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On the Development of an 
Agglomeration Multigrid Solver for 
Turbulent Flows  
The paper describes the implementation details and validation results for an 
agglomeration multigrid procedure developed in the context of hybrid, unstructured grid 
solutions of aerodynamic flows. The governing equations are discretized using an 
unstructured grid finite volume method, which is capable of handling hybrid unstructured 
grids. A centered scheme as well as a second order version of Liou’s AUSM+ upwind 
scheme are used for the spatial discretization. The time march uses an explicit 5-stage 
Runge-Kutta time-stepping scheme. Convergence acceleration to steady state is achieved 
through the implementation of an agglomeration multigrid procedure, which retains all the 
flexibility previously available in the unstructured grid code. The calculation capability 
created is validated considering 2-D laminar and turbulent viscous flows over a flat plate. 
Studies of the various parameters affecting the multigrid acceleration performance are 
undertaken with the objective of determining optimal numerical parameter combinations. 
Keywords: Agglomeration multigrid, convergence acceleration, unstructured grids, finite 
volume methods 
 
 
 

Introduction 

Many different convergence acceleration methods have been 
developed and discussed in the literature in the past years. These 
methods involve various aspects of the numerical solution of partial 
differential equations and demand implementation efforts which can 
be very simple or very complex. The implementation of a variable 
time step option and optimized time stepping schemes yields a 
solution to the convergence acceleration problem, which demands a 
relatively small effort. On the other hand, time-implicit schemes and 
multigrid procedures also solve the problem but are much more 
demanding. A combination of these convergence acceleration 
methods usually gives the best overall result.1 

Unstructured meshes present additional difficulties to the 
implementation of some of the convergence acceleration methods 
when compared to structured grids. For instance, implicit time-
stepping schemes are handicapped by the need of using indirect 
addressing in order to express the mesh connectivity, resulting in a 
more difficult implementation and a reduced gain in efficiency. 
Furthermore, the structure of the linear systems, which appear in the 
unstructured grid case, involves matrices which are sparse but not 
banded. Hence, the linear system solvers are inherently more 
expensive than their structured grid counterparts. Multigrid 
procedures are also more difficult to implement in unstructured 
meshes, mainly due to the burden of obtaining the coarse meshes. 
However, the gains of a multigrid procedure for unstructured 
meshes are very significant and, therefore, the additional work is 
worthwhile.  

The main concern in the implementation of a multigrid 
procedure for unstructured meshes is the generation and treatment of 
the coarse meshes. There are basically three different ways of 
handling this problem. In the first approach, the fine meshes are 
obtained by refinement of the coarse meshes, resulting in nested 
meshes (Mavriplis, 1988). This approach often results in problems 
in obtaining an adequate mesh refinement in the regions of interest. 
An exception to this statement would be the case in which the 
multigrid algorithm is necessarily coupled to a solution adaptive 
grid refinement procedure. In this case, however, one would start 
from the coarsest mesh and would let the adaptive refinement 
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procedure produce the finer meshes for the application of the 
multigrid method. Nevertheless, this is a very particular case and it 
requires a very well tuned adaptive refinement procedure, especially 
for viscous turbulent flows. Another approach considers coarse 
meshes that are generated independently from the fine meshes, such 
that the meshes are unrelated or non-nested (Mavriplis, 1988, 1990, 
Mavriplis and Jameson, 1990). This approach has the inconvenience 
of requiring the calculation of the intersections between the coarse 
and fine mesh volumes, which can be very difficult in the general 
case. Moreover, the generation of the coarse meshes itself also 
requires a substantial amount of work. Finally, the third approach is 
the agglomeration technique (Mavriplis and Venkatakrishnan, 1994, 
Venkatakrishnan and Mavriplis 1995). In this case, the coarse 
meshes are generated by agglomerating the neighboring volumes of 
the fine meshes.  Hence, this approach does not have the 
disadvantages of the others and it was the one chosen by the authors 
in this work.  

This work, then, describes the implementation details and 
validation results for an agglomeration multigrid procedure. The 
procedure is developed in the context of a 2-D Reynolds-averaged 
Navier-Stokes solver, capable of handling hybrid, unstructured 
grids.  The governing equations are discretized both with a centered 
and an upwind finite volume method. Time march uses an explicit 
5-stage Runge-Kutta time-stepping scheme. The upwind scheme 
implemented is a second order version of the Liou AUSM+ scheme 
(Liou, 1996). Moreover, the turbulent effects are accounted for by 
the Baldwin and Barth (1990) and Spalart and Allmaras (1994) 
turbulence closure models. Laminar and turbulent viscous flow 
simulations over a flat plate are used to validate the present 
implementation. Studies of the various parameters affecting the 
multigrid acceleration performance are undertaken with the 
objective of determining optimal numerical parameter combinations. 

