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Three-Dimensional Viscous Flow 
Simulations over the VLS Using 
Overset Grids 
The present work is inserted into an effort to develop a Chimera flow simulation code 
capable of handling general launch vehicle configurations. The paper is primarily 
concerned with presenting results of laminar and turbulent viscous simulations of flows 
over the first Brazilian satellite launch vehicle, the VLS, during its first-stage flight. The 
finite difference method is applied to the governing equations written in conservation-law 
form for general body conforming curvilinear coordinates. The spatial discretization is 
accomplished with a central difference scheme in which artificial dissipation terms, based 
on a scalar, non-isotropic model, are added to the numerical scheme to maintain stability. 
The time march process is accomplished with a 5-stage, 2nd-order accurate, Runge-Kutta 
scheme. The results here included are indicative of the current status of the Chimera flow 
simulation capability under development by the authors. The results also highlight 
interesting features of the flow over the complete VLS and point out the importance of the 
inclusion of viscous effects for flow simulation over such complex vehicles. 
Keywords: Viscous simulations, chimera grids, finite difference method, satellite launcher 
 
 
 

Introduction 

In the present work, laminar and turbulent viscous simulations 
are performed with the objective of demonstrating the capability 
currently available at Instituto de Aeronáutica e Espaço (IAE) for 
the aerodynamic analysis of launch vehicle flows. In particular, the 
work is interested in presenting detailed aerodynamic results for 
flows over the first-stage flight configuration of the first Brazilian 
satellite launcher vehicle (VLS), as a means of demonstrating the 
application of the available capability to the actual vehicle currently 
being qualified. The basic motivation for this work is, therefore, to 
provide a continuation in the development effort that has been going 
on in the institution here represented, which aims at creating the 
simulation capability to handle truly complex aerospace 
configurations. There is a strong interest in performing simulations 
over the VLS first-stage flight configuration, since this is a fairly 
complex vehicle with several bodies in close proximity. Three-
dimensional results for the complete configuration were already 
obtained with the Euler formulation using the previous version of 
the Chimera flow simulation code under consideration here. The 
results are described in detail in Basso, Antunes and Azevedo 
(2000), together with a historical perspective of the development of 
CFD tools for flow simulation over general launch vehicle 
configurations at IAE. The inviscid calculations were not able to 
obtain good correlation with experimental data over some regions of 
the vehicle, regardless of the level of mesh refinement. In fact, there 
was some evidence that viscous effects could dominate the flow in 
such regions. In particular, over the region in which there is close 
proximity between the VLS central body and its strap-on boosters, it 
was not possible to obtain good comparisons between computational 
and experimental results with the inviscid solutions.1 

The flight configuration of the first stage of the VLS is 
composed by a central body and four strap-on boosters arranged 
symmetrically around this central body, as one can observe in Fig. 
1. This is, therefore, a quite complex geometry to be discretized by a 
structured mesh. Hence, there has been an effort to develop tools 
based on the overset, multiblock grid technique, or Chimera (Wang 
and Yang, 1994; Wang, Bunning and Benek, 1995), in order to 
simulate flows over the complete VLS vehicle. This technique 
provides the capability to use structured meshes for the 
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discretization of the calculation domain over truly complex 
configurations. Moreover, it allows adaptive grid refinement 
characteristics, which are similar to those, achieved with 
unstructured meshes. The governing equations are written in 
conservative form and are discretized by a finite difference method. 
Spatial discretization uses second-order accurate, central difference 
operators. The time marching method is based on a 5-stage, Runge-
Kutta algorithm (Jameson, Schmidt and Turkel, 1981), which has 
second-order accuracy in time. The artificial dissipation terms added 
are based on the non-isotropic, Turkel and Vatsa (1994) model.  

 

 
Figure 1. Schematic representation of the VLS system during its first-
stage flight. 

 
The implementation of viscous terms is carried out in the 

context of the Chimera code already available (Basso, Antunes and 
Azevedo, 2000) in order to perform the present studies. Moreover, 
since actual flight conditions over the VLS and similar vehicles 
consider Reynolds numbers, which typically are in the order of tens 
of millions, or higher, the Baldwin and Lomax (1978) model has 
been implemented and tested in the code. However, there are plans 
to extend the tests with this and other models in the future. 
Furthermore, in order to perform viscous flow simulations, it is 
necessary to generate grids, which are fine enough to provide 
support for capturing viscous effects throughout the flowfield. In the 
present case, since the afterbody portion of the vehicles is not 
included in the simulations, it is correct to state that viscous effects 
will be restricted to fairly thin boundary layers. Hence, for 
computational efficiency, grid refinement is particularly emphasized 
in the wall-normal direction and the simulations here presented 
should be considered as solutions of the thin- layer Navier-Stokes 
equations, despite the fact that more viscous terms are included in 
the equations actually implemented in the code. 

