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In this paper, the dynamic simulation of constrained mechanical systems that are
interconnected of rigid bodies is studied using projection recursive algorithm. The method

uses the concepts of linear and angular momentums to generate the rigid body equations
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of motion in terms of the Cartesian coordinates of a dynamically
system of particles, without introducing any rotational coordinates and the corresponding
rotational transformation matrix. Closed-chain system is transformed to open-chain by

equivalent constrained

cutting suitable kinematical joints and introducing cut-joint constraints. For the resulting
open-chain system, the equations of motion are generated recursively along the serial

chains.

An example is chosen to demonstrate the generality and simplicity of the

devel oped formulation.
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Introduction

There are different formulations for the dynamiclgsis of
spatial mechanisms which vary in the system of dioates used
and in the way they introduce kinematical constraguations
(Denavit and Hartenberg, 1955, Sheth and Uickef21@rlandea et
al., 1977, Nikravesh, 1988, and De Jalon, 19949chEormulation
has its own advantages and disadvantages deperatinghe
application and the needs. Some formulations eveldped using a
two-step transformation which leads to a simple @lliced system
of equations. One method (Kim and Vanderploeg, 618&d
Nikravesh and Gim, 1989) and uses initially thecddlite coordinate
formulation where the location of each rigid bodythe system is
described in terms of a set of translational andatianal
coordinates. Then, the equations of motion aresfoamed to a
reduced set in terms of the relative joint variablé&nother method
uses initially the point coordinate formulation iwhich a
dynamically equivalent constrained system of plasiceplaces the
rigid bodies (De Jalon et al., 1986, Attia, 199%rblvesh and Attia,
1994, and Attia, 1998). The global motion of thenstrained
system of particles together with the constraimtsdsed upon them
represent both the translational and rotationalionetof the rigid
body. The external forces and couples acting an libdy are
distributed over the system of particles. Therg #guations of
motion which are expressed in terms of the Canesierdinates of
the particles are re-derived in terms of the reéafobint variables.
The main disadvantage of this two-step transfownatis the
necessity to transform at every time step fromjdive variables to
the original system which is time consuming.

A recursive dynamical formulation for the dynamitabysis of
planar mechanisms is presented by Attia (2004)e ddncepts of
linear and angular momentum are used to write tbel body
dynamical equations without the need to distribtite external
forces and couples over the particles. The metlandbe applied to
recursively generate the equations of motion f@moand/or closed-
chain systems.

In this paper, the dynamic simulation of constrdingechanical
systems that are interconnected of rigid bodiestiglied using
projection recursive algorithm. The method is baspon the idea
of replacing the rigid body by its dynamically egient
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constrained system of particles discussed in (DenJet al., 1986,
Attia, 1993, Nikravesh and Attia, 1994, Attia, 1998d Attia, 2004)
with essential modifications and improvements. Toecepts of the
linear and angular momentums are used to formtiteteigid body
dynamical equations. However, they are expressddrims of the
rectangular Cartesian coordinates of the equivatsristrained
system of particles. This groups the advantagethefautomatic
elimination of the unknown internal forces as inwten-Euler
formulation and results in a reduced system ofdéffitial-algebraic
equations. Some useful geometrical relationshipsiaed to obtain
a reduced dynamically equivalent constrained systieparticles.

For the closed-chain system, the system is tram&fdrto open-
chain system by cutting suitable kinematical joiatel introducing
the cut-joint kinematical constraints. For theutdsg open-chain
system, the equations of motion are generated sigely along the
serial chains instead of the matrix formulationiett in (De Jalon
et al., 1986, Attia, 1993, Nikravesh and Attia, 49&nd Attia,
1998). Most of the kinematical constraints duehe kinematical
joints are automatically eliminated by properly dtng the
equivalent particles. Examples are chosen to detraie the
generality and simplicity of the proposed method.

