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A Validation Metrics Based Model 
Calibration Applied on Stranded 
Cables 
The present work is aimed at building a computational model for a typical stranded cable 
based on the basic principles of Verification and Validation. The model calibration and 
model tracking are guided based on a pool of validation metrics suitable for data which 
are commonly used in structural dynamics. The estimator used for the associated inverse 
problem is the Maximum a Posteriori estimator and the parameter estimation process is 
performed sequentially over experiments. Experimental tests have been performed at 
CEPEL's (Electric Power Research Center) laboratory span with the overhead conductor 
Grosbeak in order to provide the measured data. The predictive capacity of the 
computational model is assessed by means of frequency- and time-domain validations 
through FRFs, band limited white-noise and sine sweep excitations. We also present novel 
and reliable estimates for the bending stiffness and damping parameters of a widely used 
transmission line conductor. 
Keywords: model calibration, validation metrics, maximum a posteriori, stranded cables, 
bending stiffness 

Introduction1 

The use of computational models (CM) in different areas of 
engineering and applied sciences has become normal in industry and 
academia. CM have broadly been used for preliminary design, 
optimization, decision-making, predictions and so on. Such 
increasing reliance on computer model predictions has naturally led 
to the nucleation and development of the Verification and 
Validation (V&V) field (AIAA, 1998; ASME, 2006). 

The AIAA (2008) defines validation as the process of 
determining the degree to which a model is an accurate 
representation of the real world from the perspectives of the 
intended uses of the model. In other words, validation can be 
defined as the act of quantifying the credibility of a model to 
represent some phenomena of interest (Sornette et al., 2008). Based 
on this philosophy some strategies have been proposed in order to 
determine a credibility level for a computational model (ASME, 
2006). A literature review presents some recent articles based on the 
basic principles of V&V applied in different areas. Liang et al. 
(2010) present some methodologies to calibrate power loads and 
validate power distribution system models. The authors use 
information of historical loads and measurement data and they also 
use the calibrated models to generate scenarios for predictions. 
Greenwald (2010) presents a comprehensive text containing several 
information about V&V. Greenwald (2010) emphasizes the 
usefulness of V&V for physics of plasmas inasmuch as such field 
encompasses different ranges of temporal and spatial scales, 
nonlinearities and extreme anisotropy. Hemez et al. (2010) propose 
and define some desired characteristics for what is called predictive 
maturity. According to those authors, predictive maturity is a 
powerful quantitative tool that could guide decision makers to 
allocate resources for experimental tests and code development. The 
quantitative metrics presented by those authors can be used to track 
model progress as additional information becomes available. Those 
authors presented detailed analysis for a computational model based 
on the non-linear Preston-Tonks-Wallace model for plasticity. 

Roughly speaking V&V encompasses several steps such as: (i) 
proper definition of the intended use of the model, (ii) optimum 
experiment design and data collection, (iii) model calibration based 
on parameter estimation, (iv) evaluation of the predictive capacity of 
the model based on new experimental data, (v) evaluation of the 
predictive capacity of the model in an environment which provides 
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data more complex than the one used in (iii), (vi) make model 
revisions based on the result of (v), and (vii) going back to (iii) 
depending on the result obtained in (v) and (vi). The sequence of the 
seven steps just presented clearly states that the procedure of 
calibrating a set of parameters of a chosen model based on 
experimental data does not assure its predictive capability. Within a 
V&V program, calibration can be considered as one of its essential 
steps. 

Model calibration is accomplished based on an inverse problem 
formulation associated to a system under study and it is based on 
information both from model predictions and measured data. A key-
point to be considered is that despite the fact that both validation 
and calibration are processes built on experimental data, calibration 
is not validation. Although calibration of a model may indicate the 
model's data fitting ability it does not assure its predictive 
capabilities (ASME, 2006). Its predictive capabilities should be 
assessed based on quantitative comparisons between model 
predictions and measured quantities. The level of complexity 
associated to these quantitative comparisons can be increased 
according to a range of operational parameters and different 
environmental conditions (Hemez et al., 2010). Within a V&V 
program, the use of validation metrics is a key-tool to determine 
these predictive capabilities. 

Oberkampf and Barone (2006) recommend some features to 
define metrics to quantify the agreement between computational and 
experimental responses. Those authors state that the functional form 
of the metric is not absolute or unique; it should only measure the 
agreement between computational results and experimental data in 
such a way that positive and negative errors cannot cancel. Those 
authors also emphasize that such metrics should take uncertainties in 
experimental data and in model predictions whenever it is possible. 
The metric proposed in Oberkampf and Barone (2006) is based on 
the statistical concept of confidence intervals. In Oberkampf and 
Barone (2006) it is also presented three applications where the 
uncertainties in the measurement are taken into account for the 
computation of the proposed validation metric. In Liang et al. 
(2010) it is presented an accuracy index denoted as overall accuracy 
index which takes into account the ratio between predictions and 
measurements in a global fashion. Those authors also take into 
account the stochastic behavior of measured data and also propose 
an analysis of such index based on the concept of confidence 
interval. Schwer (2007) proposes a metric suitable to be used with 
time domain data containing characteristics commonly encountered 
in structural dynamics signals. 
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The general purpose of the present work is to build a simple 
computational model for a typical stranded cable commonly used in 
the design of energy transmission line systems. The model building 
process is guided by the V&V basic principles. More specifically, 
the usefulness of the model and the tracking progress of its 
reliability level are assessed by means of a pool of validation 
metrics. For this analysis it is considered experimental data both in 
frequency and time domains collected at CEPEL's (Brazilian 
Electric Power Research Center) laboratory span for the ACSR 
cable Grosbeak. For the parameter estimation process it is used a 
sequential estimation process based on the Maximum a Posteriori 
estimator. At least in principle, the analysis presented by the authors 
can be extended to different types of models for vibrating systems. 
Moreover, we expect that the parameters estimated for the specific 
stranded cable used in the work can be used for computational 
prediction-based decisions of the specific cable that was analyzed. 

The article presents the following sections: Introduction, 
Mechanical Vibrations of Stranded Cables: Mathematical Modeling, 
Inverse Problem, Model Validation, Experimental Set-Up, Results 
and Final Remarks. 