The forthcoming sections present the governing equations 
together with details of the numerical method used for their solution. 
A brief discussion of the boundary conditions implemented is also 
presented, as well as an overview of the Chimera grid procedure 
used in the present code. Viscous laminar and turbulent solutions for 
the complete VLS vehicle are presented and discussed. Finally, a 
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critical evaluation of the flow simulation capability implemented at 
IAE is presented, followed by a discussion of perspectives for future 
work. 

Nomenclature 

Cp = pressure coefficient 
d =  artificial dissipation operator 
E  = flux vector in the ξ  direction 
e  = total energy per unit of volume 
F  = flux vector in the η  direction 

G  = flux vector in the ς  direction 
J  = Jacobian of the transformation 

L = characteristic length 
M = Mach number 
Pr = Prandtl number 
Q  = vector of conserved variables 
Re = Reynolds number 
RHS = right-hand-side operator 
u  = Cartesian velocity component in the x direction 
v  = Cartesian velocity component in the y direction 
w  = Cartesian velocity component in the z direction 
Greek Symbols 
α  = angle of attack and constants of Runge-Kutta scheme 

t∆  = time step 
τ  = time 
ξ  = longitudinal direction in curvilinear coordinates 
η  = wall-normal direction in curvilinear coordinates 
ς  = azimuthal direction in curvilinear coordinates 
ρ  = air density 
δ  = standard 3-point central difference operator 
δ  = standard mid-point central difference operator 
Subscripts 
∞  = relative to non-disturbed flow 
, ,i j k  = relative to a generic point 

v  = relative to viscosity 
Superscripts 

l  = relative to stage of Runge-Kutta scheme 
n  = iteration 

Governing Equations 

It is assumed that the flows of interest can be represented by the 
Reynolds-averaged Navier-Stokes equations in three dimensions. 
These equations can be written in conservation-law form for a 
curvilinear coordinate system as 

 

( ) ( ) ( ) 0 ,Q
E E F F G Gv v v

∂ ∂ ∂ ∂

∂τ ∂ξ ∂η ∂ς
+ − + − + − =  (1) 

 
where Q is the vector of conserved variables, defined as 

 

[ ]1 , , , , .T
Q J u v w eρ ρ ρ ρ−
=  (2) 

 

In these equations, ρ  is the density, u , v  and w  are the 
Cartesian velocity components and e  is the total energy per unit of 
volume. The E , F , and G  are the inviscid flux vectors, and Ev , 
Fv , and Gv  are the viscous flux vectors. The complete expressions 
for the inviscid flux vectors can be found in Vieira et al. (1998), and 
expressions for the viscous Qv  flux vectors, as implemented here, 
can be found, for instance, in Antunes (2000). It is important to 
emphasize that, consistent with previous comments, the cross 
derivative terms were eliminated in the definition of the viscous flux 
vectors. Expressions for the Jacobian of the transformation, J , as 
well as for the various metric terms can be found in Vieira et al. 
(2000) and in Pulliam and Steger (1980), among other references. 
The pressure can be obtained from the equation of state for a perfect 
gas. A suitable nondimensionalization of the governing equations 
has been assumed in order to write Eq. (1). In particular, the values 
of flow properties are made dimensionless with respect to 
freestream quantities, as described in Pulliam and Steger (1980). 

The governing equations are discretized in a finite difference 
context on structured hexahedral meshes, which would conform to 
the bodies in the computational domain. Since a central difference 
spatial discretization method is being used, artificial dissipation 
terms must be added to the formulation in order to control nonlinear 
instabilities. The artificial dissipation terms used here are based on 
Turkel and Vatsa’s scalar model (Turkel and Vatsa, 1994). This 
model is nonlinear and non-isotropic, with the scaling of the 
artificial dissipation operator in each coordinate direction weighted 
by its own spectral radius of the corresponding flux Jacobian matrix. 
The residue operator is defined as being the evaluation of the 
discretized partial differential equation, or system of partial 
differential equations, and, in this way, it represents how well the 
evaluation of the discretized form of the equations is being satisfied 
by the current solution, in the present iteration level n. The artificial 
dissipation terms are added to the residue operator to maintain 
nonlinear stability. In the present implementation, the residue 
operator is defined as 