Nomenclature 

English Symbols 
a = speed of sound 
ci’s = turbulence model constants 
d = distance to the wall 

  FE,  = flux vectors 
e = total energy 
fi’s = turbulence model damping functions 
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∞M  = freestream Mach number 
 p = static pressure 
P, S

~
 = production terms 

Q = vector of conserved variables 
qx, qy = heat flux vector components 
Rel = Reynolds number based on the total plate length 

TR~  = turbulence Reynolds number 
S = area 
t = time 
u = Cartesian component of the velocity vector in the x direction 
v = Cartesian component of the velocity vector in the y direction 
V = volume 
V = velocity vector 
y+ = nondimensional wall coordinate 
Greek Symbols 

t∆  = time step 
γ = ratio of specific heats 
κ = von Kármán constant 
µ  = laminar dynamic viscosity coefficient 

tµ  = turbulent dynamic viscosity coefficient 
ν  = laminar kinematic viscosity coefficient 

tν  = turbulent kinematic viscosity coefficient 
ρ = density 
ρw = wall density 
σi’s = turbulence model constants 

yyxyxx τττ ,,  = components of the viscous stress tensor 

τw = wall viscous stress 
ω  = magnitude of the vorticity vector 

∇  = Gradient operator 
2∇  = Laplacian operator 

Multigrid Implementation 

Multigrid Procedure 

Multigrid methods have been developed for the solution of 
general partial differential equations on a discretized domain 
(Brandt, 1977). Therefore, in this section, a general discussion of the 
implementation of a Full Approximation Storage (FAS) multigrid 
algorithm will be presented. For such discussion, consider a problem 
written in the operator form as 

 
( ) 0  =uL   . (1) 

 
The discretized problem that has to be solved is 
 

( ) hhh fuL =   , (2) 
 

where the discretization in which a solution is wanted is represented 
by h. With the use of the multigrid procedure, the discretized 
problem is solved on a coarser mesh H. As the H mesh has fewer 
points than the h mesh, the solution of the problem in the H mesh 
requires a lower computational cost than in the h mesh. Hence, the 
problem in the H mesh can be written as 

 
( ) HHH fuL =   , (3) 

 
with 

 

( ) h
H
hh

H
hHH rIuILf −=    , (4) 

 
( ) hhhh fuLr −=    , (5) 

 

and fh = 0 in the finest mesh. The H
hI  operator is the restriction 

operator, which transfers the properties from the fine to the coarse 
mesh. The solution in the h mesh is updated from the solution of Eq. 
(3) using the prolongation operator h

HI , which transfers the 
properties from the coarse to the fine mesh. Hence, solution update 
in the h mesh can be written as 

 

( )h
H
hH

h
Hh

new
h uIuIuu −+=    . (6) 

 
It should be noted that the multigrid procedure can be applied 

successively using coarser and coarser meshes. Therefore, Eq. (3) 
can also be solved  through the multigrid procedure, but using an 
even coarser mesh 2H. 

For correction operators written in delta form, the problem to be 
solved is 

 

( ) ( ) ( )nnn uRuuNuL       1 +−= +   . (7) 
 
In the last equation, the N operator is associated with the 

properties update, while the R operator is associated with the 
discretization of the problem equations. In this case, the correction 
operator can represent a relaxation method or a time marching 
scheme. If the operator in Eq. (7) is rewritten in the discretized form 
of Eq. (3), the problem that should be solved in the coarse mesh is 
obtained as 

 
( ) ( ) ( ) n

H
n
HH

n
H

n
HHHH fuRuuNuL =+−= +   1   . (8) 

 
Equations (4) and (5), then, become 
 

( ) ( ) n
h

n
hh

n
h

n
hh

n
h fuRuuNr −+−= +   1   , (9) 

 

( ) ( ) ( ) ( )[ ] .     11 n
h

n
hh

n
h

n
hh

H
h

n
h

H
hH

n
h

H
h

n
h

H
hH

n
H fuRuuNIuIRuIuINf −+−−+−= ++

 (10) 
 
If one defines 
 

( ) ( )[ ]n
h

n
hh

H
h

n
h

H
hH

n
H fuRIuIRF −−=      , (11) 

 
Equation (10) transforms to 
 

( ) ( )[ ]n
h

n
hh

H
h

n
h

H
h

n
h

H
hH

n
H

n
H uuNIuIuINFf −−−+= ++ 11    . (12) 
 
In order to obtain the solution of Eq. (8), it is necessary to 

calculate all the terms in Eq. (12). However, the two last terms of 
Eq. (12) are not known because they involve the solution on the fine 
mesh on the n + 1-th time step. Hence, these terms are calculated 
with a time delay, that is, in the n-th time step. Using the definition 
of the problem, Eq. (8), and this concept of time delay, one can 
obtain the following results 

 

( ) ( )111   −−− −=− n
hh

n
h

n
h

n
hh uRfuuN  , (13) 

 

( ) ( )111   −−− −=− n
h

H
hH

n
H

n
h

H
h

n
h

H
hH uIRfuIuIN  . (14) 
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The substitution of Eqs. (13) and (14) in Eq. (12) yields 
 

( ) ( )[ ]1111    −−−− −−−+= n
hh

n
h

H
h

n
h

H
hH

n
H

n
H

n
H uRfIuIRfFf , (15) 

or, if one uses Eq. (11), 
 

11 −− −+= n
H

n
H

n
H

n
H FfFf   . (16) 

 

Equation (16) can be used to obtain the value of 1−n
Hf , 

resulting 
 

1221 −−−− −−++= n
H

n
H

n
H

n
H

n
H

n
H FFfFFf   . (17) 

 

In this equation, the 1−n
HF  terms cancel each other, so there is 

no contribution of the n - 1-th instant of time. After successive 
application of Eq. (17), the only contribution left will be that of the 
initial instant of time, which can be neglected. Therefore, the final 
problem that has to be solved is  

 

( ) ( ) n
H

n
HH

n
H

n
HH FuRuuN =+−+   1   , (18) 

 
with 

 

( ) ( )[ ]n
h

n
hh

H
h

n
h

H
hH

n
H fuRIuIRF −−=     . (19) 

Agglomeration Technique 

The previous section discussed the multigrid implementation in 
a general way. There was no attempt to treat the practical issues 
associated with such implementation. In this section, the actual 
implementation of the agglomeration procedure for generating the 
coarse meshes will be addressed. 

