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A Hybrid Approach for Estimating the 
Drawbead Restraining Force in Sheet 
Metal Forming 
In order to achieve better part quality in sheet metal forming the rate of the material flow 
into the die cavity must be efficiently controlled. This control is obtained using a 
restraining force supplied either by the blankholder tool, drawbeads or both. When the 
restraining force required is too high, the use of drawbeads is necessary, although 
excessive blank deformation may be produced. Some other disadvantages such as 
adjustment difficulties during die try-outs to determine the actual Drawbead Restraining 
Force (DBRF) may also be encountered. One way to solve these problems and to reduce 
the number of die try-outs – which are very much time consuming – is to introduce/define 
accurate enough drawbead concepts. The present study will make use of a method that has 
been developed using the similitude approach in order to understand the influence of the 
most important parameters on DBRF and to establish a pre-estimate DBRF theory. Data 
bases have been developed throughout Explicit Dynamic Finite Element Method (EDFEM) 
based simulations. The results are compared with experimental databases provided by 
Nine (1978) and with the analytical model of Stoughton (1988) results. The average of 
absolute error with respect to experimental data bases was around 6% and, for the studied 
cases, the maximum discrepancy was found to be below 11%. For the analytical and 
experimental cases, the average of absolute error was approximately 5% and, for the 
studied cases, the maximum error was below 7%. In terms of precision, the predictions 
derived from this approach are adequate when compared with analytical and experimental 
results. For this reason, the approach has been validated and accepted as a contribution to 
STAMPACK®, a commercial explicit dynamic finite element based system for forming 
processes numerical simulation. 
Keywords: drawbead, restraining force, finite element method, sheet metal forming 
 
 
 
 
 

Introduction 
1Improvement in the quality of parts obtained in sheet metal 

forming depends on how much adequate is the control of the 
material flow rate into the die cavity. This control is achieved by a 
restraining force supplied either by the blankholder tool, drawbeads 
device or both. According to Tufekci et al. (1994), when the 
required restraining force is too high the use of drawbeads is 
necessary. However, when the sheet passes through them, excessive 
deformations may be produced. Some other disadvantages, such as 
difficulties of adjustment during die try-outs in order to encounter 
the actual Drawbead Restraining Force (DBRF) may also be 
encountered. There are different kinds of causes which arise from 
these difficulties, for example: great variety of drawbead 
geometries, wide range of materials grades and several processes 
variables. In order to solve these problems and to reduce the number 
of die try-outs, which are very much time consuming, precise 
drawbeads concepts are necessary. For this reason a study 
concerning the design of drawbeads is needed in order to determine 
with accuracy enough the actual magnitude of this force. 

A conventional drawbead is a device which has a semi-
cylindrical bead located over one binder face that fits into a die 
groove. The most widely used geometrical form of the drawbead 
cross section is circular, although rectangular, triangular, trapezoidal 
and unsymmetrical forms may also be found. In the current work, 
only the circular form is examined, (see Fig. 1), but this 
methodology can be easily extended to other geometries. 

During the last thirty years, several authors have conducted 
research to better understand the forming processes and the devices 
used in die design, such as the drawbeads. Analytical, numerical and 
semi-empirical approaches have been developed. The first analytical 
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approach was developed by Swift (1948). His work was carried out 
considering the bending and unbending succession when the sheet 
passes through the drawbeads. The material was assumed to be 
isotropic with linear strain-hardening and strain rate-independent 
behavior. According to Wang (1982), Swift’s results are only 
applicable to a single bead and, so, he proposed a model considering 
a material following a strain hardening power law and anisotropy 
for a circular cross section bead. Nine (1978) performed 
experiments to study the influence of the bending deformation and 
friction on DBRF. His work also considered the bending and 
unbending succession as the sheet passes through the drawbeads. 
Drawing and clamping load were measured for steel and aluminum. 
His experimental data were discussed from the viewpoint of the 
materials effects, which must be taken into account in a 
mathematical model for drawbead forces. In the present study, 
Nine’s results were used as a part of the validation. 

