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An Edge-Based Unstructured Finite 
Volume Procedure for the Numerical 
Analysis of Heat Conduction Applica-
tions 
In recent years, there has been a significant level of research on the application of un-
structured mesh methods to the simulation of a variety of engineering and scientific prob-
lems. Great progress has been achieved in such area and one of the most successful meth-
odologies consists on the use of the Finite Volume Method (FVM). The unstructured FV 
formulation is very flexible to deal with any kind of control volume and therefore any kind 
of unstructured meshes, which are particularly important when complex geometries or 
automatic mesh adaptation are required. In this article, an unstructured finite volume ver-
tex centered formulation, which was implemented using an edge-based data structure, is 
deduced and detailed for the solution of heat conduction problems. The numerical formu-
lation is initially described considering a tri-dimensional model and latter particularized 
for bi-dimensional applications using triangular meshes. The presented procedure is very 
flexible and efficient to solve potential problems. It can also be extended to deal with a 
broader class of applications, such as models involving convection-diffusion-reaction 
terms, after considering the appropriate discretization of the convection-type term. In or-
der to demonstrate the potentiality of the method, some model problems are investigated 
and the results are validated using analytical or other well-established numerical solu-
tions. 
Keywords: Finite volume method, unstructured mesh, edge based data structure, heat 
transfer 
 
 
 

Introduction 

Whenever analyzing numerical applications that involve com-
plex geometries the adoption of methods capable to deal with un-
structured meshes is very attractive and highly recommended 
(AGARD Report 787, 1992). Within such class of methods the most 
frequently used are the finite element method (FEM), (Zienkiewicz 
and Morgan, 1983) and the finite volume method (FVM), (Barth, 
1992). The FVM is very flexible to deal with any kind of control 
volumes and, consequently, any kind of unstructured meshes includ-
ing dual meshes. Finite volume methods are usually either a 
node/vertex centered, where the unknowns are defined at the nodes 
of the mesh, or element/cell centered where the unknowns are de-
fined within the element, usually at the element’s centroid. Both 
options have advantages and disadvantages, but in two-dimensional 
applications all of them have basically the same computational cost, 
which is proportional to the number of edges of the mesh. However, 
the node-centered formulation has a strong connection with an edge-
based finite element formulation, when linear triangular (tetrahedral) 
elements are used, and requires less memory and computations 
when extended for three-dimensional tetrahedral meshes, (Barth, 
1992, Peraire et al., 1993 and Sorensen et al., 2001). The adoption 
of unstructured grids implies the storage of mesh topology informa-
tion (connectivities), increasing the use of computer memory and 
indirect addressing to retrieve local information required by the 
solver. In order to reduce indirect addressing, CPU time and mem-
ory requirements (Barth, 1992, Peraire et al., 1993 and Lyra, 1994), 
an edge-based data structure is adopted. This data structure also 
enables a straightforward implementation of different types of finite 
difference discretization, such as upwind-biased schemes in the 
context of unstructured algorithms, when dealing with CFD (Com-
putational Fluid Dynamics) problems, (Peraire et al., 1993 and Lyra 
et al., 1994).1 
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In this paper, the vertex centered finite volume formulation us-
ing median dual control volumes is implemented using an edge-
based data structure, (Barth, 1992, Sorensen et al., 1999 and Lyra et 
al., 2002). The complete formulation is deduced and detailed for the 
solution of heat conduction problems. In two dimensional (2-D) 
models, triangular, quadrilateral or mixed meshes can be directly 
used, and the same happens when dealing with three dimensional (3-
D) models, where tetrahedral, hexahedral, pyramids, prisms and 
mixed meshes can be adopted. We derive the FV discretization of a 
transient potential problem subject to different types of boundary 
conditions (Dirichlet, Neumann, and Cauchy) and to some non-
conventional loads, considering also systems with multi-materials. 

This paper is organized as follows: after these initial considera-
tions, the physical-mathematical model considered is described. 
Then, the discrete spatial formulation adopted is fully presented. 
Some important implementation aspects are discussed and several 
simple model problems are analyzed to validate and to study the 
performance of the whole procedure. Finally, some concluding 
comments are presented and the potentiality of the described ap-
proach is highlighted. 

Mathematical Model 

Using the energy conservation law we can derive the partial dif-
ferential equation that governs transient heat transfer in a stationary 
continuous medium, 

 

      in    x Τρ Ω
∂∂

= − +
∂ ∂

j

j

qTc S
t x

. (1) 

 
In previous equation, the product ρc represents the heat capac-

ity, with ρ being the mass density and c being the specific heat, T is 
the temperature, qj is the heat flux in xj direction and S represents the 
source (or sink) terms. The spatial domain of the problem is repre-
sented by Ω , with xj being the spatial independent variable with j 
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varying from one to the number of spatial dimensions, and 
]t,t[ fi=Τ  represents the time interval of integration.  

The constitutive relation between the conductive heat flux and 
the temperature gradient is given by Fourier’s law,  

 

j
jj x

Tkq
∂
∂

−= , (2) 

 
in which kj is the thermal conductivity in xj direction. For simplicity, 
the medium is considered either orthotropic or isotropic with ,  cρ  
and jk  constants.  

