

 

⎟
⎠
⎞⎜

⎝
⎛=

S
*dsat U

udL~L  (9) 

Gravity Effects 

Gravity weakens the transport of grains over positive slopes 
(upstream the crests) and facilitates it over negative slopes 
(downstream the crests), being inversely proportional to the slope of 
the bed. It is another stable mechanism. Gravity effects are felt by 
the flow rate of grains (which is proportional to the shear stress) and 
for this reason they are modeled here by computing an effective 
shear stress perturbation, even if weight and friction have different 
natures (the weight is a body force and the fluid friction is a surface 
force). This is a manner to take into account the effects of gravity 
without the need of an extra equation. The effective shear stress 
perturbation is given by. 

 

hBhBd
x

hAˆ xgx
x

x,eff ∂−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂+

−
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ξπ
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where Bg is a coefficient taking into account the weight of grains 
and the friction between them (it is different from B, from which 
comes turbulent terms and accounts for the fluid friction). Equation 
(10) can be written as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂+

−
∂

= ∫ hBd
x

hAˆ xe
x

x,eff ξ
ξπ

τ 1  (11) 

 
where Be = B – Bg/A. The order of magnitude of Bg is 0.1 (Charru, 
2006). 

Mass Conservation 

The two-dimensional mass conservation of grains is 
 

0=∂+∂ qh xt  (12) 
 
This equation, known as Exner equation, links the height of the 

bed to the flow rate of grains. 

Normal Modes and Solution 

Given the small character of perturbations, the solutions of the 
preceding equations are plane waves. The bed height h and the flow 
rate of grains q can be decomposed in their normal modes 

 
ikxtiteH)t,x(h      +−= ωσ   (13) 

 
ikxtit

sat
eQQ

)t,x(q      1 +−+= ωσ  (14) 

 
where σ is the growth rate and ω is the frequency. Inserting Eqs. (13) 
and (14) into Eqs. (7), (8), (11) and (12), a 2 equation system is 
obtained 

 
( ) 0=+− satikQQHiωσ  (15) 
 

( ) ( )HkiBkAQikL esat +=+
2
31  (16) 

 
The growth rate σ and the frequency ω of initial instabilities 

are obtained from the non-trivial solution of the system of Eqs. 
(15) and (16) 

 

( )
( )( )2

2

12

3

sat

satesat

kL

LkABkQ

+

−
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( )
( )( )212

3
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kL

LkBAkkQ

+

+
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and the phase velocity c=ω/k of initial instabilities is 

 
( )
( )( )212

3

sat

satesat

kL

LkBAkQ
c

+

+
=  (19) 

 
The most unstable (or amplified) mode is the one for which 

instabilities grow faster, corresponding to 0=∂
∂

k
σ . From Eq. (17) 

 
( )( )[ ] 0323 2 =+− satsatesat kLkkALkBQ  (20) 

 

and, neglecting ( )2
satkL (its order of magnitude is 0.1, as shown in 

Figs. 2, 3 and 4) 
 

sat

e
max LA

Bk 1
3
2

≈  (21) 

 
With the wave-number of the most unstable mode kmax, and 

noting that the orders of magnitude of A and B are respectively 1 
and 0.1, the wavelength λmax, the growth rate σmax and the phase 
velocity cmax can be obtained for this mode: 

 

sat
e

max L
B
A

2
3

≈λ   (22) 

 

( ) 22

3 12
9
2

sat
satmax

L
QA

A
B

−≈σ   (23) 

 

sat
satmax L

Q
A
Bc 1

≈   (24) 

Results From the Stability Analysis 

Solutions of equations (17) and (19) can be computed with the 
known values of coefficients A and B. The values of Bg, d and *u  
are directly linked to gravity effects, relaxation effects (considering 
Eq. (9)) and fluid flow, so that they will be used here as parameters 
to be varied. The variation of these parameters is able to show the 
influence of the three physical mechanisms on the wavelength, 
growth rate and celerity of the initial instabilities. 

