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Dynamic Simulation of Constrained 
Mechanical Systems Using Recursive 
Projection Algorithm 
In this paper, the dynamic simulation of constrained mechanical systems that are 
interconnected of rigid bodies is studied using projection recursive algorithm. The method 
uses the concepts of linear and angular momentums to generate the rigid body equations 
of motion in terms of the Cartesian coordinates of a dynamically equivalent constrained 
system of particles, without introducing any rotational coordinates and the corresponding 
rotational transformation matrix.  Closed-chain system is transformed to open-chain by 
cutting suitable kinematical joints and introducing cut-joint constraints.  For the resulting 
open-chain system, the equations of motion are generated recursively along the serial 
chains.  An example is chosen to demonstrate the generality and simplicity of the 
developed formulation. 
Keywords: Dynamic simulation, equations of motion, recursive projection, mechanical 
systems, mechanisms 
 
 
 

Introduction 

There are different formulations for the dynamic analysis of 
spatial mechanisms which vary in the system of coordinates used 
and in the way they introduce kinematical constraint equations 
(Denavit and Hartenberg, 1955, Sheth and Uicker, 1972, Orlandea et 
al., 1977, Nikravesh, 1988, and De Jalon, 1994).  Each formulation 
has its own advantages and disadvantages depending on the 
application and the needs.  Some formulations are developed using a 
two-step transformation which leads to a simple and reduced system 
of equations.  One method (Kim and Vanderploeg, 1986 and 
Nikravesh and Gim, 1989) and  uses initially the absolute coordinate 
formulation where the location of each rigid body in the system is 
described in terms of a set of translational and rotational 
coordinates.  Then, the equations of motion are transformed to a 
reduced set in terms of the relative joint variables.  Another method 
uses initially the point coordinate formulation in which a 
dynamically equivalent constrained system of particles replaces the 
rigid bodies (De Jalon et al., 1986, Attia, 1993, Nikravesh and Attia, 
1994, and Attia, 1998).  The global motion of the constrained 
system of particles together with the constraints imposed upon them 
represent both the translational and rotational motions of the rigid 
body.  The external forces and couples acting on the body are 
distributed over the system of particles.  Then, the equations of 
motion which are expressed in terms of the Cartesian coordinates of 
the particles are re-derived in terms of the relative joint variables.  
The main disadvantage of this two-step transformation is the 
necessity to transform at every time step from the joint variables to 
the original system which is time consuming.1 

A recursive dynamical formulation for the dynamic analysis of 
planar mechanisms is presented by Attia (2004).  The concepts of 
linear and angular momentum are used to write the rigid body 
dynamical equations without the need to distribute the external 
forces and couples over the particles.  The method can be applied to 
recursively generate the equations of motion for open and/or closed-
chain systems. 

In this paper, the dynamic simulation of constrained mechanical 
systems that are interconnected of rigid bodies is studied using 
projection recursive algorithm.  The method is based upon the idea 
of replacing the rigid body by its dynamically equivalent 
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constrained system of particles discussed in (De Jalon et al., 1986, 
Attia, 1993, Nikravesh and Attia, 1994, Attia, 1998 and Attia, 2004) 
with essential modifications and improvements.  The concepts of the 
linear and angular momentums are used to formulate the rigid body 
dynamical equations.  However, they are expressed in terms of the 
rectangular Cartesian coordinates of the equivalent constrained 
system of particles.  This groups the advantages of the automatic 
elimination of the unknown internal forces as in Newton-Euler 
formulation and results in a reduced system of differential-algebraic 
equations.  Some useful geometrical relationships are used to obtain 
a reduced dynamically equivalent constrained system of particles. 