Equation (1) represents a boundary-initial value problem and 
must be subjected to boundary and initial conditions. The boundary 
conditions of interest can be of three different types: 

a) A prescribed temperature T  over a portion of the boundary 
ΓD, i.e., Dirichlet boundary condition:  

 
Τ x in              DΓTT =  , (3) 

 
b) A prescribed normal heat flux nq  over ΓN, also known as 
Neumann boundary condition: 
 

N        in    x Τj j nq n q− = Γ , (4) 
 

in which nj are the outward normal direction cosines. 
 
c) A mixed type boundary condition over ΓC, called Cauchy or 

Robin boundary condition: 
 

R( )     in    x Τj j n aq n q T TαΓ− = + − Γ , (5) 
 

with αΓ  representing the film coefficient and Ta being the bulk fluid 
temperature. 

Finally, an initial distribution of the temperature iT  must be 
known at an initial time stage ti, and the initial condition is ex-
pressed by: 

 
 t   tand   n            i=Ω= iTT i . (6) 

 
Equations (1) to (6) fully describe our mathematical model, 

which governs heat conduction in a stationary medium. 

Finite Volume Formulation 

In this section, the majority of the numerical formulation 
adopted is presented without reference to a particular type of mesh 
or spatial dimension. The formulation is completed by assuming a 
two dimensional computational domain discretized into an unstruc-
tured assembly of triangular elements. The time discretization 
adopted is the simple first-order accurate Euler-forward procedure. 
Such scheme is just first order accurate in time and the t∆  must be 
chosen according to a stability condition (Zienckiewicz and Morgan, 
1983). Other alternatives, such as the generalized trapezoidal 
method (Zienckiewicz and Morgan, 1983 and Lyra, 1994), multi-
stage Runge-Kutta scheme (Lyra, 1994) or schemes involving more 
than two time intervals (Sorensen, 2001) can be implemented if 
higher-order time accuracy is required. 

The mathematical model presented in previous section repre-
sents an example of potential problem and therefore a broad variety 
of applications governed by similar models can be solved using the 
numerical procedure to be described in this section. 

Spatial Discretization 

The integral form of the potential problem given by Eq. (1) is 
written as,  

 

Ω Ω Ω

ρ Ω Ω Ω
∂∂

= − +
∂ ∂∫ ∫ ∫j

j

qTc d d Sd
t x

, (7) 

 
or alternatively by the use of the divergence theorem, 

 

 
Ω Γ Ω

ρ Ω Γ Ω∂
= − +

∂∫ ∫ ∫j j
Tc d q n d Sd
t

 , (8) 

 
where Ω denotes an arbitrary control volume, with closed boundary 
Γ . 

The computational domain is discretized into an unstructured 
assembly of elements. Then Eq. (8) is applied over each control 
volume in the mesh. So the volume integrals of (8) can be computed 
over the control volume surrounding node I as 

 

I
I

I
I V

t
T

cV
t

T
cd

t
Tc

I
∂
∂

≅
∂
∂

≅
∂
∂

∧

∫ ρρΩρ
Ω

 , (9) 

 
and  

 

IIVSSd
I

≅∫
Ω

Ω  , (10) 

 
where VI is the volume of the control volume, IT̂  and SI represent 
the numerically calculated temperature and source term at node I, 
respectively. The assumption of c and  ρ being constants was used 
in previous approximations. 

The boundary integral presented in Eq. (8) is computed over the 
boundary of the control volume that surrounds node I using an edge-
based representation of the mesh, i.e., 

 
( ) ( )

L L L L

I

j jj j
j j IJ IJ IJ IJ

L L

ˆ ˆq n d C q D qΩ Γ

Γ

Γ ≅ +∑ ∑∫  , (11) 

 
for a general flux jq . In Equation (11) j

IJL
C  denotes the coefficient 

that must be applied to the approximate edge value of the flux ( )
L

j
IJq̂ Ω  

in the xj direction to obtain the contribution made by the edge L to 
node I. JL represents the node connected to node I through edge L. 
In addition, j

IJL
D  represents the boundary edge coefficient that must 

be applied to the boundary edge flux ( )
L

j
IJq̂ Γ  when the edge L lies on 

the boundary. These coefficients can be readily computed and this 
will be detailed afterwards. The first summation in Eq. (11) extends 
over all edges L in the mesh which are connected to node I, and the 
second summation is non-zero only when node I is on the boundary 
and extends over all boundary edges that are connected to node I. 