 

( ) ( ) ( )
( ) ( )
( ) ( )

1
, , , , , , , ,

1
, , , ,

1 ., , , ,

l
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 (3) 

 

Here, the δξ , δη  and δς  terms represent standard 3-point 

central difference operators in the ξ , η  and ς  directions, 

respectively. Similarly, δξ , δη  and δς  are the mid-point central 

difference operators. The artificial dissipation operators, 

1 2, ,di j k±  , 1 2,di j k± and , , 1 2di j k± , which appear from the 

application of the difference operators are defined precisely as 
described in Turkel and Vatsa’s (1994) model. 

The time march is performed based on a 5-stage, 2nd-order 
accurate, hybrid Runge-Kutta time-stepping scheme, 

 
(0) ,, , , ,

( 1)( ) (0) , 1,...,5 ,, , , , , ,
(5)1 ., , , ,

nQ Qi j k i j k
llQ Q RHS li j k i j k l i j k
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+ =

 (4) 
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Here, the lα constants are defined as α1=1/4, α2=1/6, α3=3/8, 

α4=1/2, α5=1. It should be emphasized that only the convective 
operator inside the RHS term is actually evaluated at every time 
step. The viscous flux vectors are only evaluated at the first stage of 
the Runge-Kutta time-stepping scheme. Moreover, the artificial 
dissipation terms are evaluated at alternate stages, i.e., at the odd 
stages of the time-march procedure. It can be shown that this 
provides enough damping to maintain nonlinear stability (Jameson, 
Schmidt and Turkel, 1981; Swanson and Radespiel, 1991), whereas 
it yields a more efficient numerical scheme. Since steady state 
solutions are the major interest of the present study, a variable time 
step convergence acceleration procedure has been implemented. 
Further details on the variable time step procedure implemented can 
be found, for instance, in Basso, Antunes and Azevedo (2000) and 
in Antunes (2000). 

Finally, turbulent flow simulations have used the Baldwin and 
Lomax (1978) algebraic eddy viscosity model, in its standard form, 
as described in the original paper by Baldwin and Lomax (1978). 
Since this model is well known and its expressions are widely 
available, its equations will not be included here. 

Results and Discussion 

Laminar Viscous Simulations 

The first set of results discussed in the paper considers viscous 
simulations over the VLS without the inclusion of a turbulence 
closure model. However, the Reynolds numbers of interest for 
actual VLS flows are very high and the flow is undoubtedly 
turbulent over the vast majority of the vehicle surface. Therefore, 
despite the title used for this section, the authors are not concerned 
with simulations, which are truly “laminar”, but with Navier-Stokes 
results without the inclusion of a turbulence model despite the high 
flow Reynolds numbers considered. Although under these 
conditions, the physical meaning of such flow simulation results is 
questionable, this approach has been followed due to two reasons. 
First and foremost, as the forthcoming discussion will show, such 
“laminar” viscous simulations already provide insight into important 
features of the flow over the complete VLS. Aside from this fact, 
this intermediate stage of the CFD code development should be seen 
as a necessary evolutionary step towards the complete flow 
simulation capability. 

The meshes used for the first viscous simulations of the flow 
over the complete VLS had 120 x 36 x 33 points in the ξ , η  and 
ς  directions, respectively, for each of the booster grids and 120 x 
65 x 33 points for the central body. This grid is referred here as the 
coarse grid. Throughout the present paper, ξ  denotes the vehicle 
longitudinal direction, η  is the wall-normal direction and ς  is the 
azimuthal direction. Furthermore, the grids for the individual 
components of the configuration were generated independently 
through algebraic grid generation methods. These grids have 
exponential stretching from the wall, with spacing growth rate of 
10%. The actual complete configuration is used in the simulations, 
namely, the central body and four boosters are included in the 
definition of the computational domain. In these simulations, the 
freestream Mach number is assumed to be M∞ = 2.0 and the angle of 
attack is zero. The Prandtl number is set to Pr = 0.72, and the 
Reynolds number is 10 million, based on the diameter of the central 
body of the vehicle. In order to facilitate the presentation of flow 
simulation results, Fig. 2 shows a schematic frontal view of the 
vehicle and it defines flow planes in which results are discussed 
here. 

 

 
Figure 2. Top view of complete VLS configuration indicating some of the 
planes in which vehicle results are presented. 