Examples of such solutions can be seen in Figs. 2, 3 and 4, 
using typical values of A = 4, B = 0.6 (typical for bed-forms under 
water, Franklin (2008)). The typical settling velocity of a grain US 
and the typical settling time td = d/US are used in dimensionless 
variables. 

 

2
1

1
3
4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

ρ
ρρ p

D
S gd

C
U  (25) 

 
The value of the drag coefficient CD depends on the level of free 

stream turbulence and on the turbulence generated by the particle 
itself. In the case of a turbulent free stream, Raudkivi (1976) 
suggests the use of the classical Schiller-Neuman correlation (valid 
for ReS = USd/ν < 80) 

 
( )68701500124 .

SSD Re.ReC +=   (26) 

 
For grains with d ≈ 0.25 mm and ρp ≈ 2500 kg/m3 

(corresponding to usual sand), Eqs. (25) and (26) show that the 
order of magnitude of US is 0.01 m/s. 

Figures 2, 3 and 4 show the dimensionless growth rate σtd and 
the dimensionless phase velocity c/US of the initial perturbations 
versus the dimensionless wave-number kLsat. In these three figures, 
the continuous curves correspond to a baseline, where d = 1 mm and 
Bg = 0 (no gravity effect), and the dashed and dotted curves 
correspond to variations in the shear velocity u* (fluid flow effects), 
in grains diameter d (corresponding to the relaxation effects) and in 
the Bg coefficient (gravity effects), in Figs. 2, 3 and 4 respectively. 

These figures show the existence of a cut-off wave-number, the 
small wave-numbers being always unstable and the long wave-
numbers stable. This corresponds to long-wave instability. Also, 
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they show a preferential growth rate, allowing the prediction of the 
most unstable wavelength. 

Figure 2 shows the effects of varying friction velocity u*, the 
dashed curves corresponding to values of u* equal to half of the 
values used in the continuous curves. Because US and d are the same 
in both cases, the saturation length varies as Lsat ~ u* , which means 
that in the dashed curve Lsat is half of the value for the continuous 
curve. For the most unstable mode, Fig. 2 shows that a decrease in 
u* by a factor 2 implies a decrease in the wavelength λmax and in the 
growth rate σmax by a factor 2, and a decrease in the phase velocity 
cmax by a factor 4. 

 

 
Figure 2. Dimensionless growth rate σtd and dimensionless phase velocity 
c/US of the initial instabilities versus the dimensionless wave-number 
kLsat, in the case of fluid flow variation. 

 
Those variations can be obtained from the simplified Eqs. (22), 

(23) and (24). As *sat u~L  and 3
*sat u~Q  (Eq. (5)), one finds 

*max u~λ , *max u~σ , 2
*max u~c . The scaling *max u~λ  is a 

consequence of the saturated length inserted in the model: 
dmax L~λ . So, differently from previous stability analysis for 

turbulent regime, it is proposed here that the wavelength of the most 
unstable mode varies with the fluid flow as 2

1
0
−τ . The scaling 

2
*max u~c  agrees with the Bagnold (1941) expression for a dune 

displacement: 
 

dune
satdune h

Qc =  (27) 

 
where cdune is the displacement velocity of a dune and hdune is the 
dune height. With qsat given by Eq. (5), 3

*sat u~Q  and, 

as satL~H , one obtains 2
*dune u~c , just as obtained for cmax. 

The growth rate of the most unstable mode varies as *max u~σ , 
as it should be expected from the physics of the problem. The shear 
stress caused by the fluid flow is the unstable mechanism, so the 
growth rate shall scale with the shear velocity divided by a typical 
length. 