Considering the approximations given by Eqs. (9), (10) and 
(11), the semi-discrete formulation of Eq. (8) can be conveniently 
expressed as: 

 

( ) ( )ˆ
ˆ ˆ

L L L L

j jj jI
I I IIJ IJ IJ IJ

L L

dTc V C q D q S V
dt

Ω Γρ
⎛ ⎞
⎜ ⎟= − + +
⎜ ⎟
⎝ ⎠
∑ ∑  (12) 
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The approximation of the value of the edge flux ( )
L

j
IJq̂ Ω  is com-

puted using the midpoint rule, or simple arithmetic average: 
 

( ) L
L

j j
I Jj

IJ

ˆ ˆq q
q̂   

2
Ω +

= . (13) 

 

To compute the boundary edge flux ( )
L

j
IJq̂ Γ  we have considered a 

linear variation of the flux over edge IJL: 
 

( ) ( )L

L

j j
I Jj

IJ

ˆ ˆ3q q
ˆ q    

4
Γ +

= . (14) 

 
Alternatively, a finite volume fashion approximation could be 

used, which would consider the value of the flux constant inside the 

control volume and compute ( )
L

j
IJq̂ Γ  as the nodal value j

Iq̂ . Both 

options gave good results for the test cases studied and further in-
vestigation is required to favor one of them. 

In order to compute the edge fluxes described by Eqs. (13) and 
(14) we need to know the nodal values of the fluxes and so the nodal 
values of the temperature gradients. By adopting the divergence 
theorem and the approximation used to compute volume integrals 
over a control volume surrounding node I (e.g. Eq. (10)), we have: 

 

∫∫ =
∂
∂

II

dTnd
x
T

j
j ΓΩ

ΓΩ       and      
ˆ

I

I
I

j j

T Td V
x x

Ω

∂ ∂
Ω ≅

∂ ∂∫ . (15) 

 
From previous expressions and using the same approximation 

adopted to compute the boundary integral in Eq. (11), we get the 
approximate nodal gradients through: 

 

( ) ( )ˆ ˆ ˆ ˆ
L L L L

I

j jI
I j IJ IJ IJ IJ

j L L

T V Tn d C T D T
x

Ω Γ

Γ

∂
≅ Γ ≅ +

∂ ∑ ∑∫ . (16) 

 
Similarly to the computation of the edge fluxes described in 

Eqs. (13) and (14), the edge values of the temperature, ( )ˆ
LIJT Ω  and 

( )ˆ
LIJT Γ , are calculated by: 
 

( )

( ) ( )

ˆ ˆ
ˆ

2
  

ˆ ˆ3
ˆ  

4

L
L

L

L

I J
IJ

I J
IJ
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T
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T

Ω

Γ

+
=

+
=

. (17) 

 
The use of Eq. (16) to compute the gradients implies that the 

discretization of the diffusion term in Eq. (12) involves information 
from two layers of points surrounding the point I under considera-
tion. Furthermore, if uniform structured quadrilateral (or hexahe-
dral) meshes are adopted, the values computed at a given node are 
uncoupled from the values of those nodes directly connected to it. 
This fact may cause “checker-boarding” or “odd-even” oscillations 
(Lyra, 1994 and Sorensen, 2001). When computing the diffusive 
term in non-uniform unstructured meshes, the adoption of an ex-
tended stencil and a weak coupling with the directly connected 
nodes may lead to some loss of robustness and reduction of conver-
gence rate of the resulting scheme. In order to overcome such weak-

nesses, the gradients must be computed in an alternative way. Fol-
lowing the procedure suggested in the literature (Crumpton et al., 
1997 and Sorensen, 2001) a better approach can be developed as 
follows. 

The edges values of the temperature gradient can be approxi-
mately computed by: 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂
∂

=
∂

∂
≅

∂

∂

j

J

j

I

j

IJ

j

IJ

x
T̂

x
T̂

2
1

x
T̂

x
T

LLL . (18) 

 
Using a local frame of reference, in which one axis is along the 

edge direction (P) and another axis (N) is in the plane orthogonal to 
direction (P), (see Fig. 1), the edge gradient can be alternatively 
computed as: 

 

j

N
IJ

j

P
IJ

j

IJ

x
T̂

x
T̂

x
T̂

LLL

∂

∂
+

∂

∂
=

∂

∂
. (19) 

 

 
Figure 1. Local frame of reference. 

 
Once the nodal gradients are known the corresponding fluxes 

can be directly obtained by the use of the Fourier Constitutive Law 
given in Eq. (2), and, similarly to the edge values of the temperature 
gradients, the edge fluxes are given by:  

 

( ) ( ) ( ) ( )L

L L L

j j
I Jj j j

IJ IJ IJ
P N

ˆ ˆq q
ˆ ˆ ˆq q q

2
Ω Ω Ω+ ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 . (20) 

 
Using a second-order central finite difference approximation, 

the temperature derivative over the edge in direction (P) can be 
calculated by: 

 

L
L

L

*

L
IJ

IJ

IJ

P

IJ

X
T̂T̂

x
T̂

L
∆

−
=

∂

∂
. (21) 

 
Where 

LIJ∆X  is the size of the edge IJL, i.e.: 
 

IJIJ LL
XXX −=∆        with       ( )3

I
2
I

1
II x,x,x=X ,    (22) 

 
and 
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L

L
L

IJ

IJ
IJ X∆

XX
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−
==   and 

L

L

IJ

j
I

j
J

j X
xx

L
∆

−
= , (23) 

 
where L represents the unitary vector defined in the edge direction 
from I to JL, and Lj are the director cosines. 