 
Figure 3 is a visualization of the Mach number contours in the 

longitudinal plane denominated “plane 1” in Fig. 2. The boundary 
layer thickening along the central body surface, in the region 
immediately upstream of the lateral boosters, can be clearly seen in 
Fig. 3. The thickening of the boundary layer is a result of the  
detached bow shock, ahead of the boosters, impingement on the 
central body surface. The information on the pressure rise due to 
shock impingement propagates upstream through the boundary layer 
and, eventually, causes flow separation upstream of the 
impingement point due to the weakening of the boundary layer 
momentum. Boundary layer separation, on the other hand, causes 
the creation of an oblique shock wave, which is not clearly seen in 
Fig. 3. This oblique shock wave is more readily seen on pressure  

 

 
Figure 3. Mach number contours on plane 1 (Fig. 2) for laminar flow 
simulations with the coarse grid (M∞ = 2, α = 0 deg., Re = 10 million). 

 
contour plots. It is important to point out that these flow features 
ahead of the booster nose caps are not present in the Euler 
simulations reported in Basso, Antunes and Azevedo (2000). This 
indicates that, even with coarse grids, the viscous solutions are 
providing flow structures, which are different from the ones seen in 
the Euler cases. 

Figure 4 presents the velocity vectors on a flow plane, which 
contains the central body axis and the axes of two boosters (plane 1 
in Fig. 2). In particular, Fig. 4 is showing the details of the flowfield 
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just upstream of the booster forward aerodynamic fairing. It should 
be emphasized that only velocity vectors corresponding to grid 
points in the central body mesh, in the cited plane, are represented in 
this figure. Velocity vectors associated with points in the booster 
grid were suppressed from the figure in order to allow for a better 
visualization of the flowfield in the region. Flow deviation  

 

 
Figure 4. Detail of the velocity vector plot around the booster nose cap for 
laminar simulations with the coarse grid (M∞ = 2, α = 0 deg., Re = 10 
million). 

 
due to the booster is clearly seen in this figure. Furthermore, one can 
also clearly see in the figure the recirculation region, which extends 
from approximately 2.5 booster diameters upstream of the booster 
nose until well within the conical booster section. The velocity 
profiles along a portion of this separation region seem also to 
indicate that there is even a secondary separation within the 
recirculation region. The streamline plot shown in Fig. 5 illustrates 
this last observation. 

 

 
Figure 5. Streamlines near the booster nose for coarse grid laminar 
simulations (M∞ = 2, α = 0 deg., Re = 10 million). 

 
Pressure coefficient distributions on plane 1, along the vehicle 

central body wall, are shown in Fig. 6. It presents a comparison of 
the current Navier-Stokes results without turbulence modeling with 
experimental data, and with the pressure coefficient distribution 
obtained from the inviscid calculations reported in Basso, Antunes 
and Azevedo (2000) for a finer grid. One can observe that, in the 
forward portion of the vehicle, the agreement between 
computational and experimental data is quite good, except for 
discrepancies, which can be observed in the boattail region. 
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Figure 6. Pressure coefficient distributions for plane 1 along central body 
wall for coarse grid laminar simulations (M∞ = 2, α = 0 deg., Re = 10 
million). 

 
Concerning the discrepancies observed in the boattail region, 

previous experience with axisymmetric calculations (Azevedo and 
Buonomo, 1999) has indicated that a very fine mesh is required to 
correctly capture the flow topology. Essentially, at supersonic 
freestream conditions, there is an oblique shock impinging on the 
boattail-afterbody cylinder intersection. This shock interacts with 
the body boundary layer, creating a region in which fairly complex 
flow phenomena are present and, hence, a very fine grid in the 
longitudinal direction is required for accurately capturing the flow 
physics. Such a fine grid in the boattail region was not used in the 
present case because the computational resources available would 
not allow for the needed refinement in this region, and there was an 
understanding that it would be more relevant, in the present case, to 
provide a better description of the region with strong interaction 
between central body and boosters. In any event, since the origin of 
the discrepancies observed in the boattail region are well understood 
and the emphasis here is in the flow near the boosters, the authors 
consider that further discussion of comparisons in the forward 
portion of the vehicle is beyond the scope of the present paper. 