For the closed-chain system, the system is transformed to open-
chain system by cutting suitable kinematical joints and introducing 
the cut-joint kinematical constraints.  For the resulting open-chain 
system, the equations of motion are generated recursively along the 
serial chains instead of the matrix formulation derived in (De Jalon 
et al., 1986, Attia, 1993, Nikravesh and Attia, 1994, and Attia, 
1998).  Most of the kinematical constraints due to the kinematical 
joints are automatically eliminated by properly locating the 
equivalent particles.  Examples are chosen to demonstrate the 
generality and simplicity of the proposed method. 

The Dynamic Formulation 

Construction of the Equivalent System of Particles 

A rigid body and its dynamically equivalent constrained system 
of particles should have the same mass, the position of the centre of 
mass and the inertia tensor with respect to a body attached 
coordinate frame which results in ten conditions in the spatial case.  
The choice of four particles (not all are laying in the same plane) 
results in 16 unknowns (4 masses + 12 coordinates) that should 
satisfy the ten conditions.  However, this choice will lead to the 
solution of nonlinear algebraic equations due to the quadratic form 
of the second moments and also it does not give the freedom to 
choose all the particles in important places in the mechanisms.  A 
system of ten particles will lead to the solution of ten linear 
algebraic equations in ten unknown masses.  Also it gives the 
freedom of positioning the particles on the bodies in accordance 
with the joints that connect the bodies in order to reduce the number 
of particles and consequently eliminates some geometric and 
kinematical constraints.  Therefore, a system of ten particles is 
chosen to replace the rigid body as shown in Fig. 1.  It constitutes 
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four particles 1,..,4, which are denoted as primary particles and 
additional six particles 5,..,10, which are denoted as secondary 
particles.  Each secondary particle is located at the middle point 
between a pair of primary particles in order to facilitate the 
elimination of its acceleration components and, in turn, reduce the 
unknown motion variables.  The mass distributions to points must 
satisfy the following conditions 

 

 
Figure 1. The rigid body system with the equivalent system of ten 
particles. 
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where m is the mass of the body, Gr  is the position vector of the 

centre of mass of the body with respect to the body attached 
coordinate frame, ξξI , ηηI , ζζI are the moments of inertia of the 

body with respect to the body attached coordinate frame, ξηI , ξζI , 

ζηI are the products of inertia of the body with respect to the body 

attached coordinate frame, mi is the mass of particle i, and ir is the 

position vector of particle i with respect to the attached coordinate 
frame.   Equation (1) represents a 10x10 linear system of algebraic 

equations in 10 unknown masses of the primary and secondary 
particles.  At the same time, the coordinates of the particles can be 
chosen arbitrarily, which gives the advantage of the automatic 
elimination of the kinematical constraints due to some mechanical 
joints.  Also it allows for two adjacent rigid bodies to contribute to 
the mass concentrated at the joint connecting them which reduces 
the total number of particles replacing the whole system. 

Equations of Motion of a Single Rigid Body in Spatial 

Motion 

Consider a rigid body which is acted upon by external forces 
and force couples.  The rigid body is replaced by an equivalent 
system of ten particles.  The distances between the ten particles are 
invariants as a result of the internal forces existing between them.  
The vector sum of these unknown internal forces or also the vector 
sum of their moments about any point equals zero by the law of 
action and reaction (Goldstein, 1950).  Then, the linear momentum 
equation for the whole system of particles yields, 
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whereR  is the vector sum of the external forces acting on the rigid 
body and ir&&  is the acceleration vector of particle i.  Also, the 

angular momentum equation for the whole system of particles with 
respect to particle 1 results in (Goldstein, 1950) 
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where 1G  is the vector sum of the moments of the external forces 

and force couples acting on the body with respect to particle 1, 1,ir  is 

the relative position vector between particles i and 1, and 1,i
~r is the 

3x3 skew-symmetric tensor providing the vector product.  The 
distance constraints between the ten particles are given as (see Fig. 
1) 
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  02429 =+− /)( rrr  (4.11)  
 

  024310 =+− /)( rrr  (4.12)  
 
where the masses m5, m6, m7, m8, m9, m10  are located, respectively, at 
the middle point of masses m1 and m2, m1 and m3,  m1 and m4, m2 and 
m3, m2 and m4, and m3 and m4.  The equations of motion (2), (3) and 
(4) represent a system of differential-algebraic equations that can be 
solved to determine the unknown acceleration vectors ir&& of the 

particles at any instant of time.  However, due to the large number 
of the geometric constraints the integration of these equations is 
inefficient.  In the following section, some useful geometrical 
relationships are used to eliminate the majority of these constraints. 