Levy (1983) and Levy (1985) developed a semi-empirical 
procedure to establish a closed formula for DBRF. In his equation, 
parameters of material properties and geometrical forms of the sheet 
and the drawbeads were considered. Using Levy’s model as a first 
approach, Stoughton (1988) developed an analytical formulation to 
predict the DBRF. Stoughton’s assumptions include Coulomb’s law 
for friction, Hill’s anisotropic yield criterion and rigid-plastic with 
rate-independent material behavior. The derivation of a closed 
formula was possible by integrating deformation work across sheet 
thickness and along the full extension of the drawbead. His model is 
applicable to circular cross section beads, but also has potential use 
for other geometrical forms. 
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Figure 1. Drawbead stamping process for a circular cross section bead. 

 
Cao and Teodosiu (1992), Chabrand and Dubois (1992) and 

Chabrand et al. (1992) developed models in FE to study the 
dynamic contact problem involving friction between the drawbeads 
and the sheet. Using 2D simulations, Carleer et al. (1995) 
established an approach by which the distributions of DBRF of the 
sheet are initially curve-fitted as a function of displacement so that 
these functions are applied as boundary conditions to produce 
similar effects in 3D modeling. This approach has been named the 
“equivalent drawbead method”. 

Recently, there has been growing emphasis on Finite Element 
(FE) modeling in sheet metal forming. We have no doubt as to the 
potential of the numerical techniques. However, the three-
dimensional (3D) FE simulation of complex parts forming is 
expensive in terms of computation. Thus, research aiming to find 
solutions for this problem and reducing these limitations to a more 
acceptable level are needed. In order to produce these results it will 
be necessary to reduce the required memory size and the time spent 
on each FE forming simulation. It is for this reason that two-
dimensional (2D) FE approaches to simulate the drawbeads have 
been performed.  

Nowadays, in practice there are industry problems with some 
boundary conditions or parameters range out of the approach the 
existent analytical models may offer. Therefore, this study was 
carried out aiming: to understand the influence of the most 
important parameters describing the DBRF behavior and to 
elaborate an analytical expression to pre-estimate the constraining 
force in a form more suitable for use in the implementation of a 
computer program.   

This expression takes into account relevant parameters which 
can be divided into three main groups: geometry, material and 
processes parameters.  

To this end, a hybrid approach has been formulated using a 
similitude approach (see Section 2 of this article) with data bases 
developed throughout explicit dynamic FE method based 
simulations. This procedure has been adopted after analyzing the 
agreement between the 2D FE drawbead simulations and Nine’s 
(1978) experimental results.  

Nomenclature 

a’  = element displacements 
b  = the number of considered basic dimensions 
B’  = bending matrix 
C  = constant value to be determined 
c  = clearance 
D̂   = strength rate matrix of the flow model 
E  = Young Modulus 
F  = general predictive equation 
F  = component functions 
H  = bead penetration 
K  = constant hardening 
L  = length 
M  = mass matrix of the structure 

 M  = mass associated with each point 

n  = the total number of quantities involved  
Rb  = bead radius 
Sy  = conventional elastic limit 
t  = sheet thickness  
t  = time 
d( t )&  = velocities vector 

d( t )&&  = acceleration vector 
p[ d( t ),d( t )]&  = internal forces 
f [ d( t )]  = external forces 
Cr&   = damping component 
d&    = nodal translation velocities vector 

d&&    = nodal translation accelerations vector 
Greek Symbols 

crtΔ  = critical time 

tΔ   = time step employed in the integration 

maxω  = maximum angular frequency 

π  = Pi term 
μ  = friction coefficient 
Subscripts 
S  the number of Pi terms 
cr  critical 
max maximum 
b  bead 

Prediction Equations Using Similitude  

The theory of similitude may be developed by dimensional 
analysis which involves consideration of the dimensions of the 
examined phenomenon. According to this theory, special attention is 
focused on the conditions that would permit the behavior of two 
separated physical systems to be treated similarly.  

Accurate prediction equations may be established when the 
dimensional analysis is combined with experimental procedures. 
Aiming to develop a general prediction equation (GPE), a 
combination of the relations corresponding to each of the 
dimensionless groups may be tried as products or sums of 
expressions, named prediction equations. Based on dimensional 
analysis, it is possible to formulate an equation that involves an 
unknown function of dimensionless groups, which are known as Pi 
terms and may be written, generically, as follows: 

 

1 2 3 4π π π π π= SF( , , ,..., )  (1) 
 

being s the number of dimensionless groups involved in the 
phenomenon and which may be obtained on the basis of the 
Buckingham Pi Theorem, as described by Murphy (1950). All Pi 
terms used in this paper will be described nearly. 