The coarse meshes for the multigrid procedure are generated by 
agglomerating or grouping fine mesh volumes to form one coarse 
mesh volume. A “seed” volume is chosen in the fine mesh and, then, 
all the volumes that have a node or an edge in common with this 
“seed” volume are grouped  in order to form the coarse mesh 
volume. Another “seed” volume is selected and the agglomeration 
procedure continues grouping all the fine mesh volumes. It should 
be noted that during the agglomeration procedure only the volumes 
that have not already been agglomerated may be grouped to form a 
coarse mesh volume. This is a necessary condition in order to 
guarantee that there is no volume overlapping in the coarse mesh. 

Better coarse mesh quality can be obtained if the selection of the 
“seed” volumes is not random. Therefore, a list containing all the 
fine mesh volumes is generated prior to the agglomeration 
procedure. In this work, the list is formed such that the first volumes 
are the volumes next to a boundary and, only after them, come the 
interior volumes. This approach is very simple, easy to implement 
and adds a very low additional computational cost. Although it does 
not necessarily provide the best agglomeration of the interior 
volumes, it results in good quality coarse mesh volumes close to the 
boundaries. 

As the spatial discretization scheme used in this work can be 
interpreted as a line integral, a simplification can be made in the 
coarse meshes. This simplification consists in eliminating the nodes 
that belong to only two volumes. The justification for this procedure 
comes from the fact that the flux passing between the two volumes 
is the same whether the boundary separating the two volumes is 
discretized by one or many edges, provided that the discretization 
scheme is linear. Therefore, a significant amount of storage space 
can be saved by doing this mesh simplification. Figure 1 presents an 

example of such node elimination, in which the darker lines 
represent the original boundary separating two coarse volumes and 
the dashed line represents the boundary edge after the node 
elimination. 

 

Figure 1. Mesh simplification by the node elimination procedure. 

 
Although the mesh simplification previously described can 

reduce the total storage space required by the code, it brings a 
complication related to the connectivity of the nodes in the mesh. As 
some nodes in the mesh are not used, it is necessary to ensure that 
the remaining nodes are properly counterclockwise oriented in order 
to have the normal vectors of each edge correctly pointing outwards. 
This is accomplished using the node orientation in the fine mesh 
volumes to orient the nodes in the coarse mesh volumes. 

The agglomeration procedure can be summarized, then, in three 
steps. The first step consists in defining the list of fine mesh 
volumes. In the second step, the fine mesh volumes are 
agglomerated to form the coarse mesh volumes, following the list 
generated in the first step. During this step, the mesh simplification 
described is adopted and only the nodes that belong to three or more 
coarse mesh volumes are stored. The third and final step is the 
verification of the node orientation in each volume of the coarse 
mesh and the correction of the orientation where it is needed. 

The actual implementation of this agglomeration procedure was 
designed to require the minimum amount of storage possible. 
Therefore, the only extra information that has to be stored in each 
mesh, besides the usual information associated with the solution 
procedure, is the number of the coarse mesh volume that contains 
each of the fine mesh volumes. 

Restriction and Prolongation Operators 

In the description of the multigrid procedure, the restriction and 
prolongation operators were introduced. Their actual mathematical 
definition was not presented in the last sections, but it will be 
discussed in this section. The restriction operator for the conserved 
properties, as well as for the residuals, will be presented together 
with two different prolongation operators for the conserved 
properties. 

The restriction operator transfers a variable from a fine mesh to 
a coarse mesh. The operator used in the present work for the 
conserved properties restriction is the volume weighted average. 
Therefore, the restricted conserved properties of a coarse mesh 
volume are equal to the sum of the conserved properties of all the 
fine mesh cells that form this coarse mesh volume, weighted by 
their cell volumes. On the other hand, the restriction of the residuals 
is accomplished by simple addition of the fine mesh residuals.  
Hence, the residual of a coarse mesh volume is equal to the sum of 
the residuals of all the fine mesh volumes that are contained by this 
coarse mesh volume. The restriction operator for the residuals is 
different from the restriction operator for the conserved properties 
because the residuals can be interpreted as line integrals in finite 
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volume schemes. Consequently, as the residuals of the fine mesh are 
summed, the interior edge contributions will cancel each other, 
leaving only the contribution of the edges that form the coarse mesh 
volume. 

