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Predictive Model for the Cold Rolling
Process through Sensitivity Factors
via Neural Networks

The mathematical modeling of the rolling processines several parameters that may
lead to non-linear equations of difficult analytiGmlution. Such is the case of Alexander's
model (Alexander 1972), considered one of the masiplete in the rolling theory. This
model requires excessive computational time, wipigvents its application in on-line
control and supervision systems.

In this paper, the representation of the cold rliprocess through Neural Networks
trained with data obtained by Alexander's moderessented. This representation is based
in sensitivity factors obtained by differentiatiagneural network previously trained. The
representation allows to obtain equations of thegess for different operation points with
low computational time. On the other hand, the espntation based in sensitivity factors
has predictive characteristics that can be usegredictive control techniques. Through
predictive model, it is possible to eliminate thmeet delay in the feedback loop introduced
by measurements of the outgoing thickness, normally X-ray sensors. The predictive

model can work as a virtual sensor implemented saftware. An example of the
application to a single stand rolling mill is preged.
Keywords: Rolling mills, steel industry, neural networksegictive model

Introduction

The technology of rolling mill automation has adeed rapidly
in the last decade and, due to modern computeratosystems,
reached a high level of sophistication. The tecbgwlnecessarily
embraces a broad spectrum of interests, ranging frmdamental
process analysis to the solution of special cotitrebretic
problems. The objective of all industry is to reaeh larger
productivity and a better quality of the indusidatl products.
Nowadays, the metallurgical industry is one of thest required,
when considered the current market demand.

Many physical models have non-linear charactegstand
analytical complexities that avoid its applicationon-line control
and supervision systems. The first due to the idlasmtrol theory
that demands linear models, and the other, becatissmplex
models that request numerical solution with criticamputational
effort. An example is Alexander's mathematical niq@éexander
1972) considered one of the most complete in thiengotheory.
The model involves parameters with complex equatimndifficult
analytical solution. That model is known by reqirestsignificant
computational effort for numerical solution.

It is necessary new methods to represent physioakpses. The
objective of this paper is to propose a hew metiooepresent the
rolling process by means of sensitivity factorse3d factors are
obtained by differentiating a neural network prexgly trained with
smaller computational effort. This method can bedus on-line
control and supervision systems.

There is a growing interest in the application loé #Artificial
Intelligence (Al) in industrial automation systenlaside of Al,
Neural Networks have been the focus of a greamtte during the
last years, due to its capacity in solving nondin@roblems for
learning.

On the other hand, an Automatic Gauge Control (AG@G)}em
for rolling mills uses the output thickness as fidedback variable.
Usually the thickness sensor is placed too far fthenroll-gap, and
this causes a time delay in the feedback contm,lavhich also
depends on the strip speed.

The performance of classical techniques for consydtems
design usually depends on the existence of a goedrl model of
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the plant dynamics in order to achieve an acceptdbkign. The
lack of a good model is still more compelling ireticase of a
predictive control, in which a plant model is usedstimate, during
the sampling, the process variables that are nailadle for
measurement.

A modern alternative to overcome those problenthasuse of
ANN to face model uncertainties, time delays, aod-linear plants.
This paper introduces a new strategy that pernatsolitain a
predictive model (Eg. 21) whose parameters areirwdiadirectly
from the weights of a trained ANN (Eqg. 17).

In this work, an application of neural networksrépresent the
cold rolling process, based on Alexander's modd72), is
presented. The representation uses the sensitid@tyors to
determinate the variations of its main paramet&he sensitivity
equations will be obtained by differentiating a raunetwork
previously trained. The representation is validdifferent operation
points and it makes possible the application inlioa-control
systems.

In the next sections, the representation and Isasicture of the
artificial neural network are discussed and thecedore to obtain
the sensitivity expressions through a neural nétvewe presented.
In the last section, the application, the resutid #he conclusions of
this paper are presented.