The Buckingham Pi Theorem 

The Buckingham Pi Theorem states that “the number of 
dimensionless and independent quantities required to express a 
relationship among the variables in any phenomenon is equal to the 
number of  quantities involved minus the number of dimensions by 
which those quantities may be measured”, that is: 

 
s n b= −  (2) 
 

being s the number of Pi (π) terms, n the total number of quantities 
involved and b the number of considered basic dimensions (i.e. each 
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quantity from an expression may be evaluated in terms of the 
dimensions F, L, and T, representing Force, Length and Time, 
respectively). 

Let us now assume that if there are eight quantities and three 
dimensions involved, five Pi terms would be required, in which case 
we may write: 

 
F( , , , )π π π π π=1 2 3 4 5  (3) 

 
(see details in Murphy (1950)). It must be emphasized that the only 
restriction related to the Pi terms, according to Buckingham Pi 
Theorem, is that they must be independent and dimensionless. 

Fitting Functions  

The type of function which most adequately fits the 
phenomenon is a priori unknown. Therefore, this function must be 
established before formulating the general prediction equation 
(GPE). An analysis of the databases must be conducted by the 
researcher in order to determine the nature of the most suitable 
function. In order to determine this function, the dimensionless 
groups may be arranged so that all Pi terms remain constant except 
the one under evaluation. This procedure may be standardized and 
applied to each of the Pi terms. Thus, the relations identified for 
individual Pi terms may be combined in a general equation which 
represents the phenomenon. Frequently, this combination is not 
simple, although acceptable results may be obtained once the 
appropriate configuration has been established. 

Combining the Functions  

In order to develop the GPE, a combination of the relations 
corresponding to each of the Pi terms and π1 may be tried as 
products or sums of expressions, according Murphy (1950). At this 
stage, we will explain only the necessary and/or sufficient 
conditions needed to establish this combination. 

Hypothetically, when there are three Pi terms involved in the 
description of a certain phenomenon, the function may be written as 
follows: 

 
F( , )π π π=1 2 3   (4) 

 
Experiments – or simulations – would be performed varying   

π2  and maintaining π3 constant, in which case an initial relationship 
between π1 and π2 could be obtained, as follows: 

 

( ) f ( , )π π π= 31 1 23
 (5) 

 
where the bar identifies a constant value that the researcher must 
define.  

This procedure may also be standardized and applied to each of 
the Pi terms. Thus, another set of experiments would be performed – 
this time by keeping π2  and varying π 3 – for the second relationship 
to be established: 

 
( ) f ( , )π π π= 21 2 32

 (6) 
 
These types of functions will be called component equations and 

may be combined by multiplication: 
 

C( ) ( )π π π=1 1 13 2
 (7) 

 
where C is a constant value to be determined. 

In order to find the GPE, a multiplicative scheme may be 
assumed, in which case the component equations may be combined 
as follows: 

 
F( , ) f ( , ) f ( , )π π π π π π= 3 22 3 1 2 2 3   (8) 
 
If this is assumed to be true, then the first set of tests, with π3 

constant, may be obtained as follows: 
 

)()f(f)F( 32232132 ππππππ ,,, =   (8a) 
 
in which case the following may be written:  

 

)(f
)F(

)(f
322

32
321 ππ

ππ
ππ

,
,

, =
  (8b) 

 
Performing the second set of tests with π2 kept constant in Eq. (8), 

we have, similarly: 
 

)(f
)F(

)(f
321

32
322 ππ

ππ
ππ

,
,

, =
  (8c) 

 
Eq. (8b) and (8c) are substituted into Eq. (8) such as: 
 

F( , )F( , )F( , )
F( , )

π π π π
π π

π π
= 3 22 3

2 3
2 3   (8d) 

 
Equation (8d) gives now the C value as )F( 32 ,1 ππ  to be used 

in Eq. (7) and also demonstrates that the two component equations 
must have the same form, according to Murphy (1950). 

