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Predictive Model for the Cold Rolling 
Process through Sensitivity Factors 
via Neural Networks 
The mathematical modeling of the rolling process involves several parameters that may 
lead to non-linear equations of difficult analytical solution. Such is the case of Alexander's 
model (Alexander 1972), considered one of the most complete in the rolling theory. This 
model requires excessive computational time, which prevents its application in on-line 
control and supervision systems. 
In this paper, the representation of the cold rolling process through Neural Networks 
trained with data obtained by Alexander's model is presented. This representation is based 
in sensitivity factors obtained by differentiating a neural network previously trained. The 
representation allows to obtain equations of the process for different operation points with 
low computational time. On the other hand, the representation based in sensitivity factors 
has predictive characteristics that can be used in predictive control techniques. Through 
predictive model, it is possible to eliminate the time delay in the feedback loop introduced 
by measurements of the outgoing thickness, normally with X-ray sensors. The predictive 
model can work as a virtual sensor implemented via software. An example of the 
application to a single stand rolling mill is presented. 
Keywords: Rolling mills, steel industry, neural networks, predictive model 
 
 
 

Introduction  

The technology of rolling mill automation has advanced rapidly 
in the last decade and, due to modern computer control systems, 
reached a high level of sophistication. The technology necessarily 
embraces a broad spectrum of interests, ranging from fundamental 
process analysis to the solution of special control-theoretic 
problems. The objective of all industry is to reach a larger 
productivity and a better quality of the industrialized products. 
Nowadays, the metallurgical industry is one of the most required, 
when considered the current market demand. 1 

Many physical models have non-linear characteristics and 
analytical complexities that avoid its application in on-line control 
and supervision systems. The first due to the classic control theory 
that demands linear models, and the other, because of complex 
models that request numerical solution with critical computational 
effort. An example is Alexander's mathematical model (Alexander 
1972) considered one of the most complete in the rolling theory. 
The model involves parameters with complex equations of difficult 
analytical solution. That model is known by requesting significant 
computational effort for numerical solution.  

It is necessary new methods to represent physical processes. The 
objective of this paper is to propose a new method to represent the 
rolling process by means of sensitivity factors. These factors are 
obtained by differentiating a neural network previously trained with 
smaller computational effort. This method can be used in on-line 
control and supervision systems. 

There is a growing interest in the application of the Artificial 
Intelligence (AI) in industrial automation systems. Inside of AI, 
Neural Networks have been the focus of a great attention during the 
last years, due to its capacity in solving non-linear problems for 
learning.  

On the other hand, an Automatic Gauge Control (AGC) system 
for rolling mills uses the output thickness as the feedback variable. 
Usually the thickness sensor is placed too far from the roll-gap, and 
this causes a time delay in the feedback control loop, which also 
depends on the strip speed. 

The performance of classical techniques for control systems 
design usually depends on the existence of a good linear model of 
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the plant dynamics in order to achieve an acceptable design. The 
lack of a good model is still more compelling in the case of a 
predictive control, in which a plant model is used to estimate, during 
the sampling, the process variables that are not available for 
measurement. 

A modern alternative to overcome those problems is the use of 
ANN to face model uncertainties, time delays, and non-linear plants. 
This paper introduces a new strategy that permits to obtain a 
predictive model (Eq. 21) whose parameters are obtained directly 
from the weights of a trained ANN (Eq. 17).  

In this work, an application of neural networks to represent the 
cold rolling process, based on Alexander's model (1972), is 
presented. The representation uses the sensitivity factors to 
determinate the variations of its main parameters. The sensitivity 
equations will be obtained by differentiating a neural network 
previously trained. The representation is valid for different operation 
points and it makes possible the application in on-line control 
systems.  

In the next sections, the representation and basic structure of the 
artificial neural network are discussed and the procedure to obtain 
the sensitivity expressions through a neural network are presented. 
In the last section, the application, the results and the conclusions of 
this paper are presented.  