A sudden increase in the pressure coefficient distribution is 
observed at x/L ≅ 0.35 for the computational solution. The increase 
in Cp is due to the oblique shock wave created by the separation 
region along the central body. The experimental data does not have 
such pressure coefficient increase, clearly indicating that the 
experimental measurements do not see an oblique shock wave at 
this region in the flow. This could be explained by the fact that, at 
Re = 10 million, the flow is turbulent. A turbulent boundary layer 
does not separate as easily due to an adverse pressure gradient as a 
laminar boundary layer. Hence, the flow separation upstream of the 
booster nose, which eventually is the originator of the oblique 
shock, can be simply a result of the lack of turbulence modeling 
under conditions in which the flow is actually turbulent. 

Further downstream, at x/L ≅ 0.50, the experimental 
measurements indicate a kink in the pressure coefficient 
distribution. This corresponds to the booster detached bow shock 
impingement on the central body. Clearly, the computational results 
do not display such effect due to the presence of the oblique shock 
wave upstream of the boosters. The position of the pressure peak at 
x/L ≅ 0.57 is correctly captured by the computation, although the 
magnitude of the pressure peak has a fairly significant error. There 
is a second pressure peak at x/L ≅ 0.61, which the computational 
results simply ignore. Downstream of this second pressure peak, 
there is a region with reasonably good agreement between 
experimental and computational data but, downstream of x/L ≅ 0.70, 
the discrepancies between computational and experimental results 
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again become significant. One should observe, however, that the 
computational mesh used in these simulations corresponds to the 
coarse grid used for the inviscid calculations reported in Basso, 
Antunes and Azevedo (2000). Hence, it is to be expected that mesh 
refinement should contribute to improvements in the correlation 
between computation and experiments. 

A refined mesh was generated with 220 x 50 x 67 grid points for 
the central body mesh and 200 x 40 x 33 points for each of the 
booster meshes. As before, these numbers refer to grid points in the 
ξ , η  and ς  directions, respectively, and the individual grids have 
a 10% exponential grid stretching in the wall-normal direction. This 
grid is referred to here as the fine grid. Moreover, this grid only 
contains half of the central body and two boosters, yielding a total of 
approximately 1.3 million grid points, which is pretty much in the 
upper limit for the computational resources available to the authors 
at the time. This grid implies in a factor of four increases in the 
azimuthal direction resolution of the central body grid and almost a 
factor of two increases in the longitudinal resolution of both central 
body and booster grids. Furthermore, since these launchers only fly 
at very low angles of attack, the consideration that the flow is 
symmetric about the pitching plane is not a severe restriction in the 
usefulness of the computations for design work. The same flight 
condition was considered for the simulations with the fine grid. 
Therefore, M∞ = 2.0, the angle of attack is zero, Pr = 0.72, and the 
Reynolds number is 10 million, based on the diameter of the central 
body of the vehicle. 

Figure 7 presents pressure contours on plane 1 (see Fig. 2) 
obtained for the simulation with the fine grid. This figure only 
shows the flowfield around the nose cap of the boosters. In this case, 
the oblique shock wave upstream of the boosters, due to the flow 
separation previously described, is clearly evident in the figure. 
Moreover, the detached shock in front of the boosters and its 
interaction with the oblique shock are also clearly seen in the 
pressure contours. The rapid expansion, which occurs as the flow 
passes over the booster cone-cylinder intersection, is also evident in 
Fig. 7. Hence, it is clear that the flow in this interaction region 
around the nose of the boosters is quite complex. 

Pressure coefficient distributions along the central body, and on 
plane 1 (see Fig. 2), are shown in Fig. 8. As before, this figure 
compares experimental and viscous computational results, and it 
also includes the inviscid results reported in Basso, Antunes and 
Azevedo (2000), for the corresponding grid. It is clear that mesh 
refinement has improved the correlation between the results along 
the boattail region in the forward portion of the vehicle.  

 

 
Figure 7. Dimensionless pressure contours along plane 1 for fine grid 
laminar simulations (M∞ = 2, α = 0 deg., Re = 10 million). 

However, the agreement is still not perfect in this region. The 
oblique shock wave due to flow separation ahead of the boosters is 
even more pronounced in this case, with a much better defined and 
stronger pressure jump at x/L ≅ 0.42. The position of the pressure 
peak at x/L ≅ 0.57 is again adequately captured by the calculation 
but, as before, the magnitude of the peak is still smaller than the 
experimental value. The difference in Cp peak magnitude is, 
however, smaller in this case than it was for the coarse grid results.  
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Figure 8. Pressure coefficient distributions for plane 1 along central body 
wall for fine grid laminar simulations (M∞ = 2, α = 0 deg., Re = 10 million). 