Nomenclature

y = Average yielded tensile stress (Nfm
g = Gap (mm)

h; = Strip input thickness (mm)

h, = Strip output thickness (mm)

M = Stiffness Rolling Mill modulus (N/mm)
P = Rolling load (N/mm)

P, =Rolling load x Strip width (N)

Tq = Rolling Torque (N-mm/mm)

R = Roll radius (mm)

t = Front tension stress (N/nfin

t, = Back tension stress (N/m

W or = Strip width (mm.)

E = Young modulus of the strip material
U,, i=0,..,N are the net inputs (real values original data yets

andu, =1 is a polarization entry
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f*() i=0,..,N are the normalization entry functions andnere (y) is the average yield stress of the material.

fr()=1 The sensitivity coefficients in the expressionsgB)l (4) are
X., i=0,..,N are the normalized inpujs =u factors that govern the process and these involpeessions of
. _ . o . difficult analytical solution. In Denti (1994), aimerical solution
h — — ’
W' i=1..L e j=0..N s the weight corresponding to the for each coefficient based in curve families wasspnted. For new

neuron i and input j operation points new numerical solutions and newesiare

net?:%wﬁhxl j=1..L product of weights times inputs
i=0

f(net!) j=0,..,
of the hidden layer.
I,, j=0,..,L are the corresponding values of the sigmoi

L with f'(net’)=1 is the sigmoid function

function 1, =1
W i=1..,M e j=0,..L is the weight of the neuron i and input
j for the hidden layer.
net, = EOW

o
JII\

the hidden layer.
fo(net') j=1...M
exit layer

necessary. That doesn't stimulate its applicatioon-line systems.

Artificial Neural Networks Applied to the Cold Rolling
(Froc&ss

In the last years, Atrtificial Neural Networks (ANNe being
proposed as powerful computational tools due toldhe time of
processing that can be reached when the net ipération. These

times can be 46Qs. approximately (for a neural network of 6
j=1..,M product of the weights times entries forinputs, 2 outputs and a layer hidden with 13 nesirana computer

pentium 166 MHz., Zarate et al. 1998 b). Nowada/&N's are
receiving great attention in metallurgical processes can be seen

is the value of the sigmoid function for thejn Andersen, et. al. (1992); Smart, (1992); Gunesek(1998);

Zarate et. al. (1998, b); Zarate (1998); Schlang (2001); Zarate and

Y., j=1..,M are the normalized outputs of the net, obtainedittencout (2001); Kim (2002); Zarate and Bittento2002);

from the sigmoid function
f°() i=1..,M are the an-normalization functions of the

outputs
z,i=1..M nhetoutputs (real values of the original data yets

emax ,emin, k =1..,N higher and lower value of the inputs

smax ,smin, k =1..,M higher and lower value of the outputs

Limitelnf and LimiteSup are the minimum and maxinvatoes
of the original data sets respectively.

Greek Symbols

W = Friction coefficient

Cold Rolling Process

Into classical theories, there are several modetzltculate roll
load and roll torque necessaries for the coldnglprocess. These
models are non-linear functions of several pararaetegs. (1) and
(2). Any change in the input thickneg¢l ), in the output thickness

(h,), in the back tensioft, ), in the front tension(t,), in the

yield stress (y) and/or friction coefficient (), will cause
alterations on the rolling loadP), on the rolling torqueTg) and,

consequently on the outgoing thickness.

P=f(h,,h,.t,.t, 4, Y,E,R) @

Tq:f(h iNetyt 1y, ER) 2
where E) is the Young modulus of the strip material aR)l ié
the roll radius.

In Lianis and Ford (1956), Baptista (1986) and D¢h994)
sensitivity expressions (Eqgs. (3) and (4)) wereawtaetd by the
expressions (1) and (2), using the Bland and Fa@ug), the
Roberts (1965) and the Orowan (1944) models reisppdct

P
ay

2p=22 an P2 pn+ PP g+ TP 4+ 2P gy

4y (3
ah ah, ot, at, U y @

aT,

y

aT,
Ah+
Jh

oT,

q

ah,

o1, T,
A+
at, at,

T, -
ATg= At +—2 dy (4)
u

Ah+

Ap+
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Galvez and Zarate (2003); Yang (2004) and Son (2004

In Gunasekera et. al. (1998), it was describedusah@etwork
model for the cold rolling process. In this workwias proposed a
method to obtain a near-optimal neural networkcstme based on
second-order derivative information obtained digeof the process.
In Shlang et. al. (2001) it was proposed a hybedra/analytical
process model that is dependent of the consideitdamd which
permit to calculate the setup for the mill's actuat In Yang et. al.
(2004) a neural network model, to predict roll lpags presented
and this model was implemented to on-line roll-gaptrol.