The Cartesian components of the derivative on the edge direc-
tion are given by, 

 

*

L

*

L

p

IJ
j

j

P
IJ

x
T̂

L
x

T̂
∂

∂
=

∂

∂
, (24) 

 
and the Cartesian components of the portion of the gradient or-
thogonal (or normal) to the edge direction is then, 

 

 L L L
N P

IJ IJ IJ

j j j

ˆ ˆ ˆT T T
x x x

∂ ∂ ∂
= −

∂ ∂ ∂
,  (25) 

 
where KIJ xT̂

L
∂∂  is calculated in a finite volume fashion given by 

Eq. (18).  
In short, the edge temperature gradient given by Eq. (19) is 

computed using the edge direction quantity calculated by Eq. (24) 
and the normal one using Eq. (25). Similarly, the edge fluxes com-
ponents given by Eq. (20) are now replaced by Eq. (26), which is 
computed using the gradients as described previously and the Fou-
rier Constitutive Law Eq. (2), i.e., 

 

( ) ( ) ( ) ( )
*

L

L L L*

j j
j I J j j
IJ IJ IJ

P N

ˆ ˆq q
ˆ ˆ ˆq q q

2
Ω Ω Ω+ ⎛ ⎞= ≅ +⎜ ⎟

⎝ ⎠
, (26) 

 

where the heat fluxes in the edge direction ( )
L

j
IJ

P
q̂ Ω  are replaced by 

( )
L *

j
IJ

P
q̂ Ω . 

The final semi-discrete scheme is then given by Eq. (12) after 

replacing ( )Ωj
IJL

q  by ( )*Ωj
IJL

q , i.e.:  
 

( ) ( )
*ˆ

ˆ ˆ
L L L L

j jj jI
I I IIJ IJ IJ IJ

L L

dTc V C q D q S V
dt

Ω Γρ
⎛ ⎞
⎜ ⎟= − + +
⎜ ⎟
⎝ ⎠
∑ ∑ . (27) 

Weighting Coefficients Definitions 

The definition of the weighting coefficients is presented here 
just for the two-dimensional model, which will be adopted for vali-
dating the formulation and computational system developed. How-
ever, similar definitions apply for the 3-D spatial model (Sorensen, 
2001).  

For two-dimensional problems, we have the mesh on a flat mid-
dle plane defined by coordinates x1 and x2. Then, Eq. (8) must first 
be integrated over x3 and then over a 2-D space. In such model, we 
have the nodal volume computed as III EAV = , where EI refers to 
the thickness of the domain at point I, and AI is the area of the con-
trol volume surrounding node I. The 2-D weighting coefficients 

j
IJL

C  and j
IJL

D  are defined by 
 

L

L

j j
K KIJ

K
j j

L LIJ

C A n

D A n

=

=

∑
, (28) 

 
where KKK ELA =  with ( ) 2EEE

LJIK +=  and LK is the length of 
each interface K associated to edge IJL. Each interface connects the 
element centroid (C) to the middle point (MP) of one of the edges 
that belongs to such element and LLL ELA = , where LL is half the 
size of the boundary edge under consideration and LE is defined 

similarly to KE . j
Kn  and j

Ln are the outward normal direction co-
sines to the interface K and L, respectively. The geometric parame-
ters required for computing the weighting coefficients are detailed in 
Figs. 2 and 3. 

 

 
Figure 2. 2-D control volume and its geometric parameters. 

 

 
Figure 3. 2-D boundary control volume and its geometric parameters. 

Thermal Loads, Boundary Conditions and Multi-
Materials Domain 

We will consider only the two-dimensional model however, the 
three-dimensional extension is straightforward. The implementation 
of certain discrete terms relies on some features inherent to our 
system for two-dimensional mesh generation (Lyra and Carvalho, 
2000 and Carvalho, 2001). The discretization of the different ther-
mal loads represented by S in Eq. (1) and different boundary condi-
tions (Eqs. (3) to (5)) are now considered. Finally, the treatment of 
multi-material problems is also described. 
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Thermal Loads 

For the 2-D model, the thermal load S over the domain is repre-
sented here as: 

 
( )[ ] ETTQS a −+= Ωα , (29) 

 
with 

 
P C RQ Q Q Q= + + , (30) 

 
where the superscripts P, C, R accounts for thermal sources (or 
“sinks”) acting on a point, a curve or a region, respectively. On the 
right hand side of Eq. (29) the first term represents the thermal 
sources (or sinks) described in Eq. (30). The second term accounts 
for convection over each face of the two dimensional domain, Ωα  
is the film coefficient where the subscript Ω  is used to emphasize 
that it acts over the domain, while in Eq. (5), Γα  acts over the 
boundary with mixed boundary condition and E refers to the thick-
ness of the domain. It should be observed that the second term does 
not exist in a three-dimensional model and the convection on the 
surface is accounted in the boundary conditions. 