Nomenclature 

APCC = amplitude-phase correlation coefficient 
CSG = Sprague and Geers’ comprehensive error factor 
D = conductor nominal diameter, m  
E = Young modulus, Pa  
EI = conductor bending stiffness, Nm2  
f = probability density function 
F(x,t) = external excitation, Nm-1 
H = vector containing frequency response functions 
I = cross-section area moment of inertia, m4 
J = sensitivity matrix 
L = span length, m 
MSG = Sprague and Geers’ magnitude error metric 
Nf = number of frequency data points 
Ns = number of sensors 
p = vector of unknown parameters 
PSG = Sprague and Geers’ phase difference metric 
SMAP = maximum a posteriori objective function 
t = time, s 
T = tensile load, N 
V = parameter covariance matrix 
W = error covariance matrix 
x = axial coordinate, m 
y(x,t) = conductor transverse displacement, m 

Greek Symbols 

α = aerodynamic damping coefficient, Nsm-2 
ξ = material damping factor, Pa·s 
µ = conductor mass per unit length, kg/m 
σn = standard-deviation of the measured data 
σp1 = standard-deviation of the unknown parameter p1 
σp2 = standard-deviation of the unknown parameter p2 
σp3 = standard-deviation of the unknown parameter p3 
ω = circular frequency, rad/s 
∆pk = parameter increment at kth iteration 

Subscripts/Superscripts 

est, e = estimated 
exp, x = experimental 
pr  = prior distribution 
H = Hermitian operator 
T = transpose operator 

Mechanical Vibrations of Stranded Cables: Mathematical 
Modeling 

Stranded cables are structural components which possess several 
applications. This type of component can be used, for example, in 
cable stayed bridges (Sih et al., 2008) as well as in transmission line 
systems of electric energy (Hagedorn, 1982; Hagedorn et al., 1987). 
For the present work we decided to build a model for a typical 
stranded cable which is commonly used in transmission line 
systems. This model building is based on the principles of V&V. 
Hence, some descriptive information concerning physical 
characteristics of this system, its operational environment and the 
intended use of its computational model will be provided throughout 
this section. 

The majority of overhead conductors employed in high-
voltage transmission lines are composed of steel and aluminum 
wires helically wrapped around a central core. They are commonly 
referred to as ACSR or Aluminum Conductor Steel Reinforced. In 
the field, overhead conductors are strung to high tensile loads and 
their ends are clamped at the suspension towers. These structures, 
also referred to as cables or helical strands, find applications in 
other fields such as civil and ocean engineering (for example, in 
bridges, towers and masts) due to their high strength. An 
important feature of such structures is their low bending stiffness 
(Cardou, 2006). Cardou (2006) provides an excellent literature 
review of various mechanical models proposed for circular cross-
section wire strands aimed at computing their bending stiffness. 
The first works about this subject rely on a different set of 
simplifying assumptions, what leads to a more or less accurate 
evaluation of the bending stiffness. Most of the works cited by 
Cardou (2006) approaches the problem of estimating some cable 
parameters by means of static analysis and dynamic analysis based 
solely on its natural frequencies. The damping parameters of these 
structures are not discussed by Cardou (2006). 

Owing to the complex geometry of a typical overhead conductor 
under bending, the majority of the theoretical models available in 
the literature consider such a complex mechanical structure as a 
continuous homogeneous system (Claren and Diana, 1969; 
Dhotarad et al., 1978; Hagedorn, 1982; Diana et al., 2000; Barbieri 
et al., 2004; Matt and Castello, 2007; Castello and Matt, 2007). The 
simplest models treat the conductors as homogeneous taut strings 
without bending stiffness, while the more sophisticated ones 
consider them as homogeneous Euler-Bernoulli beams with constant 
bending stiffness. Although being a common practice, it does not 
mean that such equivalent homogeneous models are suitable to 
describe the dynamic behavior of a transmission line conductor. To 
the knowledge of the authors, no previous work has attempted to 
assess the validity of equivalent homogeneous beam models when 
applied to a transmission line conductor. Hence, a major 
contribution of the current work is to assess the predictive 
capabilities of an equivalent homogeneous beam model based on 
quantitative comparisons between predicted and observed responses 
of a typical conductor in both time and frequency domains. The 
beam model seems to be more appropriate to describe the 
mechanical vibrations of overhead conductors; nevertheless, two 
problems should be highlighted. 

The first problem is that there is a great uncertainty concerning 
their bending stiffness. The common engineering practice is to 
choose a constant value for the bending stiffness within the range 
defined by the minimum and maximum theoretical values. The 
minimum theoretical value is obtained by considering the conductor 
as a bundle of individual wires and by assuming that the wires are 
free to move relative to each other (full slip behavior) (Cardou, 
2006). The maximum theoretical value is obtained by considering 
the conductor as a bundle of individual wires and by assuming that 
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the contact pressure among the wires is high enough to prevent their 
relative motions (full stick behavior) (Cardou, 2006). For typical 
overhead conductors, the maximum and minimum values may differ 
by several orders of magnitude; for example, for the ACSR 
conductor Grosbeak investigated in the current work, the minimum 
and maximum values are, respectively, 28 Nm2 and 1027 Nm2. The 
actual bending stiffness of a typical conductor lies within the range 
defined by the minimum and maximum theoretical values. During 
its bending vibrations there may be relative movements between its 
constituent wires, movements which are constrained by friction 
among them. 

The second one is concerned with damping estimation for 
stranded cables. Barbieri et al. (2004) estimate the modal damping 
ratios of a transmission line conductor. In their work they assume 
the conductor as a homogeneous Euler-Bernoulli beam and estimate 
the modal damping ratios associated with the first five modes of the 
Ibis conductor. They also estimate the parameters of a proportional 
damping matrix adopted for a reduced model (Friswell et al., 1995) 
of the cable. Their results encompass two different tensile loads and 
three different lengths of the analyzed cable. An important 
conclusion of their work is that the estimated modal damping ratios 
are inversely proportional to the cable tensile load. However, they 
did not estimate the bending stiffness of the analyzed cable. Kim 
and Park (2007) approached the problem of estimating cable tension 
forces based on the measured natural frequencies. Kim and Park 
(2007) consider the effect of the bending stiffness of the cables and 
also the sag-extensibility effect. They formulate the inverse problem 
in a way that it is possible to estimate simultaneously the bending 
stiffness, the axial rigidity and the cable tensile load. They present 
results based on numerical simulations and also based on 
experimental data for cables used in bridges. An important 
conclusion presented by Kim and Park (2007) is that the estimated 
bending stiffness was nearly proportional to the cable tensile load. 
However, they did not take damping into account in their analysis. 