The ANN used in this work is a multi-layers net i
approaches of the cognitive models that try to les¢he operation
of the human brain. The type of learning of that iseknown as
supervised learning based on the method "backpetipsg. That
neural network uses two or more layers with praogsseurons.
The entry layer receives the external entries, evthie output layer
is responsible by the generation of the outpuhefANN. If there is
a third layer, this receives the name of "hiddgmta The definition
of the net structure, as the number of hidden taged the number
of neurons in those layers, is still a problem with solution,
although there are some approaches. In the cateafumber of
neurons for the hidden layer is suggested as 2Mtifons, where N
is the number of inputs of the net (Kovacs 1996).

The neural network considered has two layers andpéts
where the number of neurons in the hidden layer chasen as 13
(2N+1). The number of neurons in the output lagechosen as 2,
corresponding to the number of outputs of the net.

In the Eq. (5)f is the non-linear sigmod function chosen in this
work as the axon transfer function for being theshomnsistent with
the biophysics of the biological neuron.

1

1+ exprEmriey Weigths -

1

f=
1+ eXp—Znet

©)

The supervised learning of the ANN uses a traidasdhe input
and output of the net. For each data set, the ugighthe net are
adjusted to minimize the error in the exits of tiet. The error is
minimized using the gradient technique with a facfoconvergence
called "learning rate".

For the training process, it was used the Alexdadeodel as
generator of the database. The inputs of the AN& Hre input
thickness ), the output thicknessh(), the friction coefficient
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(1), the front tension t( ), the back tensiont() and the average Z, = £°(Y)

yield stress ). As outputs were considered the rolling lo&}i gnd Z,=1,(Y,) )
the rolling torque (Tq), Eq. (6). :
_ Z, = fu (V)
(hlhunultb’tf ,y)Dm‘—»( Pqu) (6)
With an appropriate manipulation of the variabldg Eq. (10)

Generally, the largest care to get a trained newgtlork lies on  that correlates the inputs with the normalized outyf the net can
collecting and pre-processing neural network ingiatta. The pre- be obtained:
processing operation consists in the data nornalizan such a

way that the inputs and outputs values will be inithe range of 0 Z, = flb(flo(iwlq f_h(ZN:Wh £2(U))
to 1. TR e " A i
The following procedure was adopted to normalize itput 7= fE(EO (WO fM (W (U
data before using it in the ANN structure: 2= (1 (jgl) 2 (;) RN (10)
a) In order to improve convergence of the ANN firzgn
process, the normalization interval [0, 1] was wtlto [0.2, 0.8], P T
because in the sigmod function, Eq. (5), the valifesl] aren’t Zy = fM(fM(EOWMl W (U)))
reachedf - Ofor net- -co andf - 1for net— +oo,
b) The data was normalized through the followingrfola: By substituting the corresponding values for thecfions
f20), £°(), F°(), f"(.), Eq. (11) is obtained:
f8&Lo)=Ln = (Lo - Lmin)/ (Lmax - Lmin) (7a)
b Z, =;[smax1 —sminl] +smin,
fYLn)=Lo = Ln*Lmax + (1-Ln)*Lmin (7b) 1+exp™
where Ln is the normalized value, Lo is the valaenormalize, Z, =1+exp—vZ [smax, - smin, ] + smin, 11)
Lmin and Lmax are minimum and maximum variable ealu :
respectively.
¢) Lmin and Lmax were computed as follows: z, =m[5mam -smin,, | + smin,
Lmin = (4 x Limitelnf. - LimiteSup) / 3 8a
( P) (8a) where:
Lmax = (Limitelnf. — 0.8 x Lmin) / 0.2 (8b)