The integral of the thermal loads Q described by Eq. (30) is 
given by:  

 

C R

P C RQ d Q Q d Q d
Ω Γ Ω

Ω = + Γ + Ω∫ ∫ ∫ . (31) 

 

In Equation (31), the term P PQ Q d
Ω

= Ω∫  considers the total 

value of heat source for a unity volume and therefore P
IQ  is just a 

point heat source computed at a given node I. If the point source is 
not applied at a nodal point its value is distributed to the nodes of 
the triangle that contains it, using a linear approximation (Lyra et 
al., 2000). The ADT (Alternate Digital Tree), (Bonet and Peraire, 
1990), data structure and corresponding searching algorithm is used 
to determine the element that contains the position of the point load. 

The flexibility of our two-dimensional mesh generator  (Lyra 
and Carvalho, 2000) is exploited using the possibility to build a 
fictitious boundary along the curve where we want to apply a heat 
source. The term containing CQ  considers the heat source value for 
a strip of unity width over the plane and along the surface CΓ , 
which represents the transversal section along the line heat source. 
Then, the boundary integral in (31) is easily approximated by each 
portion of the fictitious boundary associated to node I ( )

ICΓ  as: 
 

∑∫ ≅
L

L
C
I

C AQdQ

ICΓ

Γ . (32) 

 
The summation extends over the two edges connected to node I 

that belong to the fictitious boundary and AL is an area computed as 
previously defined. 

If the heat source per unit of volume QR is distributed over a re-
gion RΩ , the third integral in Eq. (31) is then approximated in the 
same fashion as the transient term given in Eq. (9), i.e. for each 
control volume surrounding node I, 

IRI Ω      ∈∀ , we have: 
 

I
R
I

R VQdQ

IR

≅∫
Ω

Ω . (33) 

 
Finally, the convective type source term is computed for each 

node I, 
IRI Ω      ∈∀ , by: 

 

( )[ ] ( ) IE IIaa VT̂TdETT
R

IR

R
−≅−∫ Ω

Ω

Ω αΩα . (34) 

 
For the previous loads given in Eqs. (33) and (34) a specific re-

gion covering RΩ  is built with the help of our mesh generator, 
which allows for the generation of consistent multi-regions meshes. 
In Equation (34), for the explicit time integration adopted here, we 
can use the value of IT̂  known from the previous time level. 

Boundary Conditions  

To compute the Dirichlet boundary condition, Eq. (3), it is 
enough to substitute IT  by IT  whenever required, i.e. D      Γ∈∀ I . 
To impose the Neumann boundary condition, Eq. (4), the total 
boundary edge flux that appears in the boundary loop in Eq. (27) 
must be projected on the directions parallel and normal to the edge 
under consideration. The normal portion must then be replaced by 
the prescribed flux nq .  

For Cauchy (or Robin) mixed boundary condition, Eq. (5), the 
value ( )n aq TΓα− +  is known and computed in the same fashion as 
implemented to compute the Neumann boundary condition. The 
remaining term is computed for each 

IRΓ  according to: 
 

RI

I L
L

ˆTd T A  Γ Γ

Γ

α Γ α≅∑∫ , (35) 

 
with 

IRΓ  being the portion of the RΓ  boundary associated to node I 
and the summation extends over the two boundary edges connected 
to node I. Following the procedure adopted in Eq (34), IT̂ of Eq. 
(35) is taken as the temperature of node I obtained at the previous 
time level.  

Multi-Materials Domain 

Whenever addressing heat transfer problems which involve dif-
ferent material properties on different portions of the domain we 
need to build proper meshes for each sub-region and to perform 
consistently the discretization of the governing equation in order to 
guarantee the correct solution through the interface of the sub-
regions. As already mentioned, our mesh generator has the flexibil-
ity to generate consistent meshes over multi-region domains.  

For each boundary and interior edges apart from the value of the 
weighting coefficients we identify and keep in memory the region 
that the edge belongs to, during the pre-processing stage. This is 
necessary to recovery the material properties used in the computa-
tions during the processing stage. For each edge at the interface of 
two regions, the edge coefficient is computed independently for 
each region with the identification of the region also kept in mem-
ory. Referring to Fig. 4, the edge IJL would have two coefficients 
defined by: 

 
( ) ( )          and      j

kk
Rj

IJ
j

1k1k
Rj

IJ nACnAC 2
L

1
L

== −− . (36) 
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Figure 4. Control volumes at an interface between two regions and their 
geometric parameters. 

 
For the gradients and associated fluxes computations the proce-

dure basically consists on three steps: first a loop over all edges of 
the mesh except the interface edges; second, a loop over the bound-
ary edges and third, a double loop over the interface edges. In each 
of these loops we use the corresponding edge coefficients and asso-
ciated material properties. In the computation of the “final” discrete 
equation, we can proceed similarly, with the corresponding proper-
ties and thermal loads. The semi-discrete Eq. (27) is now replaced 
by: 

 

( ) ( ) ( ) ( )* *2

1

ˆ
k

L L L L L L

j jj Rjj j
I I IIJ IJ IJ IJ IJ IJ
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dt

Ω ΓΓρ
=

⎞⎛
⎟⎜= − + + +
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∑ ∑ ∑∑ , 

 (37) 
 

with the third term on the right hand side of Eq. (37) being non-zero 
only when node I is on the interface between two or more regions 
( )IΓ  with different material properties. The external loop is neces-
sary to consider twice each interface edges that are connected to 

node I, i.e. once for each region. The interface edges fluxes ( )*j

IJL
q

Γ
 

are computed similarly to ( )*

L

j
IJq Ω , see Eq. (26).  