Figure 3 shows the effects of varying the grains diameter, 
dashed curves corresponding to values of grains diameter d equal 
to half of the values used in the continuous curves. This implies a 
variation of the saturation length Lsat with fixed fluid flow 
conditions. In order to simplify the analysis of the diagrams, the 
settling time td and the settling velocity US were kept constant. As 
the fluid flow is the same in the two cases, the saturation length 
varies as Lsat ~ d, so in the dashed curve Lsat is half of the value 
for the continuous curve. The variation Lsat ~ d, without changing 
the fluid flow conditions, can be seen as an isolation of the 
relaxation effects. 

 

 
Figure 3. Dimensionless growth rate σtd and dimensionless phase velocity 
c/US of the initial instabilities versus the dimensionless wave-number 
kLsat, in the case of variation of grains diameter. 

 
For the most unstable mode, Fig. 3 shows that a decrease in d by 

a factor 2 decreases the wavelength λmax by a factor 2. Also, there is 
an increase in the growth rate σmax by a factor 4 and an increase in 
the phase velocity cmax by a factor 2. As in the case of the fluid flow, 
those variations can be obtained from the simplified Eqs. (22), (23) 
and (24). As Lsat ~ d (Eq. (9)), one finds d~maxλ , 2−d~maxσ , 

1−d~cmax . Thus, the relaxation effects, present here in terms of 
grains diameter, have a stabilizing effect. In special, they stabilize 
the small waves and decrease the growth rate as 2−

satmax L~σ . The 

scaling 1−
satmax L~c  is a consequence of the Bagnold equation (Eq. 

(5)). 
Figure 4 shows the effects of varying the coefficient Bg, the 

dashed curves corresponding to Bg = 0.05 and the dotted curves 
corresponding to Bg = 0.1. In this case, as the fluid flow and the 
grains diameter are kept constant, the saturation length Lsat is the 
same for all the three cases. 

 

 
Figure 4. Dimensionless growth rate σtd and dimensionless phase velocity 
c/US of the initial instabilities versus the dimensionless wave-number 
kLsat, in the case of variations of Bg. 

 
As seen in the preceding section, gravity effects were included 

in the perturbation of the shear stress, given by Eq. (11), via the 
coefficient Bg. This equation shows that gravity effects will be 
pronounced wherever the coefficient Bg of the anti-symmetric term 
varies strongly. This is the case for the growth rate: 3

gmax B~ −σ , as 

can be seen from Eq. (23). Although gravity tends to stabilize small 
waves, Fig. 4 shows that its effects are much smaller than the 
relaxation and fluid flow ones. Gravity effects are mainly related to 
a strong decrease (as a power of 3 of Bg) in the growth rate. 

Valance and Langlois (2005) obtained similar results, but for 
laminar shear flows. They found that the length-scale of the bed-
forms is given mainly by the relaxation effects if particle Reynolds 
number is relatively large (

νμ
τ2dRep = > 100), having the gravity 

small influence on length-scale in this case. However, it is difficult 
to imagine laminar flow close to a granular bed with Rep > 100, 
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with experiences showing that turbulence arises locally for Rep 
around 5 (Bagnold, 1941) . 

In summary, the stability analysis showed the existence of 
long-wave instability, with the fluid flow conditions, the 
relaxation effects and the gravity effects playing an important role. 
It seems that the saturation length-scale Lsat, related to the 
relaxation effects, is the major responsible for the stabilization of 
small waves. It also plays a role in the growth rate, which varies as 

2−
satmax L~σ . On the other hand, gravity seems to play a smaller 

role in the stabilization of the small waves, but it strongly affects the 
growth rate. Changes in the fluid flow cause variations in the growth 
rate proportional to the shear velocity: *max u~σ . Concerning the 
wavelength of the most unstable mode, it scales with the fluid flow 
as *max u~λ . This is a result different from previous stability 
analysis for turbulent regime, where the wavelength of the most 
unstable mode was found to be unaffected by the fluid flow 
conditions. 

Comparison to Experimental Data 

Due to the technical difficulties in granular instability 
experiments, experimental uncertainties are very complex to be 
estimated and are not presented here. Instead, error-bars are 
presented whenever it is possible, corresponding to measurement 
deviations. 

