Acessibilidade / Reportar erro

A validation metrics based model calibration applied on stranded cables

The present work is aimed at building a computational model for a typical stranded cable based on the basic principles of Verification and Validation. The model calibration and model tracking are guided based on a pool of validation metrics suitable for data which are commonly used in structural dynamics. The estimator used for the associated inverse problem is the Maximum a Posteriori estimator and the parameter estimation process is performed sequentially over experiments. Experimental tests have been performed at CEPEL's (Electric Power Research Center) laboratory span with the overhead conductor Grosbeak in order to provide the measured data. The predictive capacity of the computational model is assessed by means of frequency-and time-domain validations through FRFs, band limited white-noise and sine sweep excitations. We also present novel and reliable estimates for the bending stiffness and damping parameters of a widely used transmission line conductor.

model calibration; validation metrics; maximum a posteriori; stranded cables; bending stiffness


Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM Av. Rio Branco, 124 - 14. Andar, 20040-001 Rio de Janeiro RJ - Brazil, Tel.: +55 21 2221-0438, Fax: +55 21 2509-7129 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br