Nomenclature 

y = Average yielded tensile stress (N/mm2) 
g = Gap (mm) 
hi = Strip input thickness (mm) 
ho = Strip output thickness (mm) 
M = Stiffness Rolling Mill modulus (N/mm) 
P = Rolling load (N/mm) 

BP  = Rolling load x Strip width (N) 

Tq = Rolling Torque (N-mm/mm) 
R  = Roll radius  (mm) 
tf  = Front tension stress (N/mm2) 

bt  = Back tension stress (N/mm2) 

W or = Strip width (mm.) 
E = Young modulus of the strip material 

NiU i ,...,0   , =  are the net inputs (real values original data sets) 

and 10 =U  is a polarization entry 
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j for the hidden layer. 
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,...,1    product of the weights times entries for 

the hidden layer. 
   ,...,1   )( Mjnetf h

j
o
j =  is the value of the sigmoid function for the 

exit layer 
MjYj ,...,1   , =  are the normalized outputs of the net, obtained 

from the sigmoid function 
Mif b

i ,...,1   (.) =  are the an-normalization functions of the 

outputs 
MiZi ,...,1   , =  net outputs (real values of the original data sets) 

Nkee kk ,..,1 min,max =  higher and lower value of the inputs 

Mkss kk ,..,1 min,max =  higher and lower value of the outputs 

LimiteInf and LimiteSup are the minimum and maximum values 
of the original data sets respectively. 

Greek Symbols  

µ  = Friction coefficient 

Cold Rolling Process 

Into classical theories, there are several models to calculate roll 
load and roll torque necessaries for the cold rolling process. These 
models are non-linear functions of several parameters, Eqs. (1) and 
(2). Any change in the input thickness )( ih , in the output thickness 

)( oh , in the back tension )( bt , in the front tension )( ft , in the 

yield stress )(y  and/or friction coefficient )(µ , will cause 
alterations on the rolling load (P), on the rolling torque (Tq) and, 
consequently on the outgoing thickness.  

 

E,R),y,,,t,t,hP=f(h fboi µ  (1) 

 

E,R),,y,,t,t,h=f(hT fboiq µ  (2) 

 
where (E) is the Young modulus of the strip material and (R) is 

the roll radius. 
In Lianis and Ford (1956), Baptista (1986) and Denti (1994) 

sensitivity expressions (Eqs. (3) and (4)) were obtained by the 
expressions (1) and (2), using the Bland and Ford (1948), the 
Roberts (1965) and the Orowan (1944) models respectively.  
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where (y ) is the average yield stress of the material.   
The sensitivity coefficients in the expressions (3) and (4) are 

factors that govern the process and these involve expressions of 
difficult analytical solution. In Denti (1994), a numerical solution 
for each coefficient based in curve families was presented. For new 
operation points new numerical solutions and new curves are 
necessary. That doesn’t stimulate its application in on-line systems. 

Artificial Neural Networks Applied to the Cold Rolling 
Process  

In the last years, Artificial Neural Networks (ANN) are being 
proposed as powerful computational tools due to the low time of 
processing that can be reached when the net is in operation. These 
times can be 460 µs. approximately (for a neural network of 6 
inputs, 2 outputs and a layer hidden with 13 neurons, in a computer 
pentium 166 MHz., Zárate et al. 1998 b). Nowadays, ANN's are 
receiving great attention in metallurgical processes, as can be seen 
in Andersen, et. al. (1992); Smart, (1992); Gunasekera (1998); 
Zárate et. al. (1998 a, b); Zárate (1998); Schlang (2001); Zárate and 
Bittencout (2001); Kim (2002); Zárate and Bittencout (2002); 
Gálvez and Zárate (2003); Yang (2004) and Son (2004).  

In Gunasekera et. al. (1998), it was described a neural network 
model for the cold rolling process. In this work it was proposed a 
method to obtain a near-optimal neural network structure based on 
second-order derivative information obtained directly of the process. 
In Shlang et. al. (2001) it was proposed a hybrid neuro/analytical 
process model that is dependent of the considered mill, and which 
permit to calculate the setup for the mill’s actuators. In Yang et. al. 
(2004) a neural network model, to predict roll load, was presented 
and this model was implemented to on-line roll-gap control.   