 
Moreover, as one can clearly see in Fig. 8, the simulation starts 

to capture the second pressure peak at x/L ≅ 0.61. Furthermore, the 
agreement between experimental and computational Cp 
distributions downstream of this second pressure peak is remarkably 
good throughout the remaining of the vehicle. It must be 
emphasized that the present computations do not represent the 
vehicle nozzle region and, hence, it is not possible to match the 
results downstream of the x/L ≅ 0.92 station. A comparison of the 
Euler calculations discussed in Basso, Antunes and Azevedo (2000) 
and the results in Fig. 8 indicate that the flow in the downstream 
sections of the vehicle include important viscous effects. Therefore, 
there would be no way of obtaining good agreement between 
experiments and computation without the inclusion of viscous terms 
in the formulation. 

Turbulent Viscous Simulations 

For the flight conditions here considered which essentially 
involve VLS flows with Reynolds numbers in the order of 107 based 
on the body diameter, flowfields are clearly turbulent. Therefore, the 
implementation of turbulence models in the code is a necessary step 
in order to provide an adequate representation of the flow. The long-
term objective of this work is to have a suite of models available in 
the code and let the user select the model that better suits his/her 
application. It is envisaged that, for the relevant flow conditions for 
the VLS, especially at angle of attack, a one-equation or a two-
equation eddy viscosity model will be necessary for a correct 
representation of the flowfields. As an initial step towards this goal, 
a simple algebraic model has been implemented in the code, 
represented by the algebraic Baldwin and Lomax (1978) model in 
its standard form. This section describes results obtained with this 
model. 
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The mesh used for the turbulent computations has 220 x 50 x 35 
points, in the ηξ ,  and ς  directions, respectively, for the central 
body grid and 180 x 40 x 33 points for each booster grid. As in the 
previous case, the pitch plane is assumed to be a symmetry plane in 
the flowfield and, hence, only half of the central body and two 
boosters are represented in the computational domain. The flight 
condition considered for these simulations is identical to the one 
considered in the previous cases. Moreover, here the turbulent 
Prandtl number was set to 0.9, which is consistent with other results 
reported in the literature (Pulliam and Steger, 1980). For these flow 
conditions and mesh, values of y+ for the first grid point off the wall 
in the range of 2 to 3 are obtained. Previous experience (Azevedo 
and Buonomo, 1999) indicates that such range of values of y+ is 
completely adequate for simulations with the Baldwin and Lomax 
model. 

Figure 9 presents the Mach number contours for this simulation 
in the plane containing the axes of the central body and two boosters 
(plane 1 in Fig. 2). An observation of Fig. 9 indicates that the 
flowfield solution in this case is not much different from that 
obtained for the laminar calculations with the fine grid. In particular, 
one can clearly see the flow separation ahead of the boosters, along 
the central body, and the oblique shock wave which is formed 
upstream of this separation region. Actually, the flow separation 
region seems to be even larger in this case and it clearly extends 
further upstream than in the laminar calculations. It must be 
emphasized that the implementation of the Baldwin and Lomax 
(1978) model has been validated in the work of Antunes (2000). 
Therefore, the model is being directly used in the present VLS 
simulations without any additional discussion regarding an 
assurance of its correct implementation. 

Figure 10 presents a comparison of pressure coefficient 
distributions along the central body for plane 1 (see Fig. 2). The 
curves shown in this figure include the experimental data, the 
turbulent computational results and the computational results 
without turbulence modeling obtained with the fine mesh. It is 
evident from the figure that the separation occurs further upstream 
in the turbulent simulation when compared to the previous solution. 
Furthermore, the agreement between computation and experiment,  
in the region downstream of the second pressure peak (x/L ≅ 0.61), 
is poorer for the turbulent simulations that it was for the calculations 
without turbulence modeling on the fine grid. The two grids are not 
identical, but they are sufficiently similar to rule out the possibility 
that the differences could be credited to the grid. Finally, Fig. 11 
presents the flow streamlines in the region around the booster nose 
cap for the turbulent simulation, and it shows details of the 
separated flow in this region. It is clear that the computations are 
indicating a fairly complex separated region, certainly including 
secondary separation within the original reversed flow bubble. It is, 
therefore, quite questionable whether the Baldwin and Lomax model 
would be able to truly represent such a physically complex 
separated boundary layer, if the computational results were an 
accurate representation of the experimentally observed flowfield. 
The experimental pressure distributions, however, show no evidence 
of a separation region in this portion of the vehicle at this flight 
condition. 

 

 
Figure 9. Mach number contours in the field (plane 1) for turbulent 
simulations (M∞ = 2, α = 0 deg., Re = 10 million). 