L N
_ o h h a _
The Egs. (8a) and (8b) are obtained substitutinpénEq. (7 a) Vi = ;)W"i f (;)W“ f7(U;) fork=1..M (12)

Ln = 0.2 andLo = Limitelnf, andLn = 0.8 andLo = LimiteSup
Where Limitelnf and LimiteSupare the minimum and maximum |n a general form, Eq. (11) becomes:
values of the original data sets respectively.

. . . Z =— —smi +smi

Sensitivity Equationsvia ANN KT 1+exp [smax, ~smin, ] + smin, (13)
In this work, an ANN multi-layer with a hidden layis used. fork=1,.,M

The ANN has N: inputs, M: outputs and L: neuronghia hidden

layer. The differentiation of the neural networkgsneric and it The sensitivity factors will be calculated from Etj4):
depends only on N, M, L and on the weights of tlielén and exit

layers obtained during the process of trainingufégl shows the 0z, 07, 0Z,
structure of the neural network considered in wisk. 07 ou, au, - IV (14)
U |9z 8zL T 0z,

where each term of the sensitivity matrix is cadted in the form:

exp™ 0V,
(L+exp™)? au,

Zy

30 (15)

=[smax, —smin
k k

N: Inputs
Wi M: Outputs
L : Neurons in the hidden layer

Manipulating the derivative terms of Eq. (15) amdting into
account Eq. (12), the following expression is ald:

WS,
Figure 1. Structure of the Neural Network considere  d.
av,

The steps to obtain the expressions of the semgifactors of ou,
the net are as follow:

- %Mko" * ZWK? f (2w; f2U)) (16)

by differentiating Eq. (16) and substituting thepeession in Eg.
(15), the Eq. (17) is obtained, which allows to coddte the
sensitivity factors of the net:
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[ Figure 2, shows variations in the operation poioe do the
Q\fllhl. Q\ﬁllhz. QV\_{?\‘. variation in several parameters. Curve (I) corresisoto an
emaf emni emaé emlr} emaKl emer . . . .
RAS RWS - RW (17) increment in the back and/or in the front tensiohstress. Curve
Z, |RW, RW, - RW QW Qw, Qw, (I) represents an decrement in the input thicknessve (Ill)
| © i i ||emag-emig emay-—emin  emay —emif, corresponds to the operation point; curve (IV) espnts an
RW, RW, -+ RWS : : : increment in the output thickness and curve (V)vshgossible
QW) Q) Wy increment in the friction coefficient and in theeaage yielded
| emag-emin emay-emin,  emay —emin, | tensile stress or a decrement in the back andfbeifront tensions.
Combining the expressions (3), (4) and (19) théatians in the
with: output thickness of the rolling mill can be obtalne
SN - M +_ ﬁ_P +P 0 9P 4
Q, N : k=1..,L o"lh)
“CZ WX
@+exp =0 )2 where: Ah =h’ -h,
-V - B M 9P , 0P, P4
k —h=
R, = (smax, —smin ) P - h=h " Bﬂj{wdy Ah+ Ab+ dﬂzyﬁ dyAy} (21)
(L+exp K) ah
k=1.,M . . .
Equation (20) uses the partial derivates to caleufae output
and: thickness. The sensitivity factors are obtained ifferéntiating an
ANN and they represent the sensitivities of thdinglload in
o o o relationship with the operational parameters ( #AG098; Zarate
W Wo Wi and Helman 1999). It can be observed that Eq. (@Gsponds to
We = W, W, W, the linear terms of the multivariable Taylor's ssraexpansion of a
: : : function (Zarate et al. 1998 b,c).
o 0 0 Equation (21) permits to calculate a predicted @abi the
WMl WMZ WML

Predictive M odel of the Process

During the rolling process, the cylinders are cogsped against
the strip by a force transmitted by the back ro#s the rolling mill
is not perfectly rigid, the output thickness, candxpressed by the
elastic equation of the rolling mill:

P.B (18)

h,=g +

with (g) being the roll-gap or “gap” and (B) thedth of the
material being rolled.
Any variation in the gap can be expressed as:

APB tmie | | Do :: ; u ﬂ
4h,=4g + VI (19) (mm) | (mm) | —= % P
Ps Minimum | 4.60| 3.492 3.030 62.498.096/383.869
Maximum | 5.40| 3.704 5.619 115.92B144{534.94(
Increment| 0.4 0.108 1.294 26.7p2024 75.530

ho

ho*

g* hi

output thickness lﬁo), that can be used instead of the current value
of h,, which can not be measured without the interfezesfca time

delay. The value is calculated from the correspomdiarameter
values for each operating point. In Galvez and 24§2003), it was
used a predictive model based in the ANN for theda control
deduced in this paper.

Data for Obtaining the Training Sets

To obtain the training sets, intervals of variatiafi the
parameters were suggested by Bryant (1973), sde Tab

Table 1. Variations in the rolling parameters.

Data for the material and rolling mill:

E = 200054 Young modulus of the strip materidl/gnnf)

v = 0.330 Poisson'’s ratio of the strip

B = 900.0 width of strip (mm.)

R=292.1 roll radius (mm.)

M = 3922640 rigidity rolling mill modulus (N/mm.)

g =roll-gap (mm.)

The values of rolling load and rolling torque uded training

were obtained through Alexander's model (1972)l& alshows the
inferior and superior limits for the load and toegobtained by
simulation

Figure 2. Operation Point of a Rolling Mill.
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Table 2. Variation of Load and Torque.

P Tq
(N/mm) (N-mm/mn
Minimum
(Limitinf) 7849.69 3638.35
Maximum
(LimitSup) 23481.90 185001.51

Training Process

were considered for net weights. Considering 728nimg sets,
obtained by the combination of the variables (Tabjewith a

Operation point (B):
h =5.25mm.;

h, =3.60mm;

1 =0.126;

t, = 4.5404 N/mm?;
t, =98.1444N/mm?’;

y =269.142 + 492.2184%"
Tables 3a and 3b show the sensitivity factors F& thosen
For the training process, aleatory values betwded to +1.0 operation points A and B respectively. The Tables ahd 4b

learning rate equal to 0.008, the error was of ®.a88er 540,000

training steps (Pentium IV 3.0 GHz).

The final weights for the hidden and output layerish its

polarization weight are:

[-2.3454 0.7340-1.6838-0.0022 0.6619 - 2.6015|

3.9053 3.0809 -5.1249 - 2.8544 - 5.3234 - 5.6773
-8.4711 5.1592 6.1539-1.5900 - 4.3587 3.4279
-11.759 0.2278-0.9995-0.3439 0.1404 6.6675
-8.4249-9.2360-5.5525 1.1392 2.4098 -5.1437|
-1.3987 1.6646 9.0437 0.0068 5.0952 -7.2585

W', =| 3.4417 0.4525 8.6002-6.6928 5.2036 1.8066
-2.0856 0.6305-0.6184 0.0003 0.8595 -1.8555|
-4.1919 0.5245-4.9311 7.3975 1.3536 6.6874
10.59983.1858 - 4.8274 1.8625 - 3.3113 - 2.8462

3.8174.3.3982-3.9207 -1.5036 -1.7811 0.6947

3.9009 2.6003 0.5489 2.1262 -5.7297 -5.7073

| 8.51206.7926-2.3504 2.8321 4.0079 -3.0902
[-3.1740 - 2.9035| [ 5.2529
-0.0764 0.0828 6.0337
-0.0657 -0.0805) -3.8969
0.1220 0.0392 5.1587
0.0129 0.0412 5.4216

0.0697 - 0.0389 -1.0686| \yo = [3-2143}

WS, =| 0.0365-0.0332 W, = |-7.2569 2.8875
-2.4985 - 2.2298 0.2394
0.0431 - 0.0432 -3.2777
-0.0462 0.0340 -0.9662
0.0237 0.0011 -5.8385
-0.1453 0.1522 3.7317
|-0.0411 0.0515| |-3.0089

Obtaining of the Sensitivity Factors

The final weights of the ANN can be substituted time
expression (17) to obtain the sensitivity factors fa certain
operation point. Observe that for a new operati@mtpa new

calculation on the expression (17) is necessary.