Kuru et al. (1995) presented a theoretical and experimental 
study of the initial instabilities on a granular bed on a horizontal 
pipe flow, which is a case without free-surface effects. Their 
experimental test section was a 31,1 mm diameter pipe, 7m long, 
and they employed a mixture of water and glycerin as the fluid 
media and glass beads as the granular media. More details can be 
found in Kuru et al. (1995). The theoretical work consisted of a 
linear stability analysis of a clear-layer (a layer containing only 
fluid) and a suspension-layer concurrent two-phase flow. They did 
not consider bed-load in their model, although the grains used and 
the fluid flow conditions are clearly in the bed-load range. They 
found that instabilities appear because the shear stresses caused by 
the clear-layer on the interface with the suspension-layer are shifted 
upstream to undulations on this interface. The wavelength found in 
their stability analysis overpredicts the experimental measurements, 
probably because they neglected bed-load transport and its 
relaxation effects. 

 
 

 
Figure 5. Mean wavelength λ of the initial instabilities versus the fluid 
shear velocity. Circles, asterisks, triangles and squares correspond to d = 
0,3 mm and µ = 1 cP, d = 0,3  mm and µ = 2.2 cP, d = 0,1 mm and µ = 1 cP 
and d = 0,1 mm and µ = 2.1 cP, respectively. Error-bars correspond to 
deviations from the average value. Figure plotted with the data found in 
Kuru et al. (1995). 

 
Their experimental results (performed mainly in turbulent 

regime) show that the initial wavelength scales with the flow rate 
of the carrier fluid (which indicates that the relaxation length is 

not of inertial nature in the case of liquids), as can be seen in Fig. 5. 
Their linear stability analysis was not able to explain the experimental 
results. 

Coleman et al. (2003) experimentally studied the granular bed 
instabilities in a closed-conduit turbulent liquid flow (without free-
surface effects). Their experimental test section was a 6 m long 
horizontal closed-conduit of rectangular cross-section (300 mm wide 
by 100 mm high), and they employed water as the fluid media and 
glass beads as the granular media. The fluid flow was in the range 
26000 < Re < 70000 (

ν
UH=Re  , H is the channel height). More 

details can be found in Coleman et al. (2003). They found that the 
initial instabilities have a well defined wavelength, which scales 
with the grains diameters but not with the fluid flow. They proposed 
the following expression for the initial wavelength (most unstable 
mode) 

 
750175 ,

max d=λ  (28) 
 
In Eq. (28), there is no correlation between λmax and the fluid 

flow, which indicates that the relaxation length would be of inertial 
nature. However, it should be noted that this equation has a 
dimensional inconsistency, λmax being proportional to a diameter at a 
power 0,75 (so that the numerical constant has a dimension).  It is 
then difficult to imagine Eq. (28) as a universal relation. 

Franklin (2008) experimentally studied the initial instabilities on 
different granular beds under turbulent water flows. His 
experimental test section was a 6 m long horizontal closed-conduit 
of rectangular cross-section (120 mm wide by 60 mm high), made of 
transparent material. He employed water as the fluid media and 
glass and zirconium beads as the granular media. The fluid flow, in 
the range 13000 < Re < 24000, was measured by PIV (Particle 
Image Velocimetry), and the granular bed evolution was measured 
by a high definition camera. More details can be found in Franklin 
and Charru (2007), Franklin (2008) and Franklin and Charru (2009). 
Franklin’s (2008) measurements showed that the initial bed-forms 
are two-dimensional, as predicted by the Squire’s Theorem. After 
the initial two-dimensional phase, bed-forms evolve to three-
dimensional forms, as seen in Fig. 6. 

 
 

  
Figure 6. Evolution of the wavelength λ of initial ripples on a granular bed 
sheared by a turbulent water flow (top view). Flow direction is from right 
to left, Re = 19900 and the granular bed is composed of zirconium beads 
with d = 180 µm. Figure extracted from Franklin (2008). 