The Dynamic Formulation

Construction of the Equivalent System of Particles

A rigid body and its dynamically equivalent constetl system
of particles should have the same mass, the posifithe centre of
mass and the inertia tensor with respect to a batigched
coordinate frame which results in ten conditionghie spatial case.
The choice of four particles (not all are layingtire same plane)
results in 16 unknowns (4 masses + 12 coordindtes) should
satisfy the ten conditions. However, this choicdl lgad to the
solution of nonlinear algebraic equations due ® dhadratic form
of the second moments and also it does not givefrdeglom to
choose all the particles in important places in nfechanisms. A
system of ten particles will lead to the solutiof ten linear
algebraic equations in ten unknown masses. Alsgivies the
freedom of positioning the particles on the bodiesaccordance
with the joints that connect the bodies in ordereuce the number
of particles and consequently eliminates some g&amend
kinematical constraints. Therefore, a system of particles is
chosen to replace the rigid body as shown in Figlticonstitutes
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four particles 1,..,4, which are denoted as primpayticles and
additional six particles 5,..,10, which are denotl secondary
particles. Each secondary particle is locatedhat rhiddle point
between a pair of primary particles in order toilfiade the

elimination of its acceleration components andtuim, reduce the
unknown motion variables. The mass distributiaomgaints must
satisfy the following conditions

Figure 1. The rigid body system with the equivalent system of ten
particles.
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i=1
10
mig = M 1.2)
i=1
10
lgg = > m(Z7 +n?) (1.3)
i=1
10
Lo =§m(z?+z?) (1.4)
10
Iz =S m(E2 +nf) (1.5)
i=1
10
lgn = 2 M& N (1.6)
i=1
10
lgg =2 m&; ¢ (1.7)
i=1
10
Izq =2 MmN (1.8)
i=1

wherem is the mass of the bodyg is the position vector of the
centre of mass of the body with respect to the battgched
coordinate frame| g8, Iy lgzare the moments of inertia of the
body with respect to the body attached coordinamé, lens legs

Iz are the products of inertia of the body with resgeche body

attached coordinate framey is the mass of particle i, anﬁ is the

position vector of particle i with respect to thitaehed coordinate
frame. Equation (1) represents a 10x10 lineatesyof algebraic
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equations in 10 unknown masses of the primary awbrslary
particles. At the same time, the coordinates efghrticles can be
chosen arbitrarily, which gives the advantage o #utomatic
elimination of the kinematical constraints due tong mechanical
joints. Also it allows for two adjacent rigid badi to contribute to
the mass concentrated at the joint connecting tivaich reduces
the total number of particles replacing the whgigtem.

Equations of Motion of a Single Rigid Body in Spatial
Motion

Consider a rigid body which is acted upon by exkifforces
and force couples. The rigid body is replaced hyeguivalent
system of ten particles. The distances betweenethgarticles are
invariants as a result of the internal forces éxgsbetween them.
The vector sum of these unknown internal forcealso the vector
sum of their moments about any point equals zerdhleylaw of
action and reaction (Goldstein, 1950). Then, theadr momentum
equation for the whole system of particles yields,

1

10
R=D My 2

i=1
wherer is the vector sum of the external forces actingtenrigid

body andf; is the acceleration vector of partide Also, the

angular momentum equation for the whole systemanfigles with
respect to particle 1 results in (Goldstein, 1950)

10 1
CEDNULTE NI T )
i=2

i=2
where G, is the vector sum of the moments of the exteroetefs
and force couples acting on the body with respepttticle 1y;, is
the relative position vector between partidlesd 1, and;,is the

3x3 skew-symmetric tensor providing the vector picid The
distance constraints between the ten particlegiasn as (see Fig.
1)

faqrp1—03; =0 (4.1)
fagra1—0d2;=0 4.2)
taorsp—dZ2,=0 (4.3)
raira; —d3, =0 (4.4)
rasrgp —d2, =0 (4.5)
raar3s—0d3, =0 (4.6)
rs—(rp+rp)/2=0 (4.7)
rg —(ry+r3)/2=0 (4.8)
r;—(rp+ry)/2=0 (4.9)
rg —(rp +r3)/2=0 (4.10)
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rg—(r2+r4)/2=0 (411)

rlo—(r3+r4)/2=0 (412)
where the massess, mg, My, Mg, My, My, are located, respectively, at
the middle point of masses, andm,, m; andmg, my; andmy, m, and
mg, M, andmy, andms andm,. The equations of motion (2), (3) and
(4) represent a system of differential-algebraicagipns that can be
solved to determine the unknown acceleration vectdof the

particles at any instant of time. However, du¢hi® large number
of the geometric constraints the integration ofsthequations is
inefficient. In the following section, some usefgeometrical
relationships are used to eliminate the majoritthee constraints.