The operation points chosen are:
Operation point (A):

h =5.00 mm.;

h, =3.60 mm;

©=0.12;

t, = 4.3247N/mm?;

t, =89.220N/mn7;

y = 256.325 + 468.1&42™

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Table 3a. Sensitivity factors for the operation poi nt “A”.
P | P | P | 9P| 0P | 0P
oh | ah, ou | ot, | ot, | ay
498.66 -631.16| 7909.25 -86.56-5.83 | 56.75

Table 3b. Sensitivity factors for the operation poi nt “B”.

compare the output thickness values with variations the
parameters (whepg =0), obtained through ANN Eq. (21).

oP oP oP oP oP oP
oh oh, ou at, at, ay
609.54| -1207.62 462.74 -53.77 -0.032 29|32
Table 4a. Calculation of the output thickness obtai  ned through of the
sensitivity factors.
Var - h, h, | Erro
% | N pop b Yo | ANN | Alex.| %
0.0 [ 5.00| 0.12] 4.32p89.220] 460.106| 3.600| 3.590( 0.28
-1.0 [ 4.95 - - - - 3.5853.572| 0.36
+1.0| 5.05 - - - - 3.6153.623| 0.22
-1.0 - 0.119 - - - 3.5953.588| 0.19
+1.0 - 0.121 - - - 3.60%3.602| 0.08
-1.0 - - 4.27q - - 3.600] 3.599| 0.03
+1.0 - - 4.363] - - 3.599| 3591 | 0.22
-1.0 - - - 88.324 - 3.600| 3.597| 0.08
+1.0 - - - 90.113 - 3.599| 3.594| 0.14
-1.0 - - - - 455.506 3.584| 3.582| 0.06
+1.0 - - - - 464.705 3.616| 3.606| 0.28
-3.0| 4.85 - - - - 3.5543.519| 0.99
+3.0| 5.15 - - - - 3.646 3.670| 0.65
-3.0 - 0.116 - - - 3.58[13.580| 0.03
+3.0 - 0.124 - - - 3.6193.613| 0.17
-3.0 - - 4.197 - - 3.600] 3.599| 0.03
+3.0 - - 4.452| - - 3.599|3.591| 0.22
-3.0 - - - 86.543 - 3.601| 3.599| 0.03
+3.0 - - - 91.898 - 3.599|3.591| 0.22
-3.0 - - - - 446.298 3.551| 3.550| 0.03
+3.0 - - - - 473.266 3.647| 3.632| 0.41
-5.0| 4.75 - - - - 3.5243.459| 1.88
+5.0| 5.25 - - - - 3.6763.723| 1.26
-5.0 - 0.114 - - - 3.5713.572| 0.03
+5.0 - 0.126 - - - 3.6293.621| 0.22
-5.0 - - 4,109 - - 3.601| 3.598| 0.06
+5.0 - - 4540 - - 3.599|3.592| 0.19
-5.0 - - - 84.759 - 3.602| 3.602| 0.00
+5.0 - - - 93.682 - 3.598| 3.589| 0.28
-5.0 - - - - 437.0993.518| 3.530| 0.34
+5.0 - - - - 483.112 3.681| 3.659| 0.60
-3.0| 4.85| 0.119 4.19//86.543) 446.298| 3.487| 3.459| 0.81
+3.0| 5.15 | 0.124] 4.45291.898) 473.914| 3.713|3.733| 0.54
0 2006 by ABCM January-March 2006, Vol. XXVIII, No. 1 /115