The prolongation operator, in opposition to the restriction 
operator, transfers a variable from a coarse mesh to a fine mesh. As 
discussed in the Multigrid Procedure section, only the conserved 
property corrections have to be prolonged. Hence, only one 
prolongation operator has to be defined. In this work, two such 
different operators were used. The first operator uses direct injection 
of the coarse mesh values into the fine mesh. With this operator, the 
correction of a fine mesh volume is equal to the correction of the 
coarse mesh volume that contains that volume. Although this 
operator is very simple and easy to implement, it is not able to 
transfer exactly even a linear distribution. The second prolongation 
operator uses an averaging process to obtain the corrections in the 
fine grids. The averaging consists in, for each edge of the fine mesh, 
arithmetically averaging the corrections of the coarse mesh volumes 
corresponding to the two volumes that contain the edge. For each 
volume, then, these averaged corrections are added and the result is 
divided by the number of edges of the volume. This operator is also 
very easy to implement, and it has the advantage of being able to 
transfer a linear distribution with less error than the first 
prolongation operator. As it will be shown latter in the paper, the 
second option results in better convergence rates for viscous flows. 

Theoretical Formulation 

The agglomeration multigrid procedure previously described is 
applied to the solution of the Reynolds-averaged Navier-Stokes 
equations, which can be written in integral form as 

 

( ) 0=−+
∂
∂

∫∫
SV

dxdydV
t

FEQ   , (20) 

 
where 

 

( ) ( ) ⎪
⎪

⎭

⎪
⎪

⎬
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−−+
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−
=

⎪
⎪
⎭
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⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−−+
−
−+

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

yyyxy

yy

xy

xxyxx

xy

xx

qvuvpe
v
uv

v

qvuupe
uv

pu
u

e
v
u

ττ
τρ

τρ
ρ

ττ
τρ
τρ

ρ

ρ
ρ
ρ

2

2
,, FEQ

 . (21) 
 
The correct account for all the relevant flow phenomena in the 

present case involves the implementation of an appropriate 
turbulence closure model. The turbulence closure models 
implemented in this work were the Baldwin and Barth (1990) and 
the Spalart and Allmaras (1994) one-equation models. These models 
attempt to avoid the need to compute algebraic length scales, 
without having to resort to more complex two-equation, or κ - ε type 
models. The models were implemented in the present code precisely 
as described in Baldwin and Barth (1990) original work and in 
Spalart and Allmaras (1994) original work, for the case with no 
laminar regions. The extension of both models for compressible 
flows was obtained simply by multiplying the kinematic turbulent 
viscosity coefficient by the local density, as indicated in the 
respective original papers. Moreover, the turbulence model equation 
is solved separately from the other governing equations in a loosely 
coupled fashion (Baldwin and Barth, 1990).  

The Baldwin and Barth (1990) model partial differential 
equation is 

 

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇⋅∇−∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−= TtT

t
T

T RRPRcfc
Dt
RD ~1~~~

2
2 12

νν
σ

ν
σ
ν

νν
ν

εε
εε .

 (22) 
 

In the previous equation, ( ) ( ) ( )∇⋅+
∂
∂

= V
tDt

D  is the 

material derivative, which contains the time derivative and 
convective terms. The first term on the right hand side of this 
equation is the production term and the terms between the square 
brackets are the diffusion terms. This equation is solved for the 
product of variables ( )TR~ν  and the eddy viscosity is calculated as 

 
( )Tt RDDc ~

21 νρµ µ=   , (23) 
 

where the damping functions D1 and D2 are designed to allow the 
model to be used in the near-wall region. 

The Spalart and Allmaras (1994) model partial differential 
equation is 

 