The Reduced Form of the Equations of Motion of a Single
Rigid Body

The reduced form of the equations of motion caadigeved in
two steps. First, the accelerations of the seagngarticles and
their unknown accelerations can be easily elimuhdg substituting
the constraint Egs. (4.7) to (4.12) into Eqgs. (&) é3) to obtain

4_..
R =) M )]
i=1
4
Gy = Y Af; (6)
i=1
where
41
m=m+ > S (7
j=Lj#i
—_ 41
A =M+ Y 2MinL (8)
i=2,j#i
— 4
m=m+ > 2™ ©)
j=Lj#i

and whereny ; denotes the mass of the secondary particle that
located between the primary particles i andnj 4 =ms,... etc.).

Then, Egs. (5) and (6) in addition to the remaintogstraints Egs.
(4.1) to (4.6) represent the equations of motion &asingle rigid
body where only the accelerations of the primanyiglas stay.

A more reduced set of equations of motion can béveld by
expressing the position vector of one of the primparticles in
terms of the position vectors of the other threienpry particles.
We choose to express the coordinates of partigtet8rms of the
coordinates of particles 1, 2, and 4. As showrFig. 2, three

invariant quantitie§ , 0,and T can be estimated with the aid of

the constraint Egs. (4.4) to (4.6) that fix thetalices between
particle 3 and particles 1, 2, and 4, respectivelphe invariant
quantities take the form,
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Figure 2. The rigid body system with its equivalent primary particles
indicating the invariant quantities.

T~
— |r31foqra
3 = |/312a"41

- , (10.1)
‘r21r4’1‘
V= 1/|r31|2 -2, (10.2)
|ragl F21r5,1‘
H=—= , (10.3)
r5,1r4,2‘
T=|rg0| -1, (10.4)
where
- 5 T21741
r51 = r3’1 - _ 1 y
r21r4’1‘

Knowing the initial Cartesian coordinates of thémary particles,
the invariant quantities are determined using Et@). In terms of
these invariant quantities, the position vector pafrticle 3 is
expressed as

is

aa Eu;’ffle ,
|W41 +Tf21|

_F
r3=r +A 2 (11)

r21r4,1‘

Since the quantities in the denominators in thietrigand side of Eq.
(11) are invariants we can rearrange the termshtain the simpler
form

r3:rl+)\F21r4l+“r41+Tr21, (12)
where

A VH
M == “_ =
‘rz;ﬂzu‘ [Frag +Trz)

A=

T
|Hf4;1 +Tf2,1| ’

The corresponding velocity and acceleration vectdrparticle
3 are estimated using the first and second timieréiftiations of
Eq. (12) respectively which result in the followifagms,
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f3:fl+)\(F21f4,1+F21r41)+uf41+Tf21, (13)

f3 = +}\(r~21f'41 + F21r41 + 2F21r'41 )F Uy + T, (14)

Equation (14) expresses the unknown acceleratiatoveof
particle 3 in terms of the acceleration vectorghef other primary
particles which eliminates the constraint Eqgs. )(4td (4.6).
Equation (14) can be put in the more conveniemhfor

r3=(1l-p-t +)\F4’2 )f‘1+(r—)\F4l)f‘2 +(u+)\F21)f‘4, (15)

Substituting the derived acceleration vector oftiper 3 from
Eqg. (15) into Egs. (5) and (6), then the differehe&quations of
motion take the modified form

R={My +Mg(1-p=T+Ary, )}y +{My +M(T=Ary, )},

+{My +Mg(K + ATy )}y + 2Nty Fy (16)

Gy ={ A+ Az(1-p=T+Ary, )} +{ Ay + Ag(T-Ary; )}

+{A4+A3(p+)\f’2;l)}r"4+2)\A3f"21r'4;L a7

Equations (16) and (17) in addition to the constr&qs. (4.1)
to (4.3) represent the equations of motion of alsifloating rigid
body in spatial motion. It can be solved at evirge step to
determine the unknown acceleration components dfcfes 1, 2,
and 4. Consequently, Eq. (15) can be used to rdieter the
acceleration components of particle 3. The acatter components
of the particles are integrated numerically knowthgir Cartesian
coordinates and velocities at a certain time toemene the
positions and velocities for the next time stepea® method (Gear,
1988) for the numerical integration of differentigebraic
equations is used to overcome the instability moblresulting
during the modelling process of constraint mectedrigstems. The
motion of the particles determines completely tamglational and
rotational motion of the rigid body. If the rigidody is rotating
about a fixed point, then particle 1 may be locaethe centre of
this joint. In this case, Eq. (17) and Egs. (4dl}4.3) are used to
solve for the unknown Cartesian accelerations diighes 2 and 4.
Equation (16) can be solved to determine the unknogaction
forces at the joinN, as,