The Reduced Form of the Equations of Motion of a Single 

Rigid Body 

The reduced form of the equations of motion can be achieved in 
two steps.  First, the accelerations of the secondary particles and 
their unknown accelerations can be easily eliminated by substituting 
the constraint Eqs. (4.7) to (4.12) into Eqs. (2) and (3) to obtain 
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and where j,im  denotes the mass of the secondary particle that is 

located between the primary particles i and j ( 521 mm , = ,… etc.).  

Then, Eqs. (5) and (6) in addition to the remaining constraints Eqs. 
(4.1) to (4.6) represent the equations of motion for a single rigid 
body where only the accelerations of the primary particles stay. 

A more reduced set of equations of motion can be derived by 
expressing the position vector of one of the primary particles in 
terms of the position vectors of the other three primary particles.  
We choose to express the coordinates of particle 3 in terms of the 
coordinates of particles 1, 2, and 4.  As shown in Fig. 2, three 

invariant quantities λ , µ , and τ  can be estimated with the aid of 
the constraint Eqs. (4.4) to (4.6) that fix the distances between 
particle 3 and particles 1, 2, and 4, respectively.  The invariant 
quantities take the form, 
 

 
Figure 2. The rigid body system with its equivalent primary particles 
indicating the invariant quantities. 
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Knowing the initial Cartesian coordinates of the primary particles, 
the invariant quantities are determined using Eqs. (10).  In terms of 
these invariant quantities, the position vector of particle 3 is 
expressed as 
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Since the quantities in the denominators in the right hand side of Eq. 
(11) are invariants we can rearrange the terms and obtain the simpler 
form 
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The corresponding velocity and acceleration vectors of particle 

3 are estimated using the first and second time differentiations of 
Eq. (12) respectively which result in the following forms, 
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Equation (14) expresses the unknown acceleration vector of 

particle 3 in terms of the acceleration vectors of the other primary 
particles which eliminates the constraint Eqs. (4.4) to (4.6).  
Equation (14) can be put in the more convenient form, 
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Substituting the derived acceleration vector of particle 3 from 

Eq. (15) into Eqs. (5) and (6), then the differential equations of 
motion take the modified form 
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Equations (16) and (17) in addition to the constraint Eqs. (4.1) 

to (4.3) represent the equations of motion of a single floating rigid 
body in spatial motion.  It can be solved at every time step to 
determine the unknown acceleration components of particles 1, 2, 
and 4.  Consequently, Eq. (15) can be used to determine the 
acceleration components of particle 3.  The acceleration components 
of the particles are integrated numerically knowing their Cartesian 
coordinates and velocities at a certain time to determine the 
positions and velocities for the next time step.  Gear's method (Gear, 
1988) for the numerical integration of differential-algebraic 
equations is used to overcome the instability problem resulting 
during the modelling process of constraint mechanical systems.  The 
motion of the particles determines completely the translational and 
rotational motion of the rigid body.  If the rigid body is rotating 
about a fixed point, then particle 1 may be located at the centre of 
this joint.  In this case, Eq. (17) and Eqs. (4.1) to (4.3) are used to 
solve for the unknown Cartesian accelerations of particles 2 and 4.  
Equation (16) can be solved to determine the unknown reaction 
forces at the joint N1 as, 
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If the rigid body is rotating about a fixed axis, then particles 1 

and 2 can be located along the axis of the joint to define its 
direction.  Then, to solve for the unknown acceleration vector of 
particle 4, the constraint equations (4.2) and (4.3) can be used in 
addition to one scalar moment equation that is generated by taking 
the projection of the vectors in Eq. (17) along the direction of the 
fixed axis.  Then, Eq. (16) may be used to get the reactions at the 
axis of the revolute joint. 