The ANN used in this work is a multi-layers net which 
approaches of the cognitive models that try to describe the operation 
of the human brain. The type of learning of that net is known as 
supervised learning based on the method "backpropagation". That 
neural network uses two or more layers with processing neurons. 
The entry layer receives the external entries, while the output layer 
is responsible by the generation of the output of the ANN. If there is 
a third layer, this receives the name of "hidden layer”. The definition 
of the net structure, as the number of hidden layers and the number 
of neurons in those layers, is still a problem without solution, 
although there are some approaches. In the case of the number of 
neurons for the hidden layer is suggested as 2N+1 neurons, where N 
is the number of inputs of the net (Kovács 1996).  

The neural network considered has two layers and 6 inputs 
where the number of neurons in the hidden layer was chosen as 13 
(2N+1). The number of neurons in the output layer is chosen as 2, 
corresponding to the number of outputs of the net. 

In the Eq. (5) f is the non-linear sigmod function chosen in this 
work as the axon transfer function for being the most consistent with 
the biophysics of the biological neuron.  

 

∑+1

1=
∑+1

1=
−− netEntries

f
expexp

x Weigths
 (5) 

 
The supervised learning of the ANN uses a train set for the input 

and output of the net. For each data set, the weights of the net are 
adjusted to minimize the error in the exits of the net. The error is 
minimized using the gradient technique with a factor of convergence 
called "learning rate".  

For the training process, it was used the Alexander's model as 
generator of the database. The inputs of the ANN are: the input 
thickness ( ih ), the output thickness (oh ), the friction coefficient 



Predictive Model for the Cold Rolling Process through ... 

J. of the Braz. Soc. of Mech. Sci. & Eng.         C opyright  2006 by ABCM         January-March 2006, Vol. XXVIII, No. 1 / 113 

(µ), the front tension (ft ), the back tension (bt ) and the average 

yield stress (y ). As outputs were considered the rolling load (P) and 
the rolling torque (Tq), Eq. (6). 

 

)Tq,P()y,t,t,,h,h( ANN
fboi  →µ  (6) 

 
Generally, the largest care to get a trained neural network lies on 

collecting and pre-processing neural network input data. The pre-
processing operation consists in the data normalization in such a 
way that the inputs and outputs values will be within the range of  0 
to 1.  

The following procedure was adopted to normalize the input 
data before using it in the ANN structure:  

a) In order to improve convergence of the ANN training 
process, the normalization interval [0, 1] was reduced to [0.2, 0.8], 
because in the sigmod function, Eq. (5), the values [0, 1] aren’t 
reached: f→ 0 for net→ -∞ and f→ 1 for net→ +∞.   

b) The data was normalized through the following formula:  
 

)min - Lmax) / (Lmin (Lo - LLn (Lo)af ==  (7a) 
 

min - Ln) * L ( max Ln * LLo (Ln)bf 1+==  (7b) 
 

where Ln is the normalized value, Lo is the value to normalize, 
Lmin and Lmax are minimum and maximum variable values, 
respectively. 

c) Lmin and Lmax were computed as follows:  
 

Lmin = (4 x LimiteInf. - LimiteSup) / 3 (8a) 
 

Lmax = (LimiteInf. – 0.8 x Lmin) / 0.2 (8b) 
 
The Eqs. (8a) and (8b) are obtained substituting in the Eq. (7 a) 

Ln = 0.2 and Lo = LimiteInf; and Ln = 0.8 and Lo = LimiteSup. 
Where LimiteInf and LimiteSup are the minimum and maximum 
values of the original data sets respectively.  

Sensitivity Equations via ANN 

In this work, an ANN multi-layer with a hidden layer is used. 
The ANN has N: inputs, M: outputs and L: neurons in the hidden 
layer. The differentiation of the neural network is generic and it 
depends only on N, M, L and on the weights of the hidden and exit 
layers obtained during the process of training. Figure 1 shows the 
structure of the neural network considered in this work. 
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Figure 1. Structure of the Neural Network considere d.  