( )( ) ( )[ ] .
~~~~.1~~~ 2

1
2

21 ⎟
⎠

⎞
⎜
⎝

⎛−∇+∇+∇+=
d

fccSc
Dt
D

wwbb
ννννν

σ
νν (24) 

 
The first term on the right hand side of the equation is the 

production term. Moreover, the last term of this equation is the 
destruction term and the other terms are the diffusion terms. This 
equation is solved for the variable ν~ and the eddy viscosity is 
calculated as 

 
1

~
vt fνρµ =   , (25) 

 
where the function fv1 is a damping function used to properly treat 
the buffer layer and the viscous sublayer.  

Numerical Formulation 

Using a cell centered based finite volume scheme, the discrete 
vector of conserved variables is defined as an average over the cell 
of the continuous properties. Hence, for the i-th volume the discrete 
property vector is 

 

∫=
iVi

i dV
V

QQ 1   . (26) 

 
The definition of the discrete vector Qi can be used to rewrite 

Eq. (20), resulting 
 

( ) ( ) 0=−+
∂
∂

∫
iS

ii dxdyV
t

FEQ   . (27) 

 
The time integration in Eq. (23) is accomplished by a fully 

explicit 2nd-order accurate 5-stage Runge-Kutta time-stepping 
scheme (Mavriplis, 1990). Moreover, the purpose of the spatial 
discretization scheme is to numerically evaluate the surface integral 
in Eq. (27). This approximation of the integral is different for the 
inviscid and for the viscous flux terms. In this work, while the 
viscous terms are always treated using a centered scheme, the 
inviscid terms are treated using a centered or Liou’s AUSM+ scheme 
(Liou, 1996). The approximation of the integral of the inviscid flux 
vectors is called convective operator, which is defined as 
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( ) [ ]∑∫
=

∆−∆=−
n

k
ikikikik

S
xydxdy

i 1
FEFE   . (28) 

 
When the central difference scheme is used as the spatial 

discretization scheme in Eq. (28), artificial dissipation terms must be 
added in order to control nonlinear instabilities (Jameson and 
Mavriplis, 1986). In the present case, the artificial dissipation 
operator is formed as a blend of undivided Laplacian and 
biharmonic operators (Mavriplis, 1988, 1990). The expressions for 
this operator can be found, for instance, in Azevedo and 
Korzenowski (1998). Moreover, the scaling terms of the artificial 
dissipation model were implemented following two approaches: 
Jameson and Mavriplis’ (1986) work and Mavriplis’ (1990) work.  

The Liou scheme (Liou, 1996) implementation follows the work 
in Azevedo and Korzenowski (1998) and Strauss and Azevedo 
(2001) for both the first and second order versions of the scheme. 
The second order version of the scheme is obtained by following 
exactly the same formulation of the first order version, except that 
the left and right states are obtained by a MUSCL extrapolation of 
primitive variables (van Leer, 1979). The interested reader is 
referred to the original work of van Leer (1979) for details on the 
definition of the MUSCL scheme. In this work, cell averaged 
property gradients are computed and used to calculate the 
extrapolated properties (Barth and Jespersen, 1989). Gradients are 
computed here in the standard finite volume fashion, in which the 
derivatives are calculated in each volume considering that the 
discrete derivative in a given volume is the average on the volume 
of the derivative and, then, using Green’s theorem to transform the 
computation of the derivative on the computation of a line integral. 
The line integral calculation is performed in two quite different 
forms in the present work. In one approach, the control volumes 
used for the cell averaged gradient calculations are the volumes 
themselves. This is the simplest approach possible, but it is usually 
criticized in the literature (Barth and Jespersen, 1989), because it 
cannot recover the correct gradient of a linear function. The second 
approach implemented here consists of defining the control volume 
for the gradient calculation as the polygon formed by connecting the 
centroids of all cells which have an edge or a vertex in common 
with the volume for which the gradients are being computed, as 
suggested by Barth and Jespersen (1989). These two different forms 
of defining the control volumes are illustrated in Fig. 2 for the i-th 
volume. The simplified control volume is indicated by the darker 
lines in this figure, while the extended control volume is indicated 
by the dashed lines. 

 

i

 
Figure 2. Control volumes for the gradient computation. 

 
With the property extrapolation, the state variables are 

represented as piecewise linear within each cell, instead of 
piecewise constant. Hence, in order to avoid oscillations in the 

solution due to the property extrapolation, it is necessary to use a 
limiter. The minmod limiter was implemented, following the work 
in Barth and Jespersen (1989). In order to obtain a better 
convergence rate, the limiter value is “frozen” after a certain number 
of iterations, as described in Venkatakrishnan (1995). This 
procedure avoids the convergence stall commonly observed when 
second-order schemes based on linear reconstruction of variables are 
used (Venkatakrishnan, 1995). 

Results and Discussion 

The multigrid procedure described in the previous sections is 
applied in the solution of laminar viscous flow over a flat plate 
configuration at zero angle of attack. This quite simple problem was 
chosen in order to provide a model problem which could be used to 
assess the convergence acceleration performance of the multigrid 
procedure. Different parameters of the multigrid procedure were 
tested in an attempt to determine the settings that would result in the 
best convergence acceleration. 

 

 
(a) 9417 nodes, 9216 volumes 

 
(b) 2105 nodes, 2304 volumes 

 
(c) 627 nodes, 576 volumes 

 
(d) 170 nodes, 144 volumes 

Figure 3. Fine (a) and coarse agglomerated meshes (b, c, d) used for the 
flat plate calculations.  

 
Figure 3 presents the meshes used for the flat plate problem. 

Although these meshes look like structured meshes, the authors 
emphasize that they were treated in a fully unstructured fashion. 
Moreover, only the (a) mesh was provided as input data. The coarse 
(b), (c) and (d) meshes were generated by the code using the 
agglomeration procedure previously described. The decision of 
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using an unstructured mesh generated from a structured mesh was 
made because a structured mesh is very easy to generate in this case 