 
The initial expectation was that the application of a turbulence 

model could improve the correlation between numerical and 
experimental data, in comparison with the type of agreement 
obtained in the previous section in which no turbulence modeling 
was employed. In particular, there was expectation that the 
separation region upstream of the boosters would disappear and, 
hence, so would the oblique shock wave, which is formed due to the 
separation. Clearly, this is not what the present results have shown. 
Furthermore, it is well known that the Baldwin and Lomax model 
has a tendency to add more eddy viscosity than what would actually 
be the correct amount to represent the correct physical behavior of 
the boundary layer. Hence, this means that the model has a tendency 
of stabilizing boundary layers that, actually, should separate. This 
compounds even further the questions with regard to the present 
turbulent simulations. On the other hand, the Baldwin and Lomax 
algebraic model has obtained having in mind fairly simple boundary 
layer flows. Therefore, it should come as no surprise the fact that 
this model was not able to improve the representation of the 
complex flowfield around the boosters of the complete VLS 
configuration. The present simulations, actually, serve the role of 
highlighting the importance of having more advanced turbulence 
closure models available for handling the complex flowfields over 
the VLS (Bigarella, Basso and Azevedo, 2004). As previously 
stated, the long term objective is to have advanced one-equation or 
two-equation eddy viscosity models available in the code, but this 
subject is beyond the scope of the present effort. Finally, one should 
also observe that at least one very important conclusion, concerning 
high speed flows over the VLS, can be drawn from the present 
results. The very good agreement obtained for the pressure 
distributions between the experiment and the fine grid “laminar” 
simulation, downstream of x/L ≅ 0.61, is a very strong indicator that 
the flow in this region of very close proximity between central body 
and booster is dominated by viscous effects. 
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Figure 10. Comparison of pressure coefficient distributions along the 
central body wall for plane 1 (M∞ = 2, α = 0 deg., Re = 10 million). 

 
The fact that the comparison between experiment and computation 
becomes worse in this region with the inclusion of a simple 
turbulence model stresses this conclusion even further. In other 
words, the relevant mechanism that determines the flow in this 
region is associated with viscous effects and not with turbulent 
transport phenomena. Although the determination of the most 
relevant physical mechanism at play in the region of close proximity 
between the VLS central body and its boosters might seem to be a 
simple contribution, it must be said that it is a question that has 
concerned the CFD group at IAE for quite some time (see, for 
instance, Zdravistch and Azevedo, 1991).  

 

 
Figure 11. Detail of streamlines around the separation region for turbulent 
simulations (M∞ = 2, α = 0 deg., Re = 10 million). 

Concluding Remarks 

The paper describes viscous computations over the complete 
VLS vehicle. These calculations use a Chimera grid approach 
together with a finite difference numerical method to simulate 
supersonic flows over the complete VLS configuration including the 
central body and the strap-on boosters. Spatial discretization uses a 
central difference scheme plus added artificial dissipation terms. 
These are formed as a blend of second and fourth differences with 
an appropriate pressure switch, which detects the present of strong 
pressure gradients. Temporal discretization uses an explicit, 5-stage, 
2nd-order accurate Runge-Kutta time stepping scheme with a 
spatially variable time step option for convergence acceleration for 

steady state problems. Algebraic grids are generated for each body 
of the complete configuration and these are coupled together in a 
Chimera sense in order to generate the complete composite grid for 
the overall configuration. 

Despite the fact that Reynolds numbers of interest are of the 
order of 107, numerical results without turbulence modeling are 
presented for two different meshes for the sake of code development 
and to provide a broader assessment of the various physical aspects 
which could effect the complex flowfield over the vehicle. The first 
mesh has approximately 830,000 grid points and it envelops the 
complete vehicle, whereas the other has approximately 1.3 million 
grid points and treats the pitch plane as a symmetry plane. Results 
for the fine grid calculations show very good qualitative agreement 
with the experimental data for pressure coefficient distributions, 
except for the appearance of an oblique shock upstream of the 
booster nose cap region due to flow separation of the central body 
boundary layer. In particular, the quantitative agreement between 
experiments and fine grid computational results for pressure 
coefficient distributions is very good in the downstream region of 
the flow. Such an agreement demonstrates the need to include the 
viscous terms in order to correctly capture the phenomena present in 
the region of strong aerodynamic interaction between central body 
and boosters. Finally, results for turbulent simulations using the 
Baldwin and Lomax algebraic eddy viscosity model are presented. 
These results indicate the need of more advanced turbulence closure 
models in order to adequately describe the complexity of the present 
flow. 