Based on the previous information, the authors highlight the 
interest in obtaining a suitable simple mathematical model for a 
typical transmission line cable based on the basic principles of V&V 
such that: (i) experimental data commonly obtained by dynamic 
testing can be used for the model building process; (ii) the model 
calibration considers the estimation of stiffness and damping 
parameters at the same time; (iii) the model could be used for 
transient analysis and (iv) the model is suitable for model based 
optimization strategies. 

In the present work a typical conductor is modeled as an 
equivalent homogeneous Euler-Bernoulli beam with constant 
bending stiffness and subjected to a constant tensile load. 
Disregarding both the rotary inertia and sag extensibility, a simple 
model for the system may be described by the following governing 
equation (Matt and Castello, 2007; Castello and Matt, 2007): 
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where F(x,t) stands for the external excitation; µ denotes the mass 
per unit length of the conductor; the fourth term on the left-hand 
side of Eq. (1) stands for a viscous-like aerodynamic damping; the 
parameter α is the equivalent aerodynamic damping coefficient; E is 
the Young modulus and the third term on the left-hand side of Eq. 
(1) represents, in the equivalent homogeneous beam model, the 
energy dissipation mechanism associated with the inter-strand 
friction among the wires of a typical conductor, i.e., ξ is a material 
damping factor. 

Concerning the simple damping models chosen to describe 
energy dissipation mechanisms, in Eq. (1), the following remarks 

should be highlighted. The first one is that the aerodynamic 
damping (i.e., the energy dissipation due to friction between the 
vibrating conductor and surrounding air) is represented by a linear 
viscous damping model (the fourth term on the left-hand side of Eq. 
(1)). The majority of previous works neglects aerodynamic 
damping, although researchers strongly recommend corrections on 
the measured energy dissipated by a transmission line conductor in 
order to account for it (Rawlins, 1983). The second one is that the 
conductor self-damping is represented by a linear damping model 
derived from the Kelvin-Voigt constitutive relationship and for 
which the damping force becomes directly proportional to the time 
rate of change of conductor curvature (the third term on the left-
hand side of Eq. (1)); one should note that the friction among the 
conductor wires depends somehow on the time rate of change of its 
curvature during bending vibrations. Although we have not 
considered hysteretic damping model in Eq. (1), it is well-known 
that the majority of works that takes into account the conductor self-
damping represent it by linear hysteretic damping models, in which 
the damping force is directly proportional to conductor vibrating 
velocity and inversely proportional to the excitation frequency. 
However, it is well-known that such linear hysteretic damping 
model has two flaws. Firstly, it violates the causality principle 
(Crandall, 1970; Adhikari, 2000) and, secondly, it can be used only 
for single-frequency harmonic excitations. Finally, the equivalent 
homogeneous beam model mathematically described by Eq. (1) may 
naturally be coupled with the fluid dynamics equations in order to 
simulate the fluid-structure interaction problem governing the 
Aeolian vibrations (Rawlins, 1979; Cigré, 1989; Meynen et al., 
2005) on a transmission line conductor in a way similar to the one 
presented by Wang et al. (2001). 

Direct problem 

The direct problem consists in finding the solution of Eq. (1), 
satisfying the appropriate boundary and initial conditions, with the 
conductor parameters EI, α and ξI, and the excitation F(x,t) being 
known. All the remaining parameters appearing in Eq. (1) are 
assumed to be known. Several analytical techniques and numerical 
methods may be used to solve the direct problem. Here, the direct 
problem is solved through the finite-element method (Hughes, 
2000). The details of the finite-element solution of the 
aforementioned direct problem may be encountered elsewhere (Matt 
and Castello, 2007; Castello and Matt, 2007). 

Inverse Problem: Parameter Estimation 

For the inverse problem of parameter estimation considered 
here, the conductor bending stiffness EI, the aerodynamic damping 
coefficient α and the internal dissipation factor ξI are regarded as 
being unknown. The additional information used to estimate these 
parameters are the complex frequency response functions measured 
at prescribed locations x = xa, a = 1, 2, …, Ns, along the conductor 
and at circular frequencies ωb, b = 1, 2, …, Nf, where Ns is the 
number of sensors and Nf is the number of frequency data. 

For the parameter estimation process we consider that the 
unknown vector p is a random vector. Therefore, based on the 
Bayes' rule for conditional probabilities, we can write 
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where f(p|Hexp) corresponds to the posterior probability density 
function of p given the measured FRF Hexp; f(Hexp|p) corresponds to 
the likelihood function; fpr(p) corresponds to the a priori probability 
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density function of p and f(Hexp) corresponds to a normalizing 
factor. Adopting the hypothesis that the measurement errors are 
Gaussian distributed and that our current state of knowledge about 
p, which is represented by the prior fpr(p), can also be represented 
by a multivariate Gaussian distribution, we can formulate our 
inverse problem based on the search for the point p̂  which 
maximizes f(p|Hexp). Owing to the hypotheses previously 
mentioned, maximization of f(p|Hexp) is equivalent to the 
minimization of the Maximum a Posteriori estimator SMAP, given as 
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where Hest(p) and W denote, respectively, the model FRF and the 
inverse of error covariance matrix; pµ and V denote, respectively, 
the mean value and the covariance matrix of the unknown 
parameters based on our prior state of knowledge about p. By 
assuming that the measurement errors are additive, uncorrelated 
and normally distributed, the weighting matrix W is a diagonal 
matrix with the reciprocal of the covariance of the measurements, 
1/σn

2 , n = 1, 2, …, Nf × Ns × 2, on its diagonal (Orlande, 2002). 
The factor 2 appears because both real and imaginary parts of the 
measured FRFs are taken into account, as explained later on this 
section. The iterative procedure for the minimization of SMAP(p), 
given by Eq. (3), may be written in the form (Orlande, 2002)  
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The estimation process will be considered sequentially over 
experiments. We take the experimental data in two disjoint 
frequency bands. Initially we start the estimation process based on 
the experimental information within the lower frequency band and 
taking into account the fact that our a priori information about p is 
not reliable. This is accomplished by considering the covariance 
matrix V composed of large components. Once we have obtained an 
estimate for p based on the experimental data of the first frequency 
band, we take this information into account as the a priori 
information for the second set of experimental data. Hence, we build 
up SMAP(p) and perform once again the estimation process based on 
the experimental data associated with the second frequency band. 
We decided to approach the inverse problem based on a sequentially 
staggered way due to the fact that transmission line cables possess 
high modal density spectra and that the frequency range associated 
to aeolian vibrations, in general, encompasses a great number of 
modes for this type of structures. Therefore, we consider the 
experimental data in two disjoint frequency ranges instead of taking 
into account a great amount of experimental data at the same time 
for the inverse problem. 