A validation procedure must be applied to the component 
equations, using a new data set. The same procedure must be 
repeated for all Pi terms in order to verify whether the general 
equation can be obtained as a product of the component equations. 
The following equation is therefore proposed: 

 

F( , ) F( , )
F( , ) F( , )

π π π π
π π π π

=2 23 3

2 3 2 3   (9) 
 
where the double bar indicates that a new set of data was used in 

the validation procedure with another constant value for π 2 = 2π .  
Regardless the number of Pi terms this approach may be applied 

to phenomena involving more than three Pi terms, as discussed 
above. 

It may be demonstrated that, if the component equations are 
combined by multiplying, the general form for the GPE, according 
to Murphy (1950), will be: 

 

S S S

S

S
S

F( , , ,..., )F( , , ,..., )F( , , ,..., )...

F( , , ,..., )

[F( , , ,..., )]

π π π π π π π π π π π π

π π π π
π

π π π π −
=

3 4 2 4 2 32 3 4

2 3 4

2 3 4
1 2

 (10) 
 

where 2π , as well as the other pi terms kept constants, must be the 
same in each component group of data.  

When the validation procedure is applied to each component 
equation using the new set of data, the original function may be 
obtained sequentially, forming a series of component equations 
organized in a multiplicative form. 
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The Explicit Solution in FE Simulations 

The general dynamic equation which describes the problem 
depicted in Fig. 1 may be written as: 

 
M .d( t ) p[ d( t ),d( t )] f [ d( t )]+ =&& &  (11) 
 

where M is the mass matrix of the structure, d(t),  d( t )&  and d( t )&&  are 
displacements, velocities and acceleration vectors, respectively; 
p[ d( t ),d( t )]&  represents the internal forces and f [ d( t )]  the 

external ones. 
The differential Eq. (11) may be solved using implicit or explicit 

methods. The implicit solution, developed as an equilibrium 
problem, has often a lower computational time cost compared with 
the explicit one. However, in many cases when the objective is to 
verify the possibility of wrinkles arising and the historical 
information output, the explicit solution may be a more suitable 
option in sheet metal forming. 

Memory requirements for both methods – implicit and explicit – 
are different: the explicit solution requires less than the implicit 
solution, according to NAFEMS (1992). 

However, in the explicit solution case, the problem is not 
approached as an equilibrium problem. The configuration of the 
structure at the time 

n n nt t t+ += + Δ1 1
 is determined from the known 

geometry of step n, using finite differences based time integration 
algorithm. 

Explicit time integration of the Eq. (11) requires a critical time 
step to be respected when deforming the FEM mesh. According the 
STAMPACK® Theory Manual (2003), an expression used to 
estimate the critical time value is provided by: 

 
2t t

ω
Δ ≤ Δ =

max
cr

  (12) 

 
where 

maxω is the maximum angular frequency of a discrete problem 
and 

crtΔ  is the critical time. The safety coefficient applied to an 
estimating realized over the natural frequency is approximately 
25%, according to the same reference. tΔ  is the time step employed 
in the integration of the dynamic equation and n is the number of 
steps used in this procedure. To illustrate a hypothetical case, an 
equation that describes a certain nodal translation may be obtained 
integrating the following expressions: 

Step one: 
 

n n n n
1d = (f(d,t) - p(d,d) -Cr )
M

&& & &  (13) 

 
Step two: 
 

1 1 1
2 2

1 . .( )
2 n n nn n

d d d t t−
+ −

= + Δ + Δ& & &&  (14) 

 
Step three: 
 

n+1 n 1 nn+
2

d = d +d .Δt&  (15) 

 
where d&  is the nodal translation velocities vector, d&&  is the nodal 
translation accelerations vector and M is the mass associated with 
each point. The term Cr&  represents the damping component. 

 

Methodology  

The principal advantage of dimensionless analysis is related to 
the reduction in the number of variables that influence the 
phenomenon. The key issue is to arrange the parameters in 
appropriate, dimensionless groups. As explained above, different 
sets of data (from every Pi term) are necessary to describe this 
process.  

In previous studies, similitude was calculated from databases 
developed using experimental procedures. However, in the present 
research, not only experimental databases, but also numerical 
databases have been used to elaborate each component equation, 
according to either an exponential or a potential function. The 
experimental databases used by Nine (1978) were necessary to be 
referred during the final model validation.  