Np ={W]_L+m3(l—p—'[+)\r~4‘2 N +{m, +ﬁ‘3(T_)\r~4,1)}F2
+{m, +ﬁ13(u+)\|721)}|"4 +2)\F13|‘L21r'4;L -R

If the rigid body is rotating about a fixed axiBeh particles 1
and 2 can be located along the axis of the jointdéfine its
direction. Then, to solve for the unknown acceleravector of
particle 4, the constraint equations (4.2) and)(4&éh be used in
addition to one scalar moment equation that is igeee by taking
the projection of the vectors in Eq. (17) along tliection of the
fixed axis. Then, Eq. (16) may be used to getrédaetions at the
axis of the revolute joint.

Equations of Motion of a Serial Chain of Rigid Bodies

In the matrix formulations of multibody systemse thystem is
divided into individual bodies and the equationsraftion for each
body are written in matrix form. Therefore, thaiations of motion
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for the whole system are derived by grouping anerlapping the
mass matrices of all rigid bodies resulting in ¢verall mass matrix
which characterizes the matrix formulation. On theer hand, in
the recursive formulations, no separation betweedids is done,
however, different serial chains are constructethe force and
moment equations are written for each serial chedgressing from
one body to the adjacent body in the chain in argdee manner.

Case of All are Spherical Joints:

Figure 3 shows a serial chain Nfrigid bodies connected by
spherical joints with the equivalent system of (3)N+particles
where connected particles are unified from bothidzd

- 3j-1

Figure 3. Serial chain of N rigid bodies with the equivalent system of
primary particles.

Step 1: For the last body in the chain, the equations of motion
are derived in a similar way as Eq. (17) and E44.)(to (4.3) of a
single rigid body. The angular momentum equatékes the form

Gnan-2 ={ Asn-2 T Aan (1-HN —Tn FANT3N413n-1 M an-2
+{Agn1 + Asn (TN ~ANTans13n-2 Han
+{ Agna1 + Asn (N +ANTaN-13n-2 3N+

+ 2\ NA3NTaN-13N-2 3N+ 3N-2 (18)

where

3N+L

> Z”bN iTi3N-21
i=3N-1j#3N

Agn =Mnranan-2 +

3N+ 1

—MgNijis

Mgy = Mgy + 2
i=3N22j#3N

where Gy 3y—» is the sum of the moments of the external forces

and force couples acting on boblywith respect to the location of
particle N-2. The acceleration equations of the distancetcaint
between primary particles belonging to badlgre given as

T .. T . T .
r3N-23N-13N-2 *F3N-13N-2f3N-1 = “Fan-13N-2'3n-13n-2 (19:1)
T . T .. T .
r3N-23N+113N-2 T F3N+13N-213N+1 = “Tan+13N-2T3ns1an-2  (19-2)

T .. T . T .
raN-13N+113N-1 T raN+13N-113N+1 = ~Tan+13N 13N +13n-1  (19-3)

Step 2: Addition of one more body in the chain &&d the
inclusion of an angular momentum vector equaticat takes into
consideration the contributions of all the ascegdiodies in the
chain together with three distance constraint egnatbetween the
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particles belonging to this body. These six scaguations are acceleration components. To solve for these unksp® angular
appended to the equations of motion derived foreéhding bodies momentum equations can be generated recursivehgdtee chain
in the chain. For bodjy the appended equations of motion take theéogether with 8l distance constraints between the particles located

form on each body. Finally, three linear momentum eqoatcan be
used to solve for the unknown acceleration compisneinparticle 1
N N - . if body 1 is floating or for the unknown reacticordes if there is a
kZGk,s j-2 = kz{ Agk-2 T A (1= Hy — T + N glgag gk k-2 fixation at point 1.
=] =]