 
The steps to obtain the expressions of the sensitivity factors of 

the net are as follow: 
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With an appropriate manipulation of the variables, the Eq. (10) 

that correlates the inputs with the normalized output of the net can 
be obtained: 
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By substituting the corresponding values for the functions 

(.)(.),(.),(.), hoba ffff , Eq. (11) is obtained: 
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where: 
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In a general form, Eq. (11) becomes: 
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The sensitivity factors will be calculated from Eq. (14): 
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where each term of the sensitivity matrix is calculated in the form: 
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Manipulating the derivative terms of Eq. (15) and taking into 

account Eq. (12), the following expression is obtained: 
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by differentiating Eq. (16) and substituting the expression in Eq. 
(15), the Eq. (17) is obtained, which allows to calculate the 
sensitivity factors of the net: 
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Predictive Model of the Process  

During the rolling process, the cylinders are compressed against 
the strip by a force transmitted by the back rolls.  As the rolling mill 
is not perfectly rigid, the output thickness, can be expressed by the 
elastic equation of the rolling mill:  

 

M

P.B
+=gh o   (18) 

 
with (g) being the roll-gap or “gap” and (B) the width of the 
material being rolled.  

Any variation in the gap can be expressed as:  
 

M

P.B
+g=h o

∆∆∆   (19) 
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Figure 2. Operation Point of a Rolling Mill. 

 

Figure 2, shows variations in the operation point due to the 
variation in several parameters. Curve (I) corresponds to an 
increment in the back and/or in the front tensions of stress. Curve 
(II) represents an decrement in the input thickness; curve (III) 
corresponds to the operation point; curve (IV) represents an 
increment in the output thickness and curve (V) shows possible 
increment in the friction coefficient and in the average yielded 
tensile stress or a decrement in the back and/or in the front tensions. 

Combining the expressions (3), (4) and (19) the variations in the 
output thickness of the rolling mill can be obtained: 
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Equation (20) uses the partial derivates to calculate the output 
thickness. The sensitivity factors are obtained by differentiating an 
ANN and they represent the sensitivities of the rolling load in 
relationship with the operational parameters ( Zárate 1998; Zárate 
and Helman 1999). It can be observed that Eq. (20) corresponds to 
the linear terms of the multivariable Taylor’s series expansion of a 
function (Zárate et al. 1998 b,c). 

Equation (21) permits to calculate a predicted value of the 

output thickness (oĥ ), that can be used instead of the current value 

of oh , which can not be measured without the interference of a time 

delay. The value is calculated from the corresponding parameter 
values for each operating point. In Gálvez and Zárate (2003), it was 
used a predictive model based in the ANN for thickness control 
deduced in this paper.  

Data for Obtaining the Training Sets  

To obtain the training sets, intervals of variation of the 
parameters were suggested by Bryant (1973), see Table 1. 

 

Table 1. Variations in the rolling parameters.  

Limit ih  

(mm.) 
oh  

(mm.) 

bt  

2mm

N  

ft  

2mm

N  
µ  

y  

2mm

N  

Minimum 4.60 3.492 3.030 62.458 0.096 383.869 

Maximum 5.40 3.708 5.619 115.923 0.144 534.940 

Increment 0.4 0.108 1.294 26.762 0.024 75.530 

 
Data for the material and rolling mill:  
E = 200054 Young modulus of the strip material ( 2N/mm ) 
ν = 0.330 Poisson’s ratio of the strip 
B = 900.0 width of strip (mm.) 
R = 292.1 roll radius (mm.) 
M = 3922640 rigidity rolling mill modulus (N/mm.) 
g = roll-gap (mm.) 
The values of rolling load and rolling torque used for training 

were obtained through Alexander's model (1972). Table 2 shows the 
inferior and superior limits for the load and torque, obtained by 
simulation  
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Table 2. Variation of Load and Torque. 