Methods were designed with the objective of taking advantage 
of the promising results obtained using a 2D FEM based code to 
estimate the DBRF. At the same time, this approach will be used to 
eliminate the principal disadvantage of the explicit solution: the high 
computational time spent in order to achieve accurate simulations. 
For this purpose, an equation that estimates the DBRF is needed. 
This is going to be furthermore explained. 

Modeling the Problem 

When a sheet is subjected to the force of the drawbead, a 
complex combination of geometrical and material factors arises 
from the deformation forces. Its deformation is complex because the 
bending of the sheet is inverted four times at punching. Tensile and 
compressive strains occur, simultaneously, on both sides of the 
sheet, varying from zero at the neutral axis, to maximum values on 
the sheet surface. One of the factors which affect the value of these 
forces is the magnitude of the local strain, Nine (1978). This is 
determined by the geometry of the drawbeads and the thickness of 
the sheet metal, (see Fig. 2). 

 

 
Figure 2. The FE model of circular drawbeads. 

 
The deformation forces are also affected by strain hardening, 

represented by a constitutive equation. Cyclical strain is 
considerably different from unidirectional increasing strain 
hardening. Clearance between the blankholder and the drawbeads 
has an important influence on the observed bending radius. If the 
observed radius is greater than that used in the reference shape, the 
bending strain will be less than calculated. It must be remembered 
that the magnitude of the plastic strain compared to elastic strain 
will determine the plasticity assumption, that is, when the 
phenomenon is inside the elastic zone, the small strain hypothesis 
can be assumed. 

Finally, the strain state may influence the strain hardening. 
Two FEM models have been designed and their results compared 
with those obtained from experimental data in order to examine in 
detail each one of these parameters and to measure how important 
they are on the DBRF calculation. This will be explained in the 
following section. 
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Finite Element Models for Achieving Simulation Databases 

In order to calculate the most effective DBRF, two different 2D 
FE models have been designed. In the first case, as shown in Fig. 3, 
a sheet has been subjected to a circular drawbead between the upper 
binder and the die. 

Figure 3 also demonstrates the blank holding force (BHF) 
direction, the punch stroke direction and the bead that fits into the 
die groove. 

In order to verify the FE model response to the numerical 
parameters, studies about the number of elements was carried out. 
After this study, its mesh was structured with 240 quadrilateral 
elements, three of them along the sheet thickness. 

 

 
Figure 3. Model 1 with suitable mesh for a circular drawbead. 

 
Other numerical parameters, as critical time and damping 

coefficient, were also investigated during the FE model adjustment, 
with respect to the experimental data base. The optimum values 
encountered for them were equal to 0.00010 s and 5, respectively. 
See Duarte (2007), for more details. 

The second model has been designed similarly to the first one, 
but without the drawbead, as shown in Fig. 4. The aim was to 
calculate only the contribution of the drawbead to the DBRF, 
neglecting the friction effect along the whole of its extension. This 
contribution is simulated in Model 2 and, subsequently, subtracted 
from the DBRF calculated in Model 1. 

 

 
Figure 4. Model 2 with suitable mesh without the drawbead. 

 
3-D FE simulations were also used in order to perform the 

adjustments of the FE model. At this stage, the validations were 
carried out using a new element named Basic Shell Triangle (BST), 
as depicted in Fig. 5. It was developed by Oñate and Zienkiewicz 
(1983) in order to improve its performance in terms of 
computational cost.  For more details, see also Oñate (1997).  

The BST formulation allows easily computational 
implementation, because only translations associated to each node 
are considered in the mass matrix. For this new formulation, the 
local velocities vector can be expressed as following: 

 

aB

yx

y

x

′′=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=′

′′

′

′

γ

ε
ε

ε

  (16) 
 

where B’ is the bending matrix; the nodal labels vector a’ brings the 
element displacements, as shown in Fig. 5. Using the virtual 
velocities principle, it was possible to find the local element 
stiffness matrix, as shown in Eq. (17): 

∫ ′′=′
(e)A

T dABD̂BK
  (17) 

 
where D̂  is the strength rate matrix of the flow model and B’ is the 
bending matrix, according to Oñate (1995). 
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Figure 5. Basic Triangle Shell (BST) element. 