It should be remarked that, as the parameter estimation techniques 
have to deal with experimental data which possess real and imaginary 
parts, we decided to arrange them in the following fashion:  
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where r = 1, 2, …, Nf, the superscript q may be equal to exp or est and 
the subscript under the symbol H corresponds to the number of the 
sensor. 

Model Validation 

Once we have performed the parameter estimation process 
aiming at calibrating the computational model to a set of 
experimental data a natural question that one may raise is: how 
accurate are the predictions provided by a computational model? 
Such question is suitable here, inasmuch as once we have chosen a 
specific model such as Eq. (1) and estimated its parameters, what 
level of confidence can we assign to this computational model? This 
answer can be partially fulfilled by validation processes. 

As it has been previously mentioned, the AIAA report (AIAA, 
1998) defines validation as the process of determining the degree to 
which a model is an accurate representation of the real world from 
the perspectives of the intended uses of the model. In the present 
work we will track the progress of our model calibration based on 
basic principles of V&V. More specifically, the calibration process 
will be guided by some validation metrics. In order to assure that the 
validation process remains independent of calibration processes, it is 
imperative to keep their associated experimental data disjoint. 

The validation metrics used here should be suitable to 
quantitatively compare data associated to structural dynamic 
analysis. Among some possible metrics we decided to use the 
following validation metrics: (i) the amplitude-phase correlation 
coefficient (henceforth abbreviated as APCC); (ii) the Sprague and 
Geers metrics (Schwer, 2007; Sprague and Geers, 2003) and (iii) a 
point-to-point error norm. The APCC is defined as  
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where (•)H denotes the Hermitian operator and a and b correspond 
to vectors containing all FRFs measured at the frequency ω. The 
absolute value of APCC is equal to one if and only if a and b 
possess the same magnitude; otherwise, its absolute value is always 
less than one. This metric seems appropriate inasmuch as it provides 
a quantitative comparison at a frequency ω taking into account a 
group of FRFs to compose vectors a and b. For comparisons of time 
domain signals composed of several frequency components, 
Oberkampft and Barone (2006) suggest the Sprague and Geers 
metrics. Sprague and Geers (2003) proposed metrics to quantify 
magnitude errors, MSG, and phase differences, PSG; the former is 
insensitive to phase differences whereas the latter is insensitive to 
magnitude differences. Sprague and Geers also retained Geers 
original idea of one number representing the combined magnitude 
and phase differences, named Comprehensive Error Factor, CSG. 
These metrics are defined in Eqs. (8), (9) and (10): 
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where, for simplicity, the (abbreviated) subscripts (•)x and (•)e refer 
to experimental and estimated quantities, respectively; and vab is 
defined as follows: 
 

},{,  ,)()(
)(

1
= 2

112
exbadttyty

tt
v bat

tab ∈
− ∫                            (11) 

 
where t1 < t < t2 is the time span of interest for the response history. 
For further details about Eqs. (8), (9) and (10), the reader should 
refer to Schwer (2007) where that author analyzed the Sprague and 
Geers metrics applied to experimental wave-like signals and also 
presented comparisons of these metrics with opinions of a group of 
experts in the field. 

The third validation metric is a point-to-point error norm |qest|N 
which is defined for a generic estimated quantity qest as follows:  
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A natural question at this point is concerned with which values 

are considered acceptable for a validation metric. Schwer (2007) 
states that establishing upper limits on acceptable accuracy remains 
an open topic in the V&V community. Geers (1984) ‘suggests’ the 
following rule-of-thumb guidance on values for his combined 
metric: “My personal reaction has been that anything below about 
20% is really good. When you get to around 20-30%, it is getting 
fair. When you get above the 30-40% range that is rather poor.” In 
the current work, we adopt the 20% as the upper limit on the 
Sprague and Geers metrics for an acceptable accuracy. All in all, 
these pool of metrics enable one to perform some quantitative 
comparisons between the predictive capacity of a group of models. 

As just mentioned, the pool of metrics presented in this section 
will be used to assess the predictive capabilities of the 
computational model described in the Mathematical Modeling 
section. Therefore, once they provide results not in favor of the 
model, it clearly means that an action must be taken to initiate 
improvements in some steps of the modeling and/or experimental 
design. Hence, instead of judging the suitability of a model based 
solely on data-fitting graphs we will guide our analysis based on the 
basic principles of V&V. 

Experimental Set-Up 

This section is dedicated to describe the experimental set-up. All 
the experiments have been performed at the laboratory span of the 
Electric Power Research Center (CEPEL). The transmission line 
conductor under analysis is the ACSR Grosbeak, whose weight per 
unit length and nominal diameter are, respectively, µ = 1.3027 kg/m 
and D = 25.15 mm. The span length used in the tests is 
L = 51.950 m. The tests are performed for two different tensile 
loads, namely 16481 N (1680 kgf) and 21778 N (2220 kgf). The 
tensile loads of 1680 kgf and 2220 kgf correspond to approximately 
14% and 19% of the Grosbeak rated tensile strength (RTS), 
percentages commonly employed in the field. 

The Grosbeak conductor is instrumented with an electrodynamic 
shaker and with three piezoelectric accelerometers, namely AC1, AC2 
and AC3. The electrodynamic shaker employed for the FRF 
measurements was manufactured by Data Physics, model S-150 with 
controller DP-V150 and amplifier A-10C-05. The power of the 
amplifier is 1250 W; the maximum shaker displacement is 25.4 mm 
peak-to-peak; the maximum velocity is 1.5 m/s; the maximum 
acceleration is 72 g; the nominal forces are 1000 N, 650 N and 1300 N 
respectively for sinusoidal, random and shock; and, finally, the 

frequency range is 2 Hz to 5 kHz. The force transducer used was 
manufactured by Bruel & Kjäer, model 8230-002 with nominal 
sensitivity 2.41 mV/N. The three accelerometers used were 
manufactured by Bruel & Kjäer, model Deltatron 4519-001 with 1 gr 
mass. The force transducer and the three accelerometers are IEPE; 
their frequency ranges encompass 5 Hz to 6 kHz, according to the 
manufacturer's specification. 