Acknowledgments 

The present work was partially supported by Conselho Nacional 
de Desenvolvimento Científico e Tecnológico, CNPq, under the 
Integrated Project Research Grant No. 501200/2003-7. The authors 
are also indebted to Núcleo de Atendimento em Computação de 
Alto Desempenho, NACAD-COPPE/UFRJ, and to Centro Nacional 
de Supercomputação, CESUP/UFRGS, which have provided the 
computational resources used for the present simulations. 

References 
Antunes, A.P., 2000, “Simulation of Aerodynamic Flows Using Overset 

Multiblock Meshes,” Master Dissertation, Department of Aeronautical 
Engineering, Instituto Tecnológico de Aeronáutica, São José dos Campos, 
SP, Brazil, (in Portuguese, original title is “Simulação de Escoamentos 
Aerodinâmicos Utilizando Malhas de Blocos Múltiplos Sobrepostos”). 

Azevedo, J.L.F., and Buonomo, C.A., 1999, “Axisymmetric Turbulent 
Simulations of Launch Vehicle Forebody Flows,” AIAA Paper No. 99-3528, 
30th AIAA Fluid Dynamics Conference and Exhibit, Norfolk, VA. 

Baldwin, B.S., and Lomax, H. L., 1978, “Thin Layer Approximation and 
Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-257. 

Basso, E., Antunes, A..P., and Azevedo, J.L.F., 2000, “Three 
Dimensional Flow Simulations Over a Complete Satellite Launcher With a 
Cluster Configuration,” AIAA Paper No. 2000-4514, Proceedings of the 
18th AIAA Applied Aerodynamics Conference, Vol. 2, Denver, CO, pp. 
805-813. 

Bigarella, E.D.V., Basso, E., and Azevedo, J.L.F., 2004, “Centered and 
Upwind Multigrid Turbulent Flow Simulations with Applications to Launch 
Vehicles,” AIAA Paper No. 2004-5384, Proceedings of the 22nd AIAA 
Applied Aerodynamics Confernece and Exhibit, Providence, RI. 

Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions 
of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-
Stepping Schemes,” AIAA Paper No. 81-1259. 

Pulliam, T.H., and Steger, J.L., 1980, “Implicit Finite-Difference 
Simulations of Three-Dimensional Compressible Flow,” AIAA Journal, Vol. 
18, No. 2, pp. 159-167. 

Swanson, R.C., and Radespiel, R., 1991, “Cell Centered and Cell Vertex 
Multigrid Schemes for the Navier-Stokes Equations,” AIAA Journal, Vol. 
29, No. 5, pp. 697-703. 

Streamlines 



Three-Dimensional Viscous Flow Simulations over the … 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright © 2004 by ABCM   October-December 2004, Vol. XXVI, No. 4 / 445 

Turkel, E., and Vatsa, V.N., 1994, “Effect of Artificial Viscosity on 
Three-Dimensional Flow Solutions,” AIAA Journal, Vol. 32, No. 1, pp. 39-
45. 

Vieira, R., Azevedo, J.L.F., Fico, N.G.C.R., Jr., and Basso, E., 1998, 
“Three Dimensional Flow Simulation in the Test Section of a Slotted 
Transonic Wind Tunnel,” ICAS Paper No. 98-R.3.11, Proceeding of the 21st 
Congress of the International Council of the Aeronautical Sciences, 
Melbourne, Australia (publication in CD-ROM format without page 
numbering). 

Wang, Z.J., Buning, P., and Benek, J., 1995, “Critical Evaluation of 
Conservative and Non-Conservative Interface Treatment for Chimera 

Grids,” AIAA Paper No. 95-0077, 33rd AIAA Aerospace Sciences Meeting 
and Exhibit, Reno, NV. 

Wang, Z.J., and Yang, H.Q., 1994, “A Unified Conservative Zonal 
Interface Treatment for Arbitrarily Patched and Overlapped Grids,” AIAA 
Paper No. 94-0320, 32nd AIAA Aerospace Sciences Meeting and Exhibit, 
Reno, NV. 

Zdravistch, F., and Azevedo, J.L.F., 1991, “Simulation of the 
Interference Region on a Multiblody Satellite Launcher,” Proceedings of the 
11th ABCM Mechanical Engineering Conference – COBEM 91, Blue 
Volume, São Paulo, SP, pp. 205-208. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