 
However, in the 2D FEM simulations of this research for 

achieving the numerical databases, the quadrilateral element used is 
a classic standard beam element. It was used to simulate the 
influence of the main parameters on the DBRF. The 2D model used 
to carry out these simulations is depicted in Fig. 6: 

 

 
Figure 6. Details of Model 1 designed with quadrilateral elements of  
STAMPACK®. 

 
In order to define the shape functions of this quadrilateral 

element – see Fig. 7 – it is necessary to use the beam formulation for 
the analysis of thin sheet metal forming, as described in details in 
Zienkiewicz (2004). 

 

 
Figure 7. Quadrilateral sheet 2D element. 

 
Table 1 shows the principal values of the parameters used in 

each simulation and the assumptions for the material properties. The 
parameters described in this table are equal to the values used by 
Nine (1978) in order to acquire the experimental data. 
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Table 1. Assumptions for material properties. 

 
 
After validation procedures, the magnitude of the BHF has been 

obtained. This calculation included the examination of relative 
thickness recommended and a perfect fit of the upper bead, without 
clearances from the die, for both materials. The value obtained was 
approximately 25 kN.  

The shoulders, the bead and the die radius were designed with 
values equal to 4.75 mm. The simulated values for stroke and 
velocity of the punch were 38 mm and 85 mm/s, respectively. This 
punch stroke was carefully calculated in order to ensure that a sheet 
element would pass along the full extension of the drawbead and 
simulate the complete process of bending, sliding and unbending the 
sheet. 

Development of the Predictive General Equation (PGE) 

To perform the PGE building process, twelve independent 
quantities were chosen to express the relation among nine 
dimensionless groups, as described in Section 2.1. Both of them 
(BHF and DBRF) are shown in Fig. 1. The remaining geometrical 
forms are available in Fig. 2 as follows: sheet thickness (t), die 
radius (Rd), bead radius (Rb), clearance (c) and bead penetration (h). 
The material properties are taken into account by choosing those 
parameters assigned: Young Modulus (E), Conventional elastic limit 
(Sy), isotropic hardening constant (K) and isotropic hardening 
exponent (n), as well as the friction coefficient (μ). After the 
selection of those parameters which had the most influence on the 
DBRF, nine Pi terms were elaborated so that the Pi theorem 
requirements were satisfied.  

In order to reduce the number of necessary phenomenon 
observations the study variables were arranged in dimensionless 
groups. However, at least seven data points were identified for each 
pi term from the FE simulations. The value of each parameter was 
stipulated within a range determined according to the most usual 
values used in practical cases. π = DBRF/BHF, which is the ratio of 
restraining force to the blank holding force. This pi term is the 
dependent variable in the next relationship which involves the 
remaining pi terms: 

 
π π π π π π π π π=1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9. ( ). ( ). ( ). ( ). ( ) ( ). ( ). ( )C f f f f f f f f  (18) 
 
In Eq. (18), fi , i = 2, 3, ... , 9, are the functions used in fitting 

the data achieved from FE simulations. The other pi terms are 
defined as follows: π2 = t/Rb  is the ratio of sheet thickness (t) to 
the bead radius (Rb), both in mm; π3 = μ is the friction coefficient 
pi term; π4 = n is the exponent hardening coefficient; π5 = E/K is 

the ratio of Young Modulus (E) to constant hardening (K), both in 
MPa; π6 = Sy/K correlates the conventional elastic limit (Sy) and the 
constant hardening (K), both in MPa; π7 = h/Rb is the ratio of bead 
height (h) and bead radius (Rb), both in mm; π8 = c/Rb correlates the 
clearance (c) and the bead radius (Rb), in mm; π9 = Rd/Rb is the ratio 
of  the die radius (Rd) to the bead radius (Rb), both in mm. 

According Murphy (1950), the constant C for nine pi terms may 
be written as: 

 
1C

F π π π π
=

⎡ ⎤⎣ ⎦
7

2 3 4 9( , , ,..., )

  (19) 

 
Proceeding with the calculations, the component equations must 

be obtained. As described above, the contribution of each parameter 
for the DBRF must be evaluated. This process has to be developed 
by fitting a function to the database developed based on FE 
simulations. At least, seven points for each Pi term have been 
simulated.  