It should be observed that the proposed procedure is general, so 
that node I can belong to the interface of several regions, not just 
two and also that the interface does not need to be a straight line. 

If the properties of the material, loads or boundary conditions 
vary in space, the middle point rule is adopted. For instance, the heat 
conductivity k of edge IJL is computed by: 

 

2
kk

k JI
IJL

+
= . (38) 

 
If the material has non-linear behavior ( )[ ]Tk.g.e f  =  it is im-

portant to use an iterative procedure, such as the Newton-Raphson 
method, but such feature has not yet been attempted in the present 
formulation. 

Some Important Numerical and Implementation Issues 

In this section, several aspects referring to the generation and 
use of unstructured meshes, the adoption of an edge-based data 
structure and other related issues are addressed. 

Unstructured Mesh Generation 

In order to discretize arbitrary two-dimensional domains, we 
have developed a computational system (Lyra and Carvalho, 2000 
and Carvalho, 2001) which can generate triangular, quadrilateral and 
mixed consistent meshes. The computational system deals with 
several connected domains and both isotropic and anisotropic 
meshes (i.e. directionally stretched meshes). In this work, only 
isotropic triangular meshes were considered and generated through 
the advancing front technique (Peraire et al., 1987), with the con-
cepts of using a background grid to define the spacing, gradation 
and directionality of the mesh and of generating simultaneously 
points and triangles during the triangulation. As any conventional 
unstructured mesh generator the mesh data delivered consists of the 
physical coordinates simply listed by node numbers and a list of the 
connectivity of each element (topological information). Our mesh 
generator gives also a list of boundary edges connectivities, which 
are very helpful for the implementation of certain boundary condi-
tions. 

Edge-Based Data Structure and Its Implementation 

A significant reduction in gather/scatter costs and memory re-
quirements in the solver can be obtained by going from an element-
based to an edge-based data structure (Lyra et al., 1998). This reduc-
tion is more pronounced in three-dimensional simulations (Peraire et 
al., 1993). The adopted mesh generator, as any conventional un-
structured mesh generator, provides the mesh data in an element-
based data structure and the implementation of the finite volume 
solver described requires a pre-processing stage to convert the ele-
ment-based data structure into edge-based. After the pre-processor 
stage is finished, the element-based data structure can be discarded.  

The pre-processing stage consists basically on the following 
steps (Lyra, 1994): 
 

1. Build the arrays with the mesh and boundary topology, 
which are lists of edges and boundary edges with their re-
spective connectivities; 

2. Compute and store the edge and boundary weighting coeffi-
cients;  

3. Transfer loads, material properties, boundary and initial 
conditions, which are associated to the geometry, to the 
mesh topological entities. 

 

To extract the edges from the original data structure in an effi-
cient way, a hash table searching technique is used (Lyra et al., 
1998). The weighting coefficients are computed as described previ-
ously. In our mesh generator all mesh topological entities (nodes, 
edges and elements) are associated to their correspondent geometric 
entity (point, curve or sub-domain). In this way, loads, material 
properties, boundary and initial conditions are initially associated to 
the geometry and then transferred to the topological data to get the 
finite volume model for the analysis. This is of particular impor-
tance in an adaptive procedure as the mesh changes dynamically 
during the analysis and a new finite volume model has to be built for 
each new mesh. 

After the pre-processing stage, all the terms that appear in the 
finite volume formulation are calculated using loops over all edges 
of the mesh, except the interface ones, loops over the boundary 
edges and double loops over the interface edges with the contribu-
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tions to the nodes (or vertices) being accumulated during the proc-
ess. The operations performed inside these loops, which take place 
in the edge-based solver algorithm are:  
 

1. Gather Information the nodes of each edge; 
2. Operate on this information;  
3. Scatter the results back to the nodes of the edges and add 

them to the nodal quantities. 

Numerical Results 

In this section, some simple, though representative academic, 
examples are presented in order to validate and show some of the 
capabilities of the numerical scheme previously discussed. All 
steady-state solutions were obtained using the transient algorithm, 
which is stopped when the time derivative of the temperature is not 
changing, i.e. the residual is below a pre-assigned tolerance, with 
the adopted value of 10-7. For all steady-state solution we adopted 
the density ρ = 1.0 kg/m3 and the specific heat c = 1.0 J/kg K. These 
values guarantee that the equation is non-stiff and were not chosen 
taking into account any aspects related to computational efficiency. 
The results are post-processed using the scientific visualization tool 
“Mtool” (Tecgraf-PUC-Rio). 