Figure 1 shows a sketch of the experiment together with the 
accelerometer positions. The dimensions shown in Fig. 1 are 
ℓ1 = 1.4 m, ℓ2 = 0.7 m and ℓ3 = 1.6 m. It is worthwhile to mention 
that the electrodynamic shaker is located at the same position as the 
accelerometer AC3, i.e., the position given by x = ℓ3 is the driving 
point of the conductor. 
 

 
Figure 1. Experimental Set-up. 

 
The signals from the electrodynamic shaker and from the three 

piezoelectric accelerometers are read and recorded by PULSE 
acquisition data system from Bruel and Kjäer, which, in turn, 
computes the desired frequency response functions. For each tensile 
load, we decided to measure the FRFs for two different frequency 
bands, as shown in Table 1. The frequency bands shown in Table 1 
are within the frequency range expected for aeolian vibrations in the 
field. All the FRFs are measured with 801 equally spaced frequency 
points. Such a high frequency resolution becomes necessary in both 
frequency bands in order to capture the closely-spaced natural 
frequencies of the conductor and to obtain well-defined peaks in the 
FRFs. For validation processes, time-domain acceleration data are 
also measured for band limited white-noise and sine sweep 
excitations, as indicated in Tables 2 and 3. 
 
 
Table 1. Characteristics of the measured FRFs durin g tests performed at 
CEPEL's laboratory span. 

Frequency 
range (Hz) 

Frequency 
resolution 
(points) 

Averages Accelerometers 

[5, 17.5] 801 30 
AC1, AC2 and 

AC3 

[17.5, 30] 801 30 
AC1, AC2 and 

AC3 
 
 

Table 2. Time-domain signals recorded for the condu ctor Grosbeak under 
the tensile load T = 16481 N. 

Excitation 
signal 

Frequency 
band [Hz] 

Time 
span 
[t0, tf] s 

Sampling 
frequency 
fs [Hz] 

Accelerometers 

White 
noise 

[5, 30] [0, 15] 256 
AC1, AC2 and 
AC3 
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Table 3. Time-domain signals recorded for the condu ctor Grosbeak under 
the tensile load T = 21778 N. 

Excitation 
signal 

Frequency 
band [Hz] 

Time 
span 
[t0, tf] s 

Sampling 
frequency 
fs [Hz] 

Accelerometers 

Sine 
sweep 

[5, 20] [0, 15] 256 
AC1, AC2 and 
AC3 

White 
noise 

[5, 17.5] [0, 15] 256 
AC1, AC2 and 
AC3 

 
 

 
Figure 2. Photographs of the experimental set-up: ( left) general 
overview of the CEPEL's laboratory span and (right)  detailed view of 
conductor's clamp. 

 
Figure 2 shows photographs of the CEPEL's laboratory span. 

The photograph on the left side of Fig. 2 gives a general overview of 
the experimental set-up. The photograph on the right side of Fig. 2 
gives a detailed view of one conductor end, from which one can see 
both the conductor clamp and the rigid block fixed on the floor. The 
other conductor end is identical. From the photograph one may 
conclude that the clamps restrict both the conductor displacement 
and rotation; hence, the direct problem previously described is 
solved for clamped-clamped boundary conditions, i.e., 
 

0=),(=)(0, tLyty   
 
and  
 

0=),(=)(0, tL
x

y
t

x

y

∂
∂

∂
∂

.  

 
To close up this section, the authors would like to remark that the 
maximum displacement at the span midpoint during static 
equilibrium was measured for the two tensile loads tested. The 
maximum sag-to-span ratio was less than 0.6%. Since the sag-to-
span ratios found in the experiments were very lower than 1/8, we 
decided to neglect its effect on the governing equation of motion, as 
recommended by Irvine (1981). 

Results 

The goals of this section are two-fold. First, we present the 
estimates obtained for the bending stiffness and the damping 
parameters of the Grosbeak conductor based on the measured FRFs. 
Second, we assess the credibility of the model through the basic 
principles of a validation process. As it has been previously 
mentioned, the experimental data associated to the estimation 
process must be different from the one associated to the validation 
processes. Here, validation is performed by graphically comparing 
estimated and measured quantities and by computing the validation 
metrics previously presented. 

The estimation process is performed in two stages; the reasons 
behind this choice are explained later on this section. In the first 

stage, only the bending stiffness EI and the aerodynamic damping 
coefficient α are estimated; the material damping factor ξI is kept 
constant and equal to a small value. The first stage takes into 
account only the measured FRFs within the frequency band of 
[5,17.5] Hz; EI and α are estimated through the Levenberg-
Marquardt parameter estimation technique (Özişik and Orlande, 
2000). In the second stage, we consider two possible models to be 
calibrated given a new set of measured information: (i) we still 
estimate the bending stiffness EI and the aerodynamic damping 
coefficient α while keeping the material damping factor ξI constant 
as for the first stage; and (ii) we also estimate the three unknown 
parameters (EI, α and ξI) simultaneously. During the second stage, 
the unknown parameters are estimated through the sequential 
parameter estimation technique. The second stage takes into account 
information from both (i) the frequency band [17.5, 30] Hz through 
the associated FRFs (new data) and (ii) the frequency band 
[5, 17.5] Hz through the prior information. In other words, the 
estimated parameters and their covariances obtained in the first 
stage are used as a priori information for the sequential estimation 
during the second stage. Beck (2003) defines the two-stage 
parameter estimation strategy proposed here as Sequential 
Parameter Estimation Over Experiments. We have at our 
disposal experimental data in both frequency and time domains for 
the two tensile loads investigated: 16481 N and 21778 N. The 
experimental data in the frequency domain are the measured FRFs 
whereas the experimental data in the time domain are the 
acceleration and force signals recorded by the accelerometers and 
the force transducer. The time-domain signals are recorded for white 
noise and sine sweep excitations. 