To ensure that only the contribution of the parameter under 
investigation was being evaluated, all simulations were conducted 
holding the remaining groups as dimensionless constants with pre 
estimated values. The chosen functions for fitting the databases 
were either the potential type as π π=1 1

2.( )i
cc , or the exponential 

type as π
π =

( )4
1 3

.. c ic e . It must be remembered that these functions 
have been generated based on a multiplicative approach and for this 
reason it was advisable to keep them of the same nature, in order to 
satisfy the test outlined above. Before this procedure, however, 
component equations must be previously calculated. These fitted 
functions with their correlations for eight pairs of dimensionless 
groups are depicted in Figs. 8 to 15. 

Regarding the applicability of the GPE obtained in this research, 
there are some limits to be observed in its employment: thin plates, 
where 0,50 2,00≤ ≤t  [mm] for the sheet thickness usually 
employed in stamping processes. In addition, predictions of GPE are 
more precise when made within the following parameters range: 
4,00 12,00h≤ ≤  [mm] for height bead, 0,00 1,50≤ ≤c  [mm] for 
clearance, 75 275E≤ ≤  [GPa] for Young Modulus, 300 700K≤ ≤  
[MPa] for hardening constant and 75 650yS≤ ≤   [MPa] for the 

conventional elastic limit. These parameters range have been chosen 
according to investigations about their usual values in sheet metal 
forming. 

 

 
Figure 8. Thickness component equation. 
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Figure 9. Friction component equation. 

 

 
Figure 10. Hardening coefficient component equation. 

 

 
Figure 11. Young modulus component equation. 

 

 
Figure 12. Conventional elastic limit component equation. 

 
Figure 13. Bead penetration component equation. 

 

 
Figure 14. Clearance component equation. 

 

 
Figure 15. Radii component equation. 

 
Based on the proposed approach, it was possible to find an 

expression in a closed form to estimate the DBRF. Obviously, the 
precision of the results depends on the accuracy of databases 
achieved from the simulations. This accuracy also depends on the 
computational effort spent on each simulation. Within certain limits, 
it is possible to build a closed formula with a high level of 
efficiency. For this reason, consideration of cost, in terms of time, 
must be taken into account by the user of this methodology. 

 
 
 



A Hybrid Approach for Estimating the Drawbead Restraining Force in Sheet Metal Forming 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM July-September 2010, Vol. XXXII, No. 3 / 289 

Results and Discussion  

In the present study, the GPE obtained by combining the best 
correlation component equations as a product has the following 
form:  

 
52

b 3 4

Sy 7 mb6 8 9K
b b

t bb
R b μ b n

2 3 4 5

b Rcb b
R R

6 7 8 9
b

EDBRF C  BHF a e   a e   a e   a   
K

h  a e   a   a e   a e
R

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟ ⋅ ⋅⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

   (20) 

 
By using the numerical, geometrical and material properties 

parameters described in the previous sections, a closed equation was 
derived. It can be written using Eq. (20) and assigning to it ai and bi 
constant values obtained from the component equations, in Figs. 8 
to 15, which are:  

 

4 6 82

2 4 6 8

3 5 7 9

3 5 7 9

a =1,6109 a =0,9344 a =1,2534a =0,6347
b = 3,6628 b = -1,298 b =0,5165 b = -0,5633
a =1,0345 a =0,8947 a =0,9122 a = 2,8409
b =1,2362 b =0,0466 b =0,4610 b = -0,9286  (21) 
 
Subsequently, the magnitude of C must be evaluated. Using the 

conditions stipulated in this study, it was found that C is equal to 
1.1738, thus concluding the entire process of obtaining the GPE. In 
practice, the final objective of the approach here applied was to 
derive optimum values for the constants C, ai and bi, in Eq. (20). 

Testing with Experimental Data Bases  

In addition to the procedures of validation and adjustment of 
the FE model, some tests were performed with the GPE obtained 
in order to investigate accuracy of its results. First, a comparison 
with experimental databases from Nine (1978) was examined. 
Table 2 brings out the comparison between Nine's results and the 
predictions evaluated with this current approach and their 
associated percentile errors. 

 

Table 2. Tests with experimental databases of Nine (1978). 