and quadrilateral cells are more adequate to the treatment of viscous 
flows adjacent to solid walls. On the other hand, since the complete 
procedure treats all meshes as fully unstructured, the capability 
could be directly applied to any other grid configuration. 

In the simulation, the flow characteristics used were M∞ = 0.3 
and Rel = 1.0 × 105 based on the total plate length. The centered 
scheme with Jameson and Mavriplis’ (1986) artificial dissipation 
model was used. Many different numerical parameters were tested 
in order to assess the optimal settings that would result in the best 
convergence ratios. A summary of the cases tested is presented in 
Table 1 and the convergence histories corresponding to these cases 
are presented in Fig. 4. In this figure, the convergence history for the 
case of no multigrid procedure is also shown and it is labeled as 
“single grid case”. 

 

Table 1. Description of the cases tested. 

Case Description 
1 3 coarse mesh levels, 1 pre- and 1 pos-sweep iterations on 

the finest mesh, W cycle, 20 iterations on the coarsest grid 
level, averaging prolongation operator 

2 Same as case1 with 4 coarse mesh levels 
3 Same as case 2 with zero pre-sweep iterations 
4 Same as case 2 with direct injection prolongation operator 
5 Same as case 2 with 1 pre- and 1 pos-sweep iterations on 

every grid level 
6 Same as case 5 with 2 iterations on the coarsest grid level 
7 Same as case 5 with 40 iterations on the coarsest grid level 

 

 
Figure 4. Convergence histories for the cases described in Table 1. 

 
The convergence histories presented in Fig. 4 cannot be used to 

directly compare the performance of the multigrid procedure, as the 
computational cost per iteration is different in each case tested. 
Therefore, a comparison in terms of computational time is presented 
in Table 2. From this table, it can be seen that it is worthwhile to 
spend more in the solution of the coarse meshes in order to obtain 
the best overall computational time reduction. Although there was 
no attempt to converge the case in which the multigrid procedure 
was not used to machine zero, a comparison between this case and 
the best case with multigrid, i.e., case 7, can be made in terms of 
computational cost to reduce the logarithm of the residual by a few 

orders of magnitude. Hence, the cost to converge the solution 
without multigrid by four orders of magnitude in the residuals is 
27000 s, while the cost with multigrid is 11300 s. Therefore, this 
means a reduction to 42% of the original computational time. It is 
important to emphasize the meaning of the expression “machine 
zero”. In this work, as usually used in the CFD literature, machine 
zero refers to the lowest possible residue value which is a function 
of the machine precision, the discretization schemes being used and 
the meshes. 

 

Table 2. Computational time required to reduce the residual to machine 
zero. The computational time for the cases marked with * correspond to 
40000 iterations. 

Case Computational Time per 
Iteration (s) 

Computational Time (s) 

Single Grid 0.486 19440 * 
1 2.08 62400 

2 1.66 66400 * 
3 1.20 48000 * 
4 1.67 66800 * 
5 2.77 33240 
6 2.27 63560 
7 3.14 31400 

 
The numerical solution obtained for this case is compared with 

the exact Blasius solution (Schlichting, 1979) in Fig. 5. One must 
observe that the converged solution is independent of the multigrid 
parameters used once convergence is achieved. In other words, these 
parameters affect the convergence ratio but not the final solution. In 
Fig. 5, the two numerical solutions correspond to the case in which 
the multigrid procedure was used and to the case in which it was 
not. The nondimensional velocity profiles are plotted as a function 

of the nondimensional coordinate xRe
x
y

=η , and correspond to a 

station in the middle of the plate, i.e., at 50% of the plate length. The 
difference between the two numerical results is due to the fact that 
the case, in which the multigrid procedure was not used, is not fully 
converged yet. In the case in which the multigrid procedure was 
used, the solution converged to machine zero. Numerical 
experiments performed in the course of this work indicated that, if 
one would allow the case without multigrid to converge further, its 
solution would approach the other numerical result presented in Fig. 
5. One can see from this figure that the numerical solutions are close 
to the exact Blasius solution. 
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Figure 5. Comparison of the numerical results obtained with the Blasius 
solution for the flat plate (M∞ = 0.3 and Rel = 1.0 × 105). 
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As discussed in the Theoretical Formulation section, two 
approaches for the gradient calculation were implemented. One 
approach considers a simplified control volume for the gradient 
computations while the other considers an extended control volume. 
The results previously shown considered a simplified control 
volume and a comparison between the two approaches is presented 
in Fig. 6 for the flat plate case. In this figure one can observe that 
the gradient computation with an extended control volume slightly 
improves the numerical solution in comparison with the solution 
using a simplified control volume for the gradient calculation. 
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Figure 6. Comparison between flat plate results using different control 
volumes for the gradient calculation (M∞ = 0.3 and Rel = 1.0 × 105). 

 
As previously discussed, in the cases in which a central spatial 

discretization scheme is used, an artificial dissipation model is 
required. For the case in which Jameson and Mavriplis’ (1986) 
model is employed, a variation on the steady-state numerical 
solution when different time steps are used can be expected. This is 
due to the fact that Jameson and Mavriplis’ model has a scaling term 
that is inversely proportional to the local time step. The numerical 
results for a flat plate obtained with three different values of CFL 
numbers are presented in Fig. 7. As the scaling term is inversely 
proportional to the time step, the smaller the CFL number the larger 
the artificial dissipation term. Therefore, for small time steps, the 
artificial dissipation becomes more important in comparison with 
the physical dissipation terms, resulting in an increase in the overall 