Steady-State Heat Conduction Problem 

The first application refers to a steady state solution of a two-
dimensional heat transfer problem in a rectangular plate of 0.6 m by 
1.0 m and uniform unity thickness. The left face of the plate is 
insulated (zero heat flux), while the bottom edge is at a fixed tem-
perature of 100 °C and the right and top edges are under convection 
to ambient temperature of 0 °C. The thermal conductivity of the 
plate is k = 52.0 W/m°C and the convective heat transfer coefficient 
is αΓ  = 750.0 W/m2°C.  

 

 
(a)  (b) 

Figure 5. 2-D heat conduction problem: (a) domain representation; (b) 
coarse mesh with 32 nodes. 

 
The initial condition is an uniform temperature of Ti = 0.0 °C. 

This example was extracted from the NAFEMS selected FE bench-
marks in structural and thermal analysis (Barlow and Davies, 1987). 
Figure 5a shows the domain representation for this problem and Fig. 
5b shows the triangular coarse mesh utilized. The target value to be 
achieved is a temperature of 18.3 °C in point E (see Fig. 5a). 

In Table 1 we show the obtained results with two different uni-
form meshes. The first one is a coarse mesh with 32 nodes, and the 
second one is a finer mesh with 793 nodes. It can be observed that 
the final results are in good agreement with the expected target 
value.  

 

Table 1. Temperatures at node (E) obtained with two different mesh densi-
ties. 

 TEMPERATURE AT NODE E (0C)  
NAFEMS Coarser Mesh Finer Mesh 

18.30 18.14 18.29 
 
Figure 6 shows the contours of temperature for both meshes. It 

is important to note that even the coarse mesh provided a good 
result if compared with the NAFEMS results. As expected, for the 
finer mesh, the contours of temperature are much smoother than 
those obtained with the coarser one. Only uniform meshes have 
been used up to now, but the results can certainly be much better, 
even for meshes with the size of the coarse mesh, if the knowledge 
of the expected solution is used to build the mesh or an automatic 
error analysis and adaptive procedure is incorporated (Lyra et al., 
2000). 

 

                       
(a) (b) 

Figure 6. 2-D heat conduction problem. Temperature contours: (a) For the 
coarser mesh (32 nodes); (b) For the finer mesh (793 nodes). 

Multi-Material Steady-State Heat Conduction Problem 

In the second example, we present a steady state problem of a 
rectangular plate of unity thickness compounded by two materials 
with different conductivities. The 2-D domain representing the plate 
was subdivided into two sub-domains where the triangular mesh 
was built independently for each sub-domain (representing each 
material), keeping the consistency of the mesh between them. First 
we analyze the plate with an interface between the materials which 
is placed in the middle of the plate and it is perpendicular to its base 
as shown in Fig. 7. Then we analyze a plate in which the interface 
between the two materials is semicircular as shown in Fig. 8. 

 

 
Figure 7. Domain for multi-material heat conduction problem with a per-
pendicular interface between the two materials. 
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Figure 8. Domain for multi-material heat conduction problem with a semi-
circular interface between both materials. 

 
In both cases, with perpendicular and curvilinear interfaces, the 

plate is subjected to a prescribed temperature (T = 100 °C) on its left 
side and, the top and the bottom sides of the plate are insulated. On 
the right side, the plate is under convection, with the convection heat 
transfer coefficient αΓ = 100.0 W/m2°C and the ambient temperature 
of Ta = 30 0C. The thermal conductivity of the left and right parts of 
the plate are, respectively, kL = 50.0 W/m°C, kR = 15.0 W/m°C. The 
initial condition considered is a uniform temperature of Ti = 30 °C.  

For the first case (with a perpendicular interface between the 
two materials), a uniform triangulation with 216 nodes and 410 
elements was adopted. Figures 9 and 10 show, respectively, the 
contours of temperature for this problem, and the temperature distri-
bution for y = 0.0 and 0.0 ≤ x ≤ 20.0. In Figure 10, we can note the 
abrupt change in the slope of the temperature distribution due to the 
change in the conductivity coefficient of the two adjacent materials. 
In Table 2 we can see the good agreement achieved when we com-
pare the nodal temperatures at the right side and at the interface 
between the two different materials, with the 1-D analytical solu-
tion. 

 
                          
                        

                          
 
 
 
 
 

Figure 9. Temperature contours for multi-material heat conduction prob-
lem. 

 

 
Figure 10. Temperature distribution over the y = 0.0 axes for 0.0 ≤ x ≤ 20.0, 
for the multi-material heat conduction problem with a perpendicular 
interface. 

 

Table 2. Nodal temperatures at the right side and at the perpendicular 
interface between the two different materials. 

x (m) Analytical Solut. (0C) Numerical Solut. (0C) 
10 84.03 84.04 
20 30.79 30.79 

 
Figure 11 shows the heat flux vectors and the isolines of tem-

perature for the case with a semicircular interface between the two 
materials. In this figure we can readily verify the small value of the 
y component of the fluxes at the interface and the essentially 1-D 
behavior of the heat transfer when the distance from the interface 
increases. For this analysis a uniform triangular mesh with 303 
nodes and 534 elements was used. 