Equations of Motion of a Serial Chain of Rigid Bodies 

In the matrix formulations of multibody systems, the system is 
divided into individual bodies and the equations of motion for each 
body are written in matrix form.  Therefore, the equations of motion 

for the whole system are derived by grouping and overlapping the 
mass matrices of all rigid bodies resulting in the overall mass matrix 
which characterizes the matrix formulation.  On the other hand, in 
the recursive formulations, no separation between bodies is done, 
however, different serial chains are constructed.  The force and 
moment equations are written for each serial chain progressing from 
one body to the adjacent body in the chain in a recursive manner.   

Case of All are Spherical Joints: 

Figure 3 shows a serial chain of N rigid bodies connected by 
spherical joints with the equivalent system of (3N+1) particles 
where connected particles are unified from both bodies. 
 

 

Figure 3. Serial chain of N rigid bodies with the equivalent system of 
primary particles. 

 
Step 1: For the last body N  in the chain, the equations of motion 

are derived in a similar way as Eq. (17) and Eqs. (4.1) to (4.3) of a 
single rigid body.  The angular momentum equation takes the form 
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where 23 −N,NG  is the sum of the moments of the external forces 

and force couples acting on body N with respect to the location of 
particle 3N-2.  The acceleration equations of the distance constraint 
between primary particles belonging to body N are given as 
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Step 2: Addition of one more body in the chain leads to the 

inclusion of an angular momentum vector equation that takes into 
consideration the contributions of all the ascending bodies in the 
chain together with three distance constraint equations between the 
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particles belonging to this body.  These six scalar equations are 
appended to the equations of motion derived for the leading bodies 
in the chain.  For body j, the appended equations of motion take the 
form 
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where according to Eq. (15), 
 

1323132313133 1 −−+−−+ λ−τ+λ+τ−µ−= kk,kkkkk,kkkkk )()( ~~ rrrrr &&&&&&  

 

,)( kk,kkk
~

132313 +−−λ+µ+ rr &&  

 
If body j is the floating base body in the chain then, three linear 

momentum equations, similar to Eq. (16), are required to solve for 
the unknown acceleration components of particle 1.  These linear 
momentum equations equate the sum of the external forces acting 
on all the bodies in the chain to the time rate of change of the 
vectors of linear momentum of all the equivalent particles that 
replace the chain which take the form 
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In general, for a serial chain of N bodies, an equivalent system 

of (3N+1) primary particles and 6N secondary particles is first 
constructed.  Then, by eliminating all the accelerations of the 
secondary particles and N primary particles, we are left with 2N+1 
accelerations of the particles and consequently, 6N+3 unknown 

acceleration components.  To solve for these unknowns, 3N angular 
momentum equations can be generated recursively along the chain 
together with 3N distance constraints between the particles located 
on each body.  Finally, three linear momentum equations can be 
used to solve for the unknown acceleration components of particle 1 
if body 1 is floating or for the unknown reaction forces if there is a 
fixation at point 1. 

Step 3: If body j is connected to body j-1 by a revolute joint, 
then we take the projection of all the moment vectors in Eq. (20) 
along the axis of the joint which is defined by two particles from 
both bodies that are commonly located on it.  Two additional 
distance constraints, that fix the distances between the remaining 
fourth particle and the other two particles along the axis of the joint, 
together with the angular momentum equation can be used to solve 
for the acceleration vector of the fourth particle on body j. 