 
 

Table 3 shows the main parameters used in each experiment by 
Nine (1978). All experiments above listed were carried out with 
clearance equal to zero. For more details about methodology used in 
those experiments, see Nine (1978). 

 

Table 3. Material, geometrical and process parameters from experimental 
databases of Nine (1978). 

 
 
It is possible to be noted also that the module of average error 

was about 6% and, for those cases studied, the greater value of 
every error was never superior to 11%. From the view point of this 
approach, this accuracy would be improved if simulations used to fit 
the component equations were performed with more expensive 
computational costs. 

 

Testing with an Analytical Solution 

Using Levy’s model as a first approach (Levy (1983); Levy 
(1985)), Stoughton (1988) has developed an analytical model to pre-
estimate the DBRF. The basic idea from his model was to integrate 
the deformation work through the sheet thickness and across the 
drawbead geometry, based on the virtual work principle. 

The main characteristics of the Stoughton model are: the use of 
the effective bending radius of sheet in order to get more accurate 
results to shallow penetrations; formulation in closed form with no 
iterative calculation requirements. The DBRF values were also 
evaluated using Stoughton and the GPE obtained in the present 
study and the results obtained with the both theories were compared. 
A typical case with a circular drawbead, as shown in Fig. 2, is 
studied with five different characteristics, that is, E = 210 GPa, 
average anisotropy, r = 1.6, friction coefficient, μ, sheet thickness, t. 
Other data are available in Table 4 and in Nine (1978): 
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Table 4. Parameters for five drawbeads. [Data available in Guo et al. 
(2000)]. 

 
Using the data from Table 4 and those ones described in Table 

5, predictions for the DBRF were evaluated by using Stoughton and 
the GPE obtained in this study. 

 

Table 5. A comparison with Stoughton and Nine's results. [Data available 
in Guo et al. (2000)]. 

 
 
It was possible to verify that the predictions made with this 

approach are very precise when compared with analytical and 
experimental results.  

It was also possible to note that the module of average error was 
about 5% and, for the five cases studied, the maximum error was 
about 7%. These results are plotted in Fig. 16, to better 
visualization. 

 

 
Figure 16. Comparison with analytical and experimental results available 
in Guo et al. (2000). 

Conclusions 

Two FEM models were designed with drawbead and without 
drawbead to simulate a sheet metal forming process considering the 
contributions of eight dimensionless groups on the DBRF – 
drawbead restraining force. In each case a function was fitted and 
used as a component equation for the methodology proposed: use of 
similitude in engineering with FEM based simulation data bases to 
determine a formulation in a closed form, in order to predict the 
DBRF. 

Regarding the applicability of the GPE obtained in this research, 
there are some limits to be observed, that is: thin plates, where 
0,50 2,00≤ ≤t  [mm] for the sheet thickness. In addition, predictions 
of GPE are more precise when made within the following 
parameters range: 4,00 12,00h≤ ≤  [mm] for height bead, 
0,00 1,50≤ ≤c  [mm] for clearance, 75 275E≤ ≤  [GPa] for Young 
Modulus, 300 700K≤ ≤  [MPa] for hardening constant and 
75 650yS≤ ≤  [MPa] for the conventional elastic limit. 

Predictions made with the General Prediction Equation (GPE) 
developed in this study were contrasted to 2D FE simulations 
carried out with STAMPACK®, with experimental data bases of 
Nine (1978) and with the analytical model of Stoughton (1988). 
The average of absolute error with respect to experimental data 
bases was about 6% and, for those cases studied, the maximum 
discrepancy was found to be less than 11%. For analytical and 
experimental investigations, the average of absolute error was 
about 5% and, for the five cases studied, the maximum error was 
about 7%.  

Predictions of GPE, as it was developed in this study and within 
its applicability, may be considered accurate because the maximum 
error for these tests has been found to be less than 11% and the 
average of the absolute error was about 6%. 

A program in FORTRAN® 90 was developed in order to 
determine Eq. (20) by calculating the constants C, ai and bi using the 
methodology described above. Thus, Eq. (20) may be optimized in 
the future by achieving data from simulations with improved 
accuracy. 

The methodology developed in this research, should permit 
formulation in a closed form using data obtained from simulations 
for drawbeads with other geometrical forms. This may be 
accomplished in the near future. 
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