Step 3: If bodyj is connected to bodyl by a revolute joint,
then we take the projection of all the moment vecia Eq. (20)

+{Agq + A (T = Ay T —o )k
A along the axis of the joint which is defined by tparticles from

+{ Agian + Agic(Hi + Mgy a2 ke both bodies that are commonly located on it. Tvddional
. distance constraints, that fix the distances betwibe remaining
+ 2Nk A3k 31 ak—2" 3K+ 3k-2 (20)  fourth particle and the other two particles along &xis of the joint,

together with the angular momentum equation candeel to solve
for the acceleration vector of the fourth partimiebodyj.

where Step 4: If bodieg andj-1 in a serial chain are connected by a
I g prismatic joint, then particle§-5, 3-4, 3-3, and $-2 are located on
=Ml 4o + T Mayif o, bodyj-1 while particles B1, 3, 3+1, and $+2 are assigned to body
Poc = Moz i:gk_zLi¢3k4n]3k" 32 j. Particles B5 and $-2 on bodyj-1 and particlesj3l and $+2 on
* g body | are arbitrarily located along the axis of the misic joint.
ﬁk Mg+ Y Mgy, To obtain the equations of motion for bgdyne force equation can
i=3k2jzak 4 be written by taking the projection of all the wast in Eq. (20)

along the axis of the prismatic joint together witie distance
constraint Egs. (21.2)-(21.3). Moreover, five ipdedent
kinematical constraint equations associated withghismatic joint
are included and take the form,

T .. T .. T .
r3j-23j-1'3j-2 T 13j-13j-23j-1 = 13j-13j-2r3j-13j-2 (21.1)

T . T . T .
r3j-23j+113j-2 *13j+13j-213j+1 = T3j+13j-2"3j+13j-2 (21.2)

(r3j-5 —r3j-2 )X(r3j—1 ~13j42) =0, (239)
T .. T .. T o
r3j-13j+13j-1 ¥ 13j+13j-113j+1 = ~13j+13j-13j+13j-1  (21.3) (r3j-5 —r3j-2 )X(rgj-1 ~r3j-2) =0, (23b)
where according to Eq. (15), . T .
r r,. . r r,. .

. _ . _ . ; _ 34353235 | | _3j3j- 3j+23j1 -0, (230)

Fak = (1= Mk =T + A g a1 )3k-2 + (T = Akl ga1 3k-2 ) 3k-1 3j-43j-5 3j3j1 '

M3j-23j-5 M3j+23j-1

+ + AT Faad s
(K AT 36-2 )k Therefore, for a preceding body in the chain the moment

equation is generated recursively along the sehain as addressed

If body | is the floating base body in the chain then, thiregar o146 which take the form

momentum equations, similar to Eq. (16), are reguio solve for

the unknown acceleration components of particleThese linear N j-1

momentum equations equate the sum of the exteonadd acting Y Gran-2 = 2 { Ask—z + Ag(1— Ky ~ Tk + AkTayin 31 NHak-2

on all the bodies in the chain to the time ratecbénge of the k=h k=h ’

vectors of linear momentum of all the equivalenttipkes that n = .
; ; Asziq + Az (T = Agr Fay—

replace the chain which take the form Az + Aak(Tic = AT g g2 Dt

+{ Agiar + Agic(Mic + Ml 32 M3

N N
2R =2 { Mg o + My (1M ~ T +Alapag a1 a2 + 2N Ag s P
k=j k=] ’ k3K 3k-1,3k—-2" 3k+! 3k-2

— — ~ .. N
H{Maq + Mo (T = A agan k-2 Mok + 3 Agea + Agesn (1= e = Ty + AN iTapean 3 Mokt

_ _ - .. k=]
+{ Mgaq + My (i + A9 g Wkt ~ .
+H{ Az + A1 (T = Ak geip31-1 3k

*+ 2N M gp 1 362" 31 3k-2 (22) - i
+{ Agiaz + Agiar (M +Agrgy 3k-1 Waks2
where N )
w g + 2\ K Agk 3 k1" 3+ 2.3k (24)
Mgy =Mge+ D, =M.
i=3k=2i3k 2 If body h is the floating base body in the chain, then @dor

) ) ) ) equation, similar to Eq. (22), is written to solfgr the unknown
In general, for a serial chain 8f bodies, an equivalent system gcceleration of particle 1 in the form,

of (3N+1) primary particles and N6 secondary particles is first
constructed. Then, by eliminating all the accdlers of the
secondary particles arid primary particles, we are left withiNa1
accelerations of the particles and consequentiy+36 unknown
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i-1 - ..