Step 4: If bodies j and j-1 in a serial chain are connected by a 
prismatic joint, then particles 3j-5, 3j-4, 3j-3, and 3j-2 are located on 
body j-1 while particles 3j-1, 3j, 3j+1, and 3j+2 are assigned to body 
j.  Particles 3j-5 and 3j-2 on body j-1 and particles 3j-1 and 3j+2 on 
body j are arbitrarily located along the axis of the prismatic joint.  
To obtain the equations of motion for body j, one force equation can 
be written by taking the projection of all the vectors in Eq. (20) 
along the axis of the prismatic joint together with the distance 
constraint Eqs. (21.2)-(21.3).  Moreover, five independent 
kinematical constraint equations associated with the prismatic joint 
are included and take the form, 
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Therefore, for a preceding body h in the chain the moment 

equation is generated recursively along the serial chain as addressed 
above which take the form,  
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If body h is the floating base body in the chain, then a force 

equation, similar to Eq. (22), is written to solve for the unknown 
acceleration of particle 1 in the form, 
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Similar treatment can be used in dealing with all other kinds of 

lower or higher-pair kinematical joints. 

Case of an Open-Chain or Closed-Chain 

In the case of an open-chain system or closed-chain system, it 
can be transformed to a system of serial chains by cutting suitable 
joints and consequently cut-joint constraints are introduced.  In the 
case of a closed-chain system, the cut-joints avoids the need to 
introduce loop closure equations and the corresponding loop closure 
constraint forces and then allows the use of the laws of 
momentum/moment of momentum with respect to a joint axis.  
Equivalent particles are conveniently chosen to locate at the 
positions of the connection joints and in terms of their Cartesian 
coordinates the cut-joint constraint equations are easily formulated.  
The cut-joints kinematical constraints substitute for the unknown 
cut-joints constraint reaction forces that appear explicitly in the 
linear and angular momentum equations generated recursively along 
the separated serial chains. 

It should be noted that in this formulation, the kinematical 
constraints due to some common types of kinematical joints (e.g. 
revolute or spherical joints) can be automatically eliminated by 
properly locating the equivalent particles.  The remaining 
kinematical constraints along with the geometric constraints are, in 
general, either linear or quadratic in the Cartesian coordinates of the 
particles.  Therefore, the coefficients of their Jacobian matrix are 
constants or linear in the rectangular Cartesian coordinates.  
Whereas in the formulation based on the relative coordinates 
(Denavit and Hartenberg, 1955), the constraint equations are derived 
based on loop closure equations which have the disadvantage that 
they do not directly determine the positions of the links and points 
of interest which makes the establishment of the dynamic problem 
more difficult.  Also, the resulting constraint equations are highly 
nonlinear and contain complex circular functions.  The absence of 
these circular functions in the point coordinate formulation leads to 
faster convergence and better accuracy.  Furthermore, preprocessing 
the mechanism by the topological graph theory is not necessary as it 
would be the case with loop constraints. 

Also, in comparison with the absolute coordinates formulation, 
the manual work of the local axes attachment and local coordinates 
evaluation as well as the use of the rotational variables and the 
rotation matrices in the absolute coordinate formulation are not 
required in the point coordinate formulation.  This leads to fully 
computerized analysis and accounts for a reduction in the 
computational time and memory storage.  In addition to that, the 
constraint equations take much simpler forms as compared with the 
absolute coordinates. 

The elimination of the rotational coordinates, angular velocities 
and angular accelerations in the presented formulation, leads to 
possible savings in computation time when this procedure is 
compared against the absolute or relative coordinate formulation.  It 
has been determined that numerical computations associated with 
rotational transformation matrices and their corresponding 
coordinate transformations between reference frames is time 
consuming and, therefore, if these computations are avoided more 
efficient codes may be developed (Nikravesh and Attia, 1994).  The 
elimination of rotational coordinates can also be found very 
beneficial in design sensitivity analysis of multibody systems.  In 
most procedures for design sensitivity analysis, leading to an 
optimal design process, the derivatives of certain functions with 
respect to a set of design parameters are required.  Analytical 
evaluation of these derivatives are much simpler if the rotational 
coordinates are not present and if we only deal with translational 
coordinates. 