Concerning the initial guesses for the unknown parameters, it 
should be noted that we have reference values only for the bending 
stiffness: the maximum and minimum theoretical values which for 
the conductor Grosbeak are, respectively, EImax = 1027 Nm2 and 
EImin = 28 Nm2 (Cigré, 1989). The minimization of the ordinary 
least-squares norm is performed for three different initial guesses 
chosen for EI, EI(0) = {28, 527, 1027} Nm2, and for only one initial 
guess chosen for α, α(0) = 0.1 Nsm-2. The three different initial 
guesses chosen for EI lead to the same final values for the unknown 
parameters; hence, only the estimates obtained from the initial guess 
EI(0) = 527 Nm2 are reported in the current work. Preliminary 
numerical tests were performed in order to check the convergence 
and accuracy of the finite-element solution of the associated direct 
problem. Based on these numerical tests, we verify that a finite 
element mesh with one-hundred elements provides acceptable 
results for the desired degree of accuracy. 

First stage 

The experimental data used in the first stage of the estimation 
process are the measured FRFs of the accelerometers AC2 and AC3 
within the frequency band of [5,17.5] Hz. The material (internal) 
damping ξI is kept constant and equal to 10-4 Nsm2. In order to 
avoid a parameter vector containing components with very different 
orders of magnitude, the following parameterization is adopted: 
EI = p1 × 103 and α = p2. The final values for the parameters and 
their standard deviations are shown in Table 4. As far as we know, 
the estimates obtained for the bending stiffness and aerodynamic 
damping coefficient of the conductor Grosbeak are new in the 
literature. 

We start the validation process by comparing the estimated and 
the measured FRFs for the accelerometer AC1, which was not used 
in the estimation process. Figure 3 shows the measured (circles) and 
estimated (continuous line) FRFs (magnitude) for the accelerometer 
AC1 in the frequency band [5,17.5] Hz. 
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Figure 3. Measured (circles) and estimated (continu ous line) FRFs for the 
accelerometer AC1. On the left T = 16481 N and on the right T = 21778 N. 

 
Based on the curves indicated on Fig. 3, one may conclude that 

the equivalent homogeneous beam model with EI and α given in 
Table 4 and ξI = 10-4 Nsm2 reproduces quite well the dynamic 
behavior of the conductor Grosbeak in the frequency band of 
[5,17.5] Hz, for both tensile loads. The excellent agreement verified 
in Fig. 3 may also be viewed from the plot of the APCC validation 

metric, shown in Fig. 4. From Fig. 4 one may verify that, for the 
majority of the frequency data points, the corresponding APCC 
magnitudes are closer to unity. For T = 21778 N, the APCC 
magnitude lies below 0.80 only for the data point corresponding to 
the frequency 12 Hz. 
 

 
Figure 4. Magnitude of the APCC validation metric fo r the accelerometer 
AC1 in the frequency band of [5,17.5] Hz. On the le ft T = 16481 N and on 
the right T = 21778 N. 

 
 

Table 4. Estimates for the bending stiffness EI = p1 ×××× 103, the aerodynamic damping coefficient αααα = p2 and their corresponding standard deviations for th e 
first stage ( ξξξξI = 10-4 Nsm2). 

T [kgf]  p1 [Nm2]  p2 [Nsm-2]  np σσ
1

 np σσ
2

 

1680 0.5140 0.3189 0.002 0.010 
2220 0.7415 0.3445 0.003 0.011 

  
 

We continue the validation process by comparing the measured 
and estimated time history accelerations for a white-noise excitation. 
For T = 21778 N the excitation encompasses the frequency range 
[5, 17.5] Hz (see Table 3) and the measured and estimated time 
history accelerations of the conductor Grosbeak at the three 
accelerometer positions are shown in Figs. 5, 6 and 7. The time 
domain Sprague and Geers metrics were computed for t ∈ [8, 11] s. 
Nevertheless, for clarity of the figures we decided to plot time 
domain histories only for t ∈ [9, 10] s. 
 

 
Figure 5. Measured and estimated time history accel erations at the first 
accelerometer for a white-noise excitation encompas sing the frequency 
band of [5,17.5] Hz ( T = 21778 N). 

 
Figure 6. Measured and estimated time history accel erations at the 
second accelerometer for a white-noise excitation e ncompassing the 
frequency band of [5,17.5] Hz ( T = 21778 N). 

 
The estimated time-domain responses shown in Figs. 5, 6 and 7 

are obtained from the equivalent homogeneous beam model with 
T = 21778 N, EI = 741.5 Nm2, α = 0.3445 Nsm-2 and ξI = 10-4 
Nsm2. The discrete evolution equations of the system are integrated 
with the Newmark method (Hughes, 2000). The excitation force 
applied to the beam model is the force signal recorded by the force 
transducer. From the analysis of Figs. 5, 6 and 7 we conclude that 
the estimated time-domain accelerations are in excellent agreement 
with the experimental ones for the three accelerometers. For 
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quantitative comparison of these time-domain responses, we also 
compute in Table 5 the Sprague and Geers metrics. 

 

 
Figure 7. Measured and estimated time history accel erations at the third 
accelerometer for a white-noise excitation encompas sing the frequency 
band of [5,17.5] Hz ( T = 21778 N). 

 
Table 5. Sprague and Geers validation metrics for c omparison between 
measured and estimated time-domain responses under a white noise 
excitation encompassing the frequency band of [5,17 .5] Hz (T = 21778 N). 

Accelerometer MSG PSG CSG |qest|N 
AC1 0.0466 0.0656 0.0805 0.2059 
AC2 0.0618 0.0997 0.1173 0.3082 
AC3 0.0558 0.1358 0.1469 0.4155 

 
 

From the analysis of Table 5 we verify that the largest 
Comprehensive Error Factor, CSG, is 14.7%, for the accelerometer 
AC3. Assuming 20% as the upper limit on acceptable accuracy for 
model validation (Schwer, 2007; Geers, 1984), we may thus state that 
the agreement between prediction and experiment is indeed quite 
high. Therefore, the set of validation metrics previously presented 
gives a position in favor of the equivalent homogeneous beam model 
for T = 21778 N. In principle, one could state that, based on these 
validation metrics, this model is able to reproduce the dynamic 
behavior of the system within the frequency range [5, 17.5] Hz. 