 
P 

(N/mm.) 
Tq 

(N-mm/mm) 
Minimum 
(LimitInf) 

7849.69 3638.35 

Maximum 
(LimitSup) 

23481.90 185001.51 

Training Process  

For the training process, aleatory values between -1.0 to +1.0 
were considered for net weights. Considering 729 training sets, 
obtained by the combination of the variables (Table 1) with a 
learning rate equal to 0.008, the error was of 0.033 after 540,000 
training steps (Pentium IV 3.0 GHz).  

The final weights for the hidden and output layers with its 
polarization weight are: 
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Obtaining of the Sensitivity Factors 

The final weights of the ANN can be substituted in the 
expression (17) to obtain the sensitivity factors for a certain 
operation point. Observe that for a new operation point a new 
calculation on the expression (17) is necessary. 

The operation points chosen are:  
Operation point (A): 

=ih 5.00 mm.;  

=oh 3.60 mm; 

=µ 0.12; 

=bt 4.3247 2N/mm ;  

=ft 89.220 2N/mm ; 

y = 256.325 + 468.187ε 0.4275 

Operation point (B): 
=ih 5.25mm.;  

=oh 3.60mm; 

=µ 0.126; 

=bt 4.5404 2N/mm ; 

=ft 98.1444 2N/mm ; 

y = 269.142 + 492.213ε 0.4275 
Tables 3a and 3b show the sensitivity factors for the chosen 

operation points A and B respectively. The Tables 4a and 4b 
compare the output thickness values with variations in the 
parameters (when 0=g∆ ), obtained through ANN Eq. (21). 

 

Table 3a. Sensitivity factors for the operation poi nt “A”. 
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498.66 -631.16 7909.25 -86.56 -5.83 56.75 

 

Table 3b. Sensitivity factors for the operation poi nt “B”. 
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609.54 -1207.62 462.74 -53.77 -0.012 29.32 

 

Table 4a. Calculation of the output thickness obtai ned through of the 
sensitivity factors. 

Var 
% ih  µ bt  ft  y  

fh  

ANN 
oh  

Alex. 

Erro 
% 

0.0 5.00 0.12 4.325 89.220 460.106 3.600 3.590 0.28 
-1.0 4.95 - - - - 3.585 3.572 0.36 
+1.0 5.05 - - - - 3.615 3.623 0.22 
-1.0 - 0.119 - - - 3.595 3.588 0.19 
+1.0 - 0.121 - - - 3.605 3.602 0.08 
-1.0 - - 4.276 - - 3.600 3.599 0.03 
+1.0 - - 4.363 - - 3.599 3591 0.22 
-1.0 - - - 88.328 - 3.600 3.597 0.08 
+1.0 - - - 90.113 - 3.599 3.594 0.14 
-1.0 - - - - 455.506 3.584 3.582 0.06 
+1.0 - - - - 464.705 3.616 3.606 0.28 
-3.0 4.85 - - - - 3.554 3.519 0.99 
+3.0 5.15 - - - - 3.646 3.670 0.65 
-3.0 - 0.116 - - - 3.581 3.580 0.03 
+3.0 - 0.124 - - - 3.619 3.613 0.17 
-3.0 - - 4.197 - - 3.600 3.599 0.03 
+3.0 - - 4.452 - - 3.599 3.591 0.22 
-3.0 - - - 86.543 - 3.601 3.599 0.03 
+3.0 - - - 91.898 - 3.599 3.591 0.22 
-3.0 - - - - 446.298 3.551 3.550 0.03 
+3.0 - - - - 473.266 3.647 3.632 0.41 
-5.0 4.75 - - - - 3.524 3.459 1.88 
+5.0 5.25 - - - - 3.676 3.723 1.26 
-5.0 - 0.114 - - - 3.571 3.572 0.03 
+5.0 - 0.126 - - - 3.629 3.621 0.22 
-5.0 - - 4.109 - - 3.601 3.598 0.06 
+5.0 - - 4.540 - - 3.599 3.592 0.19 
-5.0 - - - 84.758 - 3.602 3.602 0.00 
+5.0 - - - 93.682 - 3.598 3.589 0.28 
-5.0 - - - - 437.099 3.518 3.530 0.34 
+5.0 - - - - 483.112 3.681 3.659 0.60 
-3.0 4.85 0.116 4.197 86.543 446.298 3.487 3.459 0.81 
+3.0 5.15 0.124 4.452 91.898 473.914 3.713 3.733 0.54 
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Table 4b. Calculation of the output thickness obtai ned through sensitivity 
factors. 