 
Figure 7(a) presents the mean wavelength λ of initial ripples as a 

function of the grains diameter d. In this figure, symbols correspond 
to mean values of experimental results, error-bars correspond to data 
dispersion and the line corresponds to Eq. (28), from Coleman et al. 
(2003). The mean values presented in Fig. 7(a) were computed for 
all grain types and water flow conditions. The tendency of Eq. (28) 
seems to agree with experimental data, but the numerical coefficient 
in Eq. (28) overestimates the wavelength. It was already noted that 
Eq. (28) has a dimensional inconsistency. 
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Figure 7. (a) Mean wavelength λ of the initial ripples as a function of grains 
diameter d. Symbols and error-bars correspond to experimental data and 
the line corresponds to Eq. (28). (b) Non-dimensional mean wavelength λ/d 
of initial ripples as a function of u*. The lozenge, circle, square and asterisk 
symbols correspond d=0.12mm, d = 0.20 mm and d = 0.50 mm glass beads 
and to d = 0.19 mm zirconium beads, respectively. The line corresponds 
to a linear fit of the mean values. Figure plotted with the data from 
Franklin (2008). 

 
Figure 7(b) presents the initial wavelengths normalized by the 

grains diameter λ/d as a function of the water flow shear velocity u*. 
This figure shows an increase of λ with the shear velocity, which 
indicates that the liquid flow conditions shall be taken into account: 
the deposition length Ld seems to be the correct length-scale. 

From Figs. 5 and 7, the wavelength of the initial two-
dimensional ripples seems to vary with the liquid flow conditions, 
just as predicted by the stability analysis. 

Conclusions 

The transport of solid particles entrained by a fluid flow is 
frequent in nature and in industry. Under some fluid flow 
conditions, a mobile granular layer known as bed-load takes place, 
in which the grains stay in contact with the fixed part of the granular 
bed. In some situations, an initially flat granular bed may become 
unstable, giving rise to ripples or dunes. The formation of dunes in 
deserts and in petroleum pipelines conveying sand are some 
examples. A better knowledge of the instabilities on a granular bed 
and of their evolution is of great importance to understand nature. 

This paper presented a theoretical investigation of the initial 
instabilities on granular beds sheared by turbulent liquid flows, 
without free-surface effects, such as those in which the liquid depth 
is many times greater than the typical height of the bed-forms, or 
flows in pipes and closed-conduits. The work consisted of a linear 
stability analysis of the problem, taking into consideration the fluid 
flow perturbation, the relaxation effects related to the flow rate of 
grains and the effects of gravity. 

The stability analysis showed the existence of long-wave 
instability, whose behavior is influenced by fluid flow conditions, 
relaxation effects and gravity effects. The saturation length-scale 
Lsat, related to relaxation effects, seems to be the major responsible 
for the stabilization of small waves. It also affects the growth rate as 

2−
satmax L~σ . On the other hand, gravity seems to play a smaller 

role in the stabilization of the small waves, but it strongly affects the 
growth rate. The fluid flow was found to affect the growth rate as 

*max u~σ  and the celerity as 2
*max u~c . It was also found to affect 

the wavelength, for which the following scaling is proposed: 
*max u~λ . This scaling is a result different from previous stability 

analysis for turbulent regime. 
The results from the stability analysis were compared to some 

published experimental data concerning initial ripples in closed-
conduit flows, for liquids in turbulent regime. The works of Kuru et 
al. (1995) and Franklin (2008) showed that the wavelength of the 
initial ripples vary with the liquid flow conditions. These results 
agree with the stability analysis presented here. 

In summary, differently from previous stability analysis for 
turbulent regime, it is proposed here that the initial wavelength 
varies with the flow conditions of the carrier liquid. This explains, 
for the first time, some previous experimental results. 
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