2 A My + Mg (1M =T +Aielgpag aeg N2
k=h

+H{ Mg + M (Tie = Aigan 32 NHak-1

+{ M -1 + My (M + Moy g ak-2 NHake1

N
2Rk =

k=h

+ 2\ Moy M3y 3-2F 3k41,3k-2

N
+ 2 A Mg + Maean (1 Mg~ Tie + Algrp i MHak-1
K=

+{ Mgy + Mayeaq (T = ATgiean36-1 3k
+{ Mg + Magaa (M + A3 361 NHaks2

+ 2\ Mg, 3134231 (29)
Similar treatment can be used in dealing with #ileo kinds of
lower or higher-pair kinematical joints.

Case of an Open-Chain or Closed-Chain

In the case of an open-chain system or closed-chatem, it
can be transformed to a system of serial chainsutiyng suitable
joints and consequently cut-joint constraints ateoduced. In the
case of a closed-chain system, the cut-joints avtie need to
introduce loop closure equations and the correspgridop closure
constraint forces and then allows the use of thes laof
momentum/moment of momentum with respect to a je@ikis.
Equivalent particles are conveniently chosen toatecat the
positions of the connection joints and in termstladir Cartesian
coordinates the cut-joint constraint equationsessly formulated.
The cut-joints kinematical constraints substitube the unknown
cut-joints constraint reaction forces that appesgplieitly in the
linear and angular momentum equations generatedsieely along
the separated serial chains.

It should be noted that in this formulation, thenddnatical
constraints due to some common types of kinemaj@ats (e.g.
revolute or spherical joints) can be automaticalyminated by
properly locating the equivalent particles. Themaging
kinematical constraints along with the geometriostmints are, in
general, either linear or quadratic in the Cartesi@ordinates of the
particles. Therefore, the coefficients of theicaldan matrix are
constants or linear in the rectangular Cartesiamrdinates.
Whereas in the formulation based on the relativerdinates
(Denavit and Hartenberg, 1955), the constraint gous are derived
based on loop closure equations which have theldisdage that
they do not directly determine the positions of lihks and points
of interest which makes the establishment of theadyic problem
more difficult. Also, the resulting constraint edions are highly
nonlinear and contain complex circular functioriBhe absence of
these circular functions in the point coordinatarfolation leads to
faster convergence and better accuracy. Furthesmoeprocessing
the mechanism by the topological graph theory tsnegessary as it
would be the case with loop constraints.

Also, in comparison with the absolute coordinatasniilation,
the manual work of the local axes attachment andl lcoordinates
evaluation as well as the use of the rotationalabdes and the
rotation matrices in the absolute coordinate foatiah are not
required in the point coordinate formulation. Tiesads to fully
computerized analysis and accounts for a reductionthe
computational time and memory storage. In additiorthat, the
constraint equations take much simpler forms aspewed with the
absolute coordinates.
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The elimination of the rotational coordinates, dagwelocities
and angular accelerations in the presented forionlateads to
possible savings in computation time when this edoce is
compared against the absolute or relative cooreliftamulation. It
has been determined that numerical computationsciatsd with
rotational transformation matrices and their cqroesling
coordinate transformations between reference fransestime
consuming and, therefore, if these computationsaamded more
efficient codes may be developed (Nikravesh antAti994). The
elimination of rotational coordinates can also hmunfd very
beneficial in design sensitivity analysis of muttity systems. In
most procedures for design sensitivity analysisdiley to an
optimal design process, the derivatives of cerfainctions with
respect to a set of design parameters are requir&dalytical
evaluation of these derivatives are much simplethd rotational
coordinates are not present and if we only deah wianslational
coordinates.

Some practical applications of multibody dynamieguire one
or more bodies in the system to be described asmable in order
to obtain a more realistic dynamic response (Nigstivand Attia,
1994). Deformable bodies are normally modeled by finite
element technique. Assume that the deformable ®dpnnected
to a rigid body described by a set of particlesefl; one or more
particles of the rigid body can coincide with orrenaore nodes of
the deformable body in order to describe the kirtarak joint
between the two bodies. This is a much simplecgss that when
the rigid body is described by a set of translaticand rotational
coordinates. In general, the point coordinatesehadditional
advantages over the other systems of coordinates $hey are the
most suitable coordinates for the graphics routirzesl the
animation programs.