Some practical applications of multibody dynamics require one 
or more bodies in the system to be described as deformable in order 
to obtain a more realistic dynamic response (Nikravesh and Attia, 
1994).  Deformable bodies are normally modeled by the finite 
element technique.  Assume that the deformable body is connected 
to a rigid body described by a set of particles.  Then, one or more 
particles of the rigid body can coincide with one or more nodes of 
the deformable body in order to describe the kinematical joint 
between the two bodies.  This is a much simpler process that when 
the rigid body is described by a set of translational and rotational 
coordinates.  In general, the point coordinates have additional 
advantages over the other systems of coordinates since they are the 
most suitable coordinates for the graphics routines and the 
animation programs. 

Also, since we are dealing in this formulation with a system of 
particles instead of rigid bodies, therefore only the laws of particle 
dynamics are utilized in generating the equations of motion of the 
mechanical system.  This makes the formulation much simpler than 
the other dynamic formulations which use the rigid body dynamical 
equations of motion both translational and rotational.  In summary, 
the methodologies presented in this paper have many interesting 
characteristics which may be found useful in some applications.  
These methodologies can be combined with other methods to 
develop even more efficient, accurate, and flexible procedures.  It 
should be noted that there is no single multibody formulation to be 
considered as the best formulation for general multibody dynamics.  
Each formulation has its own unique or common features and, 
therefore, selected features should be adopted to our advantages 
(Nikravesh and Attia, 1994). 

Dynamic Simulation of a Single Pendulum With a Rotating 

End 

Shown in Fig. 4 is a system consisting of two rigid bodies which 
are connected by a revolute joint and hung with a spherical joint to 
form a single pendulum with a rotating end.  The system is an 
example of an open loop system with one branch and four degrees 
of freedom.  Table 1 presents the inertia characteristics of the rigid 
bodies.  Each rigid body is replaced with the four-primary particles 
representation.  Particle 1 and 2 are chosen to lie along the axis of 
the revolute joint connecting the two bodies and therefore, they 
become common particles for the two bodies.  Further, particles (3 
and 4) and particles (5 and 6) are added, respectively, to body 1 and 
2 such that the set of the 4 primary particles belongs to body 1 (1, 2, 
3, and 4) and that belongs to body 2 (1, 2, 5, and 6) each does not lie 
in the same plane.  Therefore, for a single rigid body, the positions 
of the primary particles can be freely chosen (not all lie in the same 
plane) but their masses together with the masses of the secondary 
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particles must be determined in such a way that the rigid body and 
its equivalent system of particles have the same inertia 
characteristics.  As a result of sharing the common particles 1 and 2, 
a total system of six particles replaces the whole system as shown in 
Fig. 4.  The equations of motion are generated recursively along 
every branch as discussed in Sec. 4 and used to simulate the free 
response of the system.  
 
 

 

Figure 4. Schematic diagram of the double pendulum with the primary 
particles 

 
 

Table 1. Description of the rigid bodies. 

Body # Mass (kg) 
Inertia (kg.m2) ξ ξ

, η η , ζ ζ , η ζ , 
ξ ζ , 

ξ η  

1 1.5 0.1,0.1,0.1,0.0,0.0,0.0 

2 25.0 25.0,25.0,25.0,0.0,0.0,0.0 
 
 

The system starts motion from rest in the horizontal position 
while an initial angular velocity 2rad/S is given to body 2.  The 
system has a regular precession motion due to the initially given 
angular velocity.  Figure 5a-c presents the time variations of the x-, 
y-, and z- coordinates of particle 2, respectively.  The comparison 
with DAP-3D program, which is based on the absolute coordinates 
(Nikravesh, 1988), shows an excellent agreement between the 
results of the simulation. 

Conclusions 

In the present work, the dynamic simulation of constrained 
mechanical systems that are interconnected of rigid bodies is studied 
using a recursive projection algorithm