 

 
Figure 11. Triangular mesh and heat flux vectors for the multi-material 
heat conduction problem with a semi-circular interface. 

 
In this latter case, the energy conservation (integral of the 

fluxes) was checked. For this purpose we computed the integral of 
the fluxes at the inflow (left) and outflow (right) faces of the plate, 
and the relative difference obtained was of 0.53% between the two 
faces. 

Transient Heat Transfer Through an Infinite Slab 

In the final example, we show a transient one dimensional heat 
transfer problem in which the domain is represented by an infinite 
slab of unit thickness with length L in the x direction and of “infi-
nite” length in the y direction. The slab is initially at a temperature 
of iT  = 15.6 °C. A uniform distributed heat source, Q = 4.14x105 
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W/m3 is applied over the entire domain. The thermal conductivity of 
the medium is k = 34.61 W/m°C, its density is ρ = 8009.25 kg/m3, 
and its specific heat is c = 8373.34 J/kg°C. The surfaces in x = 0 e x 
= L are kept at a temperature TS = 0 °C. Figure 12 shows a sketch of 
the domain for this problem. 

 

 
Figure 12. Slab of length x = L and “infinite” length in the y direction 
subjected to a uniform distributed heat source Q. 

 
In order to represent the infinite slab and after some numerical 

experimentation we use a computational domain with 2L length in 
the y direction. Due to the symmetry of the problem we simulate 
only a quarter of the slab. On the two symmetry axis (right vertical 
and lower horizontal faces of the computational domain) an adia-
batic flux condition (qn = 0.0 W/m2) is prescribed. On the left verti-
cal face the prescribed temperature is TS = 0 °C. Finally, on the 
upper horizontal face, which represents the surface of the domain 
truncated for numerical purposes, we also set a prescribed flux qn = 
0.0 W/m2. The triangular mesh used in the simulation has 72 nodes 
and 112 elements. Figure 13 shows the mesh and the contours of 
temperature at instant t = 720 sec.  

 

                       
    (a)       (b) 

Figure 13. Infinite slab problem at t = 720 sec.: (a) Contours of 
temperature; (b) Triangular mesh. 

 

In order to verify the accuracy of our results, we compared them 
to the solution obtained with the commercial software “ANSYS”, 
with a similar mesh density, and we also compared our results with 
the analytical solution obtained using up to three terms of the infi-
nite series solution given in ANSYS verification manual (see AN-
SYS Internet address). 

Tables 3 and 4 show, respectively, the temperatures and the tem-
peratures ratios, obtained dividing ANSYS and finite volume solu-
tions by the analytic one, i.e. (ANSYS/Analytic.) and 
(FVM/Analytic.). The results were obtained at time t = 720 sec, for 
the collinear nodes 3, 4, 5, 6 and 2 localized at the left bottom side 
of Fig. 13b. As it can be observed, the results obtained with the 
FVM show very good agreement with the analytical solution and a 
comparable performance to that obtained with the finite element 
method (FEM) attained using the ANSYS software.  

 

Table 3. Temperatures at five collinear nodes, obtained through different 
methods: Analytic, FEM (ANSYS), Finite Volume (FVM). 

Temperature (0C) at time t =720 s  
Nodes Analytic. ANSYS FVM 

3 24.31 24.10 23.76 
4 40.00 39.60 39.36 
5 49.33 48.77 49.06 
6 54.14 53.48 53.86 
2 55.61 54.92 54.95 

 

Table 4. Temperature ratios at five collinear nodes between AN-
SYS/Analytical and FVM/Analytical solutions. 

Temperature ratios at time t =720 s  
Nodes ANSYS/Analytic. FVM/Analytic. 

3 0.991 0.977 
4 0.990 0.984 
5 0.988 0.994 
6 0.988 0.995 
2 0.988 0.988 

Concluding Remarks 

An unstructured finite volume formulation was fully derived to 
deal with potential problems involving different types of boundary 
conditions, thermal loads and multi-material properties. The adop-
tion of an edge-based data structure renders the procedure very 
flexible, easy to implement, efficient and directly extendible to deal 
with any number of spatial dimension and for a broader class of 
CFD problems. Most of the formulation was presented in a general 
form and is valid for any spatial dimension and type of meshes. The 
whole system was validated for simple bidimensional model state-
steady and transient problems using triangular meshes. However, 
the real potentiality of the developed numerical procedure must be 
exploited when solving more realistic problems. We are currently 
using this system to simulate the temperature distribution of bioheat 
transfer applications, such as hyperthermic treatment of inoperable 
tumors using laser heat sources (Lima et al., 2002 and Guimarães, 
2003). In these applications the flexibilities for dealing with com-
plex geometries, multi-materials, different thermal loads and bound-
ary conditions are of paramount importance in order to have a good 
model of the physical features involved in the process. Several 
implementation and related numerical issues have been briefly 
discussed and further investigation will be pursued in the future 
referring to the incorporation of mesh adaptation and parallel im-
plementation, which are of fundamental importance to address 
practical engineering applications. 
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