Also, since we are dealing in this formulation wahsystem of
particles instead of rigid bodies, therefore oitilg taws of particle
dynamics are utilized in generating the equatidnmation of the
mechanical system. This makes the formulation nsictpler than
the other dynamic formulations which use the rigadly dynamical
equations of motion both translational and rotatlonin summary,
the methodologies presented in this paper have nateyesting
characteristics which may be found useful in somplieations.
These methodologies can be combined with other gdsthto
develop even more efficient, accurate, and flexjiecedures. It
should be noted that there is no single multibamynfilation to be
considered as the best formulation for generalibudy dynamics.
Each formulation has its own unique or common festuand,
therefore, selected features should be adoptedutoadvantages
(Nikravesh and Attia, 1994).

Dynamic Simulation of a Single Pendulum With a Rotating
End

Shown in Fig. 4 is a system consisting of two rigatlies which
are connected by a revolute joint and hung witlpleescal joint to
form a single pendulum with a rotating end. Thestem is an
example of an open loop system with one branchfamddegrees
of freedom. Table 1 presents the inertia chariasties of the rigid
bodies. Each rigid body is replaced with the fptimary particles
representation. Particle 1 and 2 are chosen taldieg the axis of
the revolute joint connecting the two bodies andrefore, they
become common particles for the two bodies. Furtharticles (3
and 4) and patrticles (5 and 6) are added, resgdgtito body 1 and
2 such that the set of the 4 primary particlestgdato body 1 (1, 2,
3, and 4) and that belongs to body 2 (1, 2, 5,@rehch does not lie
in the same plane. Therefore, for a single rigidyh the positions
of the primary particles can be freely chosen @iblie in the same
plane) but their masses together with the masseleo§econdary
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particles must be determined in such a way thatithe body and

its equivalent system of particles have the samertiin

characteristics. As a result of sharing the companticles 1 and 2,
a total system of six particles replaces the wkgttem as shown in
Fig. 4. The equations of motion are generatedrsacly along

every branch as discussed in Sec. 4 and used tdasarthe free
response of the system.

®° °®
e @

Figure 4. Schematic diagram of the double pendulum with the primary
particles

Table 1. Description of the rigid bodies.

Inertia (kg.nA)
Body # Mass (ki
y ®O) | e, mn, cgnc, e, en
1 1.5 0.1,0.1,0.1,0.0,0.0,0.0
2 25.0 25.0,25.0,25.0,0.0,0.0,0.0

The system starts motion from rest in the horiZoptssition
while an initial angular velocity 2rad/S is given body 2. The
system has a regular precession motion due tontkially given
angular velocity. Figure 5a-c presents the timgatians of thex-,
y-, andz coordinates of particle 2, respectively. The panson
with DAP-3D program, which is based on the absotaerdinates
(Nikravesh, 1988), shows an excellent agreementvdset the
results of the simulation.

Conclusions

In the present work, the dynamic simulation of dmised
mechanical systems that are interconnected of bigdies is studied
using a recursive projection algorithm. The cotsey linear and
angular momentums are used to formulate the rigity lwynamical
equations of motion which are expressed in terms dfie
rectangular Cartesian coordinates of a dynaryicadiquivalent
constrained system of particles. This groups theaatages of the
automatic elimination of the unknown internal coastt forces, the
absence of any rotational coordinates in additmrthe rotational
transformation matrices, and the elimination of thecessity to
distribute the external forces and force couplesrdhie particles.
Also, the formulation can be considered as a nhéxtansion to the
finite element representation for a deformable bo@ome useful
geometric relations are used which result in a cedusystem of
differential-algebraic equations. The formulaticen be applied to
open and/or closed-chain with the common types inérkatical
joints. The developed formulation with its intdneg characteristics
may be found useful in some applications.
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Figure 5a. The time variation of the x-coordinate of particle 2.
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Figure 5b. The time variation of the y-coordinate of particle 2.
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Figure 5c. The time variation of the z-coordinate of particle 2.
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