dissipation of the numerical solution. This can be observed in Fig. 7 
in which the larger the CFL number the closer to the exact solution 
is the numerical solution. 
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Figure 7. Time step influence on the flat plate results with Jameson and 
Mavriplis’ artificial dissipation formulation (M∞ = 0.3 and Rel = 1.0 × 105). 

In opposition to Jameson and Mavriplis’ artificial dissipation 
model, Mavriplis (1990) model does not contain the time step in the 
dissipation terms. Therefore, it does not present an influence of the 
time step on the steady-state solution such as observed in Fig. 7 for 
Jameson and Mavriplis’ model. A comparison between these two 
artificial dissipation models is presented in Fig. 8, in which the 
solution using Liou’s scheme is also included. In this figure one can 
see that the solution with Mavriplis’ model is in better agreement 
with the Blasius solution than the solution with Jameson and 
Mavriplis’ model. Moreover, the numerical experiments performed 
showed that the time step influence on the solution is negligible 
when Mavriplis’ model is used. This means that, with Jameson and 
Mavriplis’ model and even for the larger time steps, there is some 
influence of the time step on the steady state solution.  

The solution for the laminar flat plate using Liou’s spatial 
discretization scheme is also presented in Fig. 8, as already 
mentioned. This solution is very close to the solution with the 
centered spatial discretization scheme with Mavriplis’ artificial 
dissipation model. Hence, as the computational cost of Liou’s 
scheme is larger than that of the centered scheme, it is worthwhile to 
use the centered scheme in this case. Moreover, the influence of the 
time step on the steady-state numerical solution observed in the 
numerical experiments performed is also very small for the Liou 
(1996) scheme. 
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Figure 8. Comparison of the spatial discretization procedure effect on the 
flat plate numerical solution (M∞ = 0.3 and Rel = 1.0 × 105). 

 
The Blasius exact solution of the laminar flat plate problem (see, 

for instance, Schlichting, 1979) is a self-similar solution when the 
previously defined η variable is used. The numerical results, using 
the centered scheme and Mavriplis’ artificial dissipation model, 
obtained for three different stations along the flat plate, namely at 
0.2, 0.5 and 0.8 plate lengths from the leading edge, are presented in 
Fig. 9. The solution on the three stations is in good agreement with 
the Blasius solution. Clearly, the regions farther from the leading 
edge are in better agreement with the exact solution than the ones 
closer to the leading edge. This suggests that there is some influence 
of the leading edge on the solution over the plate, even though the 
plate is considered to have zero thickness. Nevertheless, it is evident 
in Fig. 9 that the numerical solution is converging to the Blasius 
solution as the flow progresses along the plate. 
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Figure 9. Similarity on the flat plate numerical results (M∞ = 0.3 and         
Rel = 1.0 × 105). 

 
Flat plate results were also obtained for turbulent cases. The 

comparisons that will be shown in the forthcoming paragraphs will 
present results with both turbulence closure models implemented. In 
order to validate these models, a comparison of the numerical results 
with analytical solutions (Schlichting, 1979) was performed. For the 
case of a flat plate with zero pressure gradient, three different layers 
can be identified in the boundary layer close to the wall. The first 
layer is the viscous sublayer, where the turbulence is damped by the 
presence of the wall and, therefore, the laminar or molecular 
viscosity dominates. The second layer is a transition layer, or buffer 
layer. Finally, the third layer is the log layer, where the turbulence 
effects dominate the laminar effects.  

The velocity profile in the viscous sublayer can be written as 
(Schlichting, 1979) 

 
+= y

u
u
*   , (29) 

 
where 

 

w

wu
ρ
τ

=*   , (30) 

 
and 

 

νρ
τ dy

w

w=+   . (31) 

 
In the log layer, the velocity profile is 

 

5ln5.2* += +y
u
u   , (32) 

 
where the constants in the previous equation were obtained from 
experimental results (Schlichting, 1979). 

The numerical results obtained with the Baldwin and Barth 
turbulence closure model and Liou’s scheme are presented in Fig. 
10. In this figure the dimensionless velocity profiles for three 
different stations along the plate are presented, namely at 0.2, 0.5 
and 0.8 plate lengths from the plate leading edge. It is evident from 
the figure that there is a very good agreement between the 
computational and analytical results. One can also observe in the 
figure that the velocity profiles at the different stations are self-

similar and, as for the laminar case, the best results are obtained for 
the stations farther from the plate leading edge. 
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Figure 10. Comparison of the numerical results using the Baldwin and 
Barth model with the analytical solution for the turbulent flat plate          
(M∞ = 0.3 and Rel = 2.0 × 106). 

 
A similar comparison to the one presented in Fig. 10 is shown in 

Fig. 11 for the Spalart and Allmaras turbulence closure model. 
Using this model, there is also a good agreement between the 
numerical and the analytical results, although it is not as good as the 
one observed with the Baldwin and Barth model results. 
Nevertheless, the results are still very good and the Spalart and 
Allmaras model is also used quite frequently in aerodynamic 
applications. 
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Figure 11. Comparison of the numerical results using the Spalart and 
Allmaras model with the analytical solution for the turbulent flat plate     
(M∞ = 0.3 and Rel = 2.0 × 106). 

 
The comparisons presented in Figs. 10 and 11 showed good 

agreement with the analytical results. However, if the centered 
scheme with Mavriplis’ (1990) artificial dissipation model is used 
instead of the Liou scheme, the comparison is much worse. Such 
comparison is presented in Fig. 12 for the Baldwin and Barth 
turbulence closure model and similar results were obtained with the 
Spalart and Allmaras model. Moreover, the use of Jameson and 
Mavriplis’ (1986) instead of Mavriplis’ (1990) artificial dissipation 