We also compare the measured and estimated time history 
accelerations under a white-noise excitation for T = 16481 N; in this 
case, the excitation encompasses the frequency range [5, 30] Hz (see 
Table 2). Quantitative comparisons among these time-domain 
responses are presented in Table 6 through the Sprague and Geers' 
validation metrics.  

  

Table 6. Sprague and Geers validation metrics for c omparison between 
measured and estimated time-domain responses under a white noise 
excitation encompassing the frequency band of [5,30 ] Hz (T = 16481 N). 

Accelerometer  MSG PSG CSG |qest|N 
AC1 -0.4580 0.2508 0.5222 1.3422 
AC2 -0.4902 0.2570 0.5534 1.4611 
AC3 -0.5765 0.3679 0.6839 2.1615 

 
 
Now, the lowest Comprehensive Error Factor CSG is 52.2%, 

which is much higher than 20%; hence, an analysis of Table 6 leads 
to a position not in favor of the equivalent beam model. 
Nevertheless, before rejecting it, one may note that the excitation 
contains frequency components outside the frequency band chosen 
to be used for the estimation process which has been just performed 

and, up to this point, we have not yet validated the beam model in 
the frequency band of [17.5, 30] Hz. Hence, one might naturally 
ask: once the beam model has been given a certain level of 
credibility by the previous metrics, how accurate would it be 
within the frequency band [17.5, 30] Hz? More specifically, what's 
the capability of the proposed beam model to predict the dynamic 
behavior of the conductor Grosbeak in the frequency band [17.5, 
30] Hz? In order to answer this question, we thus compare the 
measured and estimated FRFs for the three accelerometers in the 
frequency band of [17.5,30] Hz using the previous estimates for EI 
and α shown in Table 4. Figure 8 shows the magnitude of the 
APCC validation metric for the accelerometer AC1 in the 
frequency band of [17.5,30] Hz. 

 
Figure 8. Magnitude of the APCC validation metric fo r the accelerometer 
AC1 in the frequency band of [17.5,30] Hz using the  parameter estimates 
computed at the first stage of the estimation proce ss: (left) T = 16481 N; 
(right) T = 21778 N. 

 
Comparing Figs. 4 and 8 one may note a significant 

deterioration of the predictability level of the beam model, mainly in 
the highest frequencies; the magnitudes of the APCC are drastically 
reduced for the majority of the frequency data points. Such 
deterioration in predictability explains the large values obtained for 
CSG in Table 6, what clearly indicates a demand for either a model 
revision or more data acquisition for the parameter estimation 
process. Therefore, in order to increase the predictability level of the 
model in the frequency band [17.5, 30] Hz we proceed to the second 
stage of the estimation process. 

Second stage 

The second stage comprises the parameter estimation based on 
the measured FRFs of the accelerometers AC2 and AC3 in the 
frequency band of [17.5,30] Hz. Two possible models are analyzed 
here and, henceforth, they are referred to as the 2-parameter and 3-
parameter models. For the 2-parameter model, the unknown 
parameters are the bending stiffness EI and the aerodynamic 
damping coefficient α; the material damping ξI is constant and 
equal to 10-4 Nsm2 as previously done for the first stage. For the 3-
parameter model, the unknown parameters are the bending stiffness 
EI, the aerodynamic damping coefficient α and the material 
damping ξI. The following parameterization is chosen: 
EI = p1 × 103, α = p2 and ξI = p3 × 10-2 (only for the 3-parameter 
model). The previous estimates for EI and α shown in Table 4 
provide the a priori information for p1 and p2. Since no information 
is available for ξI, we adopt a small value for the mean value of p3 
(10-2) and a large value for its standard deviation (105). The 
estimated parameters are shown in Tables 7 and 8. 
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Table 7. Estimates for the bending stiffness EI = p1 ×××× 103, the aerodynamic damping coefficient αααα = p2 and their corresponding standard deviations for th e 
second stage ( ξξξξI = 10-4 Nsm2).  

T [kgf]  p1 [Nm2]  p2 [Nsm-2]  np σσ
1

 np σσ
2

 

1680 0.5629  0.6228 4.1 × 10-4 0.0070  
2220 0.6795  0.4450 3.7 × 10-4 0.0055 

 
 

Table 8. Estimates for the bending stiffness EI = p1 ×××× 103, the aerodynamic damping coefficient αααα = p2 and the material damping ξξξξI = p3 ×××× 10-2, and their 
corresponding standard deviations for the second st age. 

 T [kgf] p1 [Nm2] p2 [Nsm-2] p3 [Nsm2] np σσ
1

 np σσ
2

 np σσ
3

 

1680 0.5344 0.3180 27.7026 9.6 × 10-4 8.3 × 10-5 0.8716  
2220 0.6788 0.3883 2.9638 4.4 × 10-4 0.0098 0.4357  

 
  

 
Figure 9 shows the magnitude of the APCC validation metric 

for the accelerometer AC1. For the tensile load T = 16481 N, two 
important remarks should be highlighted. First, there has been an 
improvement in the predictability of the beam model, reflected in 
the APCC validation metric, when one compares Figs. 8 and 9. 
Second, the 2-parameter model seems to provide a better 
representation of the system within the frequency band of 
[17.5,30] Hz based on the APCC metric. For the tensile load T = 
21778 N, there has also been an improvement in the predictability 
of the beam model when one compares Figs. 8 and 9; moreover, 
the 2-parameter and the 3-parameter models seem to be quite 
similar for the frequency range [17.5, 30] Hz. To close up the 
discussion, one might finally ask to what extent the second stage 
of the estimation process has affected the predictability of the 
beam model in the frequency band of [5,17.5] Hz. To answer this 
question, another validation process has been performed by 
considering the time-domain accelerations measured during the 
tests performed with the conductor Grosbeak for both tensile 
loads. 

For the tensile load T = 16481 N, we consider the measured 
time-domain accelerations for a white noise excitation 
encompassing the frequency band of [5,30] Hz. The Sprague and 
Geers' validation metrics computed for the 2-parameter and 3-
parameter models are indicated on Tables 9 and 10. 

 

Table 9. Sprague and Geers validation metrics for c omparison between 
measured and estimated time-domain responses under a white noise 
excitation encompassing the frequency band of [5,30 ] Hz (2-parameter 
model for T = 16481 N). 