Table 4b. Calculation of the output thickness obtai ned through sensitivity

factors.
Variation — h h, |Erro
X t o o
(%) hlow | b ! Y | ANN| Alex | %
0.0 5.25| 0.126 4.54098.144| 496.16%3.600 3.590| 0.28
-3.0 5.092 0.122| 4.403 95.202 | 481.2783.514 3.452| 1.76
+3.0 |5.407 0.130| 4.383 101.086| 511.041(3.686 3.744| 1.57
3,75
5 o« ¢
3 3,70 .
>
T 365 . 3
n %
3 =360 f’
- E 4
X £ hd
2= 355 .
z A
- 350
3
5 3451 A4
b}
3,40 ‘ ‘ ‘
340 345 35 355 360 365 370 375
Output thikness - ANN (mm)
Figure 3. Output thickness obtained by Alexander’s Model and through
ANN.
2,00 ry
160 mnl@m =0.000
ISP meximum=1.880 .
5 mean  =033le
Z 0801 \mvinan —n 1 ¢
w 040 ¢ ® 0
0@ . **
000 0eatete” 4000, % Jtet
0 5 10 15 20 25 30 35
test

Figure 4. Errors obtained through ANN.

Discussion of the Results

Figure 3 shows the estimated values for outputkitigss (for
data given in Table 4a) obtained through ANN an@xAhder’s
Model. For those values it was possible to caleuthe correlation
coefficient 0.96 that indicates a satisfactory oese of the neural
representation for this kind of process. Figurehéws minimum
and maximum errors reached, 0.00 and 1.88 respgctisnd the
mean error of 0.331. This last error was calculéted/ariations of
1%, 3% and 5% in the operational parameters.

In Table 4a, for variations of 1% in each operaiqmarameter,
is possible to observe that the output thickneashed a minimum
error of 0.03% and a maximum error of 0.36%. Farat®ns of 3%
the minimum error was 0.03% and the maximum ert69%. For
variations of 5% the minimum error was 0.0% whiattmaximum
error increased to 1.88%. While the variation iases, larger
became the errors. This happens mainly because othput
thickness is calculated through Eq. (21) that ubes sensitivity
factors valid to little variations neighboring tloperational point
correspondent to variations of 0% in nominal patars, Table 4a.
Equation (21) is equivalent to the linearizatioruaipn obtained
through Taylor's series (Zarate et. al. 1998c).

It is possible to observe that small errors aresgume in the
variations of the back tension, in the front tensamd in the average
yield stress. This happens because the sensifaityrs for those
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parameters are the lowest for the operation pdiosen. This can
be verified in Table 3a, whel@P/dt, |=86.56 and oP/dt, |=-5.83

Table 4b shows the robustness of the predictiveaiigd. (21).
For this simulation, each operational parameter dadriation of
3% as recommended in Briant et. al. 1973. The eeached was
1.76%, which was considered acceptable for thid kinprocess.

Conclusions

In this work, the use of Artificial Neural Networlts represent
the rolling process through Alexander's model wessgnted and
discussed. The neural representation uses thetigpsquations,
where the sensitivity factors are calculated thhoughe
differentiation of a neural network trained prewsbu

The neural representation, based on sensitivityfacallows to
calculate the output thickness considering theinglload, which
can be measured directly from the process. Thisdae eliminate
the thickness sensor, usually X-ray, placed in eaahd of a rolling
mill.

Observe that Eq. (21) considers as operationahpeteas those
that occur exactly in the cylinder-material defotima area. Thus,

the obtained value Ffo) provides the same value that would be

obtained by an X-ray sensor. Therefore, the Eq (@) predictive
characteristics.

The proposed method allows to calculate the seitgitf the
rolling process in any operation points inside tliege of data sets
for which the net was trained. For operation poiotg of the
training groups and out of the space of generatizaif the net, it is
necessary a new training process.

The neural representation proposed becomes uséfeh \the
sensitivity factors, obtained through complex pbgbmodels, have
complex analytical expressions with numerical solutvith critical
computational effort. Through the proposed metfitod, possible to
apply techniques based on predictive model in oe-lcontrol
systems.
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