model does not present any significant change in the results 
presented in Fig. 12. The velocity profiles, as one can see in Fig. 12, 
are self-similar, but they do not match the viscous sublayer and the 
log layer data (Schlichting, 1979). These results indicate that the 
artificial dissipation model introduces too much dissipation, which 
is not observed with the 2nd-order Liou (1996) scheme as it has its 
inherent artificial dissipation. 
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The results presented in this section were computed using the 
mesh shown in Fig. 3. For these cases, the y+ value for the first point 
of the mesh off the wall is slightly lower than 1. This value is 
adequate for both the Baldwin and Barth and the Spalart and 
Allmaras turbulence closure models, as discussed by the authors 
(Baldwin and Barth, 1990, Spalart and Allmaras, 1994). Moreover, 
no variation of the grid refinement was attempted as previous 
studies (Azevedo, Meneses and Fico, 1996) have indicated that the 
refinement adopted is adequate for the capture of turbulent boundary 
layers. 
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Figure 12. Numerical results using the Baldwin and Barth model and the 
centered spatial discretization scheme (M∞ = 0.3 and Rel = 2.0 × 106). 

 
The capability developed is able to handle complex mesh 

topologies. For instance, Fig. 13 presents an example of a hybrid 
mesh for a flat plate and three agglomerated meshes that were 
obtained from this mesh. Again, one should note that only the (a) 
mesh in Fig. 13 has to be provided as input data. The other meshes 
are automatically generated by the agglomeration procedure. This 
topology represents a typical case for the treatment of viscous 
boundary layers in the proximity of solid walls, as quadrilaterals 
have been used near the wall and triangles away from it. It has the 
advantage of being capable of adequately capturing the viscous 
effects close to the body while reducing the number of points in the 
regions far from the body, where they are not needed. 
 

 
(a) 6269 nodes, 13298 volumes 

 
(b) 1848 nodes, 3435 volumes 

Figure 13. Original (a) and agglomerated (b,c,d) hybrid meshes for the flat 
plate. 

 
(c) 528 nodes, 928 volumes 

 
(d) 157 nodes, 263 volumes 

Figure 13. (Continued). 

 
The computational results for the laminar flat plate obtained 

with the mesh shown in Fig. 13 are presented in Fig. 14. The 
centered spatial discretization scheme with Mavriplis’ artificial 
dissipation model was used in this case. The results with the same 
formulation but with the quadrilateral mesh presented in Fig. 3 are 
also shown in Fig. 14, as well as the exact Blasius solution. The 
velocity profiles plotted in Fig. 14 correspond to a station in the 
middle of the plate. From this figure, one can see that the results 
with the hybrid mesh are almost identical to the results with the 
quadrilateral mesh, as expected. Moreover, as previously discussed, 
the computational results are in good agreement with the Blasius 
solution. 
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Figure 14. Comparison of velocity profiles for the laminar flow over a flat 
plate using hybrid and quadrilateral unstructured meshes (M∞ = 0.3 and 
Rel = 1.0 × 105). 

Conclusions 

An agglomeration multigrid capability was developed in the 
context of a 2-D turbulent viscous solver which is capable of 
handling hybrid unstructured meshes. The multigrid procedure as 
well as the agglomeration technique is discussed in detail in the 
paper. Moreover, the restriction and prolongation operators used are 
presented, together with some considerations about simplifications 



J. L. F. Azevedo and D. Strauss 

/ Vol. XXV, No. 4, October-December 2003  ABCM 324 

that can be made in order to reduce the computational costs of the 
multigrid procedure. 

Laminar viscous flow over a 2-D flat plate was used to validate 
the implemented capability. Studies of the various parameters 
affecting the multigrid acceleration performance were undertaken 
with the objective of determining optimal numerical parameter 
combinations. The results obtained show a significant improvement 
in convergence in comparison with the case without the use of the 
multigrid procedure. Among the combinations tested, the best set of 
numerical parameters consists of 4 coarse meshes, 1 pre- and 1 pos-
sweep iterations on every grid level and 40 iterations on the coarsest 
grid level. 

A preliminary validation of the implemented capability was 
performed using laminar and turbulent flat plate simulations. In both 
cases, a very good agreement was obtained with the experimental 
and analytical results. The numerical solutions were compared to the 
Blasius solution for the laminar case and to the viscous sublayer and 
log-layer for the turbulent case. The Baldwin and Barth as well as 
the Spalart and Allmaras turbulence closure models gave essentially 
the same results, but the Baldwin and Barth model provided a 
slightly better comparison with the analytical results. Moreover, an 
effect of the CFL number on the steady-state solution was observed 
when the centered scheme with Jameson and Mavriplis’ artificial 
dissipation model was used. This is due to the fact that the scaling 
terms in this model are inversely proportional to the time step. 
Nevertheless, when the centered scheme with Mavriplis’ artificial 
dissipation model, or the Liou scheme, was used, no such time step 
effect was observed. Furthermore, for the turbulent case using the 
centered scheme, the comparison with the analytical results was 
poorer than the comparison when the Liou scheme was used. This 
was observed with both the Jameson and the Mavriplis artificial 
dissipation models and it is an indication that these artificial 
dissipation models introduce too much dissipation in this case, 
which is not observed with Liou’s scheme as it has its inherent 
artificial dissipation. 

The increased flexibility provided by the use of unstructured 
grids was demonstrated with the use of hybrid meshes. The hybrid 
meshes have the advantage of being capable of adequately capturing 
the viscous effects close to the body while reducing the number of 
points in the regions far from the body, where they are not needed. 
Laminar flat plate results obtained in a hybrid mesh were identical 
to the ones obtained with a conventional quadrilateral mesh. 
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