Accelerometer  MSG PSG CSG |qest|N 
AC1 -0.1267 0.1108 0.1683 0.3980 
AC2 -0.1288 0.1329 0.1809 0.4641 
AC3 -0.1696 0.2023 0.2640 0.7155 

 

Table 10. Sprague and Geers validation metrics for comparison between 
measured and estimated time-domain responses under a white noise 
excitation encompassing the frequency band of [5,30 ] Hz (3-parameter 
model for T = 16481 N). 

Accelerometer  MSG PSG CSG |qest|N 
AC1 -0.0794 0.1466 0.1677 0.4834 
AC2 -0.0872 0.1719 0.1928 0.5665 
AC3 -0.2167 0.2579 0.3368 0.9325 

 
 
Three important remarks may be drawn from the results shown 

in Tables 9 and 10. First, the Comprehensive Error Factors are less 

than 20% for the accelerometers AC1 and AC2 whereas the largest 
CSG values are computed for the accelerometer AC3. Second, the 
Comprehensive Error Factors are slightly lower for the 2-parameter 
model. Third, the point-to-point error norms |qest|N are significantly 
lower for the 2-parameter model. Figure 10 plots the experimental 
and estimated time histories for the accelerometer AC1 for the 2- 
and 3-parameter models. 
 

 
Figure 9. APCC validation metric for the accelerome ter AC1 in the 
frequency band of [17.5,30] Hz: (left) T = 16481 N and (right) T = 21778 N. 

 

 
Figure 10. Time domain validation for the accelerom eter AC1 for 
T = 16481 N and white noise excitation encompassing [5, 30] Hz: (top) 2-
parameter model; (bottom) 3-parameter model. Black line: Experimental. 
Dotted Line: Estimated. 
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For the tensile load T = 21778 N, we consider the measured 
time-domain accelerations for a sine sweep excitation encompassing 
the frequency band of [5,20] Hz. Tables 11 and 12 present the 
Sprague and Geers' validation metrics computed for the 2-parameter 
and 3-parameter models.  
 

Table 11. Sprague and Geers validation metrics for comparison between 
measured and estimated time-domain responses under a sine sweep 
excitation encompassing the frequency band of [5,20 ] Hz (2-parameter 
model for T = 21778 N). 

Accelerometer  MSG PSG CSG |qest|N 
AC1 0.0390 0.0877 0.0960 0.2722 
AC2 0.0579 0.1343 0.1462 0.4107 
AC3 -0.1096 0.2807 0.3013 0.9128 

 

Table 12. Sprague and Geers validation metrics for comparison between 
measured and estimated time-domain responses under a sine sweep 
excitation encompassing the frequency band of [5,20 ] Hz (3-parameter 
model for T = 21778 N). 

Accelerometer  MSG PSG CSG |qest|N 
AC1 0.0373 0.0814 0.0895 0.2530 
AC2 0.0839 0.1009 0.1313 0.3131 
AC3 -0.0748 0.2585 0.2691 0.8253 

 
 
Based on the results indicated on Tables 11 and 12 one may 

draw the following conclusions: (i) the Comprehensive Error 
Factors are less than 15% for the accelerometers AC1 and AC2; the 
largest CSG values are obtained for the accelerometer AC3, placed at 
the driving point; (ii) the Comprehensive Error Factors are slightly 
lower for the 3-parameter model; (iii) the point-to-point error norms 
|qest|N are significantly lower for the 3-parameter model. Figure 11 
plots the experimental and estimated time histories for AC2 for the 
2- and 3-parameter models. 
 

 
Figure 11. Time domain validation for the accelerom eter AC2 for 
T = 21778 N and a sine sweep excitation encompassing  [5, 20] Hz: (top) 2-
parameter model; (bottom) 3-parameter model. Black line: Experimental. 
Dotted line: Estimated. 

 
Two important conclusions may be extracted from the results 

reported in the current work. First, the equivalent beam model with 
EI and α given in Table 7 and with ξI = 10-4 Nsm2 or with EI, α and 
ξI given in Table 8 reproduces quite well the dynamic behavior of 
the conductor Grosbeak in the frequency range from 5 Hz to 30 Hz, 
in both frequency and time domains for the tensile load 
T = 21778 N. Second, the 2-parameter equivalent beam model with 
EI and α given in Table 7 and with ξI = 10-4 Nsm2 seems to 

reproduce the dynamic behavior of the conductor Grosbeak in the 
frequency range from 5 Hz to 30 Hz better than the 3-parameter 
model for the tensile load T = 16481 N. 

Final Remarks 

In the present work a computational model for a stranded cable 
typically used for transmission lines has been built. The 
computational model was built based on the basic principles of 
V&V and the model tracking progress was guided by a pool of 
validation metrics suitable for experimental data commonly used in 
structural dynamics. 

The experimental data were recorded during vibration tests 
performed with the conductor Grosbeak at CEPEL's laboratory span 
under two different tensile loads and with low sag-to-span ratios. 
The experimental data used for the parameter estimation process 
were the FRFs of the accelerometers AC2 and AC3. As transmission 
line conductors possess dense frequency spectra we decided to 
perform the estimation processes in two stages which are associated 
to two disjoint frequency bands. The parameter estimates based on 
the frequency band [5, 17.5] Hz were taken into account for the 
parameter estimation based on the frequency band [17.5, 30] Hz 
through the use of a maximum a posteriori objective function. We 
relied on model validation principles to assess the suitability of the 
equivalent beam model. The tracking progress of the model and its 
predictive capacity were quantitatively assessed by three validation 
metrics, namely: amplitude-phase correlation coefficient (APCC), 
Sprague and Geers metrics and a point-to-point error norm. It was 
considered time and frequency domain measured data for the 
analysis. The validation process provided favorable positions for the 
model for the set of available experimental data. 

The results presented in this work are quite compelling due to 
the fact that the proposed approach is easy-handled. Furthermore, 
the model calibration based on validation metrics that has been 
presented in this work is broadly applicable to any structural system 
for which we can collect experimental dynamic data. As a final 
comment, we believe that the proposed equivalent homogeneous 
beam model used in this work is able to predict the dynamic 
behavior of the conductor Grosbeak measured on laboratory in both 
frequency and time domains. Hence, we expect that it may be useful 
for computer simulations of aeolian vibrations, at least for frequency 
ranges expected for those vibrations and for tensile loads commonly 
encountered in the field. 
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