Variation 
(%) ih  µ bt  ft  y  oh  

ANN 
oh  

Alex 

Erro  
% 

0.0 5.25 0.126 4.540 98.144 496.165 3.600 3.590 0.28 

-3.0 5.092 0.122 4.403 95.202 481.278 3.514 3.452 1.76 

+3.0 5.407 0.130 4.383 101.086 511.041 3.686 3.744 1.57 
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Figure 3. Output thickness obtained by Alexander’s Model and through 
ANN. 
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Figure 4. Errors obtained through ANN. 

Discussion of the Results  

Figure 3 shows the estimated values for output thickness (for 
data given in Table 4a) obtained through ANN and Alexander’s 
Model. For those values it was possible to calculate the correlation 
coefficient 0.96 that indicates a satisfactory response of the neural 
representation for this kind of process. Figure 4 shows minimum 
and maximum errors reached, 0.00 and 1.88 respectively, and the 
mean error of 0.331. This last error was calculated for variations of 
1%, 3% and 5% in the operational parameters. 

In Table 4a, for variations of 1% in each operational parameter, 
is possible to observe that the output thickness reached a minimum 
error of 0.03% and a maximum error of 0.36%. For variations of 3% 
the minimum error was 0.03% and the maximum error 0.99%. For 
variations of 5% the minimum error was 0.0% while that maximum 
error increased to 1.88%. While the variation increases, larger 
became the errors. This happens mainly because the output 
thickness is calculated through Eq. (21) that uses the sensitivity 
factors valid to little variations neighboring the operational point 
correspondent to variations of  0% in nominal parameters, Table 4a. 
Equation (21) is equivalent to the linearization equation obtained 
through Taylor's series (Zárate et. al. 1998c).  

It is possible to observe that small errors are present in the 
variations of the back tension, in the front tension and in the average 
yield stress. This happens because the sensitivity factors for those 

parameters are the lowest for the operation point chosen. This can 
be verified in Table 3a, where =∂∂ |tP| b 86.56 and =∂∂ |tP| f -5.83  

Table 4b shows the robustness of the predictive model Eq. (21). 
For this simulation, each operational parameter had a variation of 
3% as recommended in Briant et. al. 1973. The error reached was 
1.76%, which was considered acceptable for this kind of process.  

Conclusions  

In this work, the use of Artificial Neural Networks to represent 
the rolling process through Alexander's model was presented and 
discussed. The neural representation uses the sensitivity equations, 
where the sensitivity factors are calculated through the 
differentiation of a neural network trained previously.  

The neural representation, based on sensitivity factors, allows to 
calculate the output thickness considering the rolling load, which 
can be measured directly from the process. This fact can eliminate 
the thickness sensor, usually X-ray, placed in each stand of a rolling 
mill.  

Observe that Eq. (21) considers as operational parameters those 
that occur exactly in the cylinder-material deformation area. Thus, 

the obtained value (oĥ ) provides the same value that would be 

obtained by an X-ray sensor. Therefore, the Eq (21) has predictive 
characteristics.  

The proposed method allows to calculate the sensitivity of the 
rolling process in any operation points inside the range of  data sets 
for which the net was trained. For operation points out of the 
training groups and out of the space of generalization of the net, it is 
necessary a new training process.  

The neural representation proposed becomes useful when the 
sensitivity factors, obtained through complex physical models, have 
complex analytical expressions with numerical solution with critical 
computational effort. Through the proposed method, it is possible to 
apply techniques based on predictive model in on-line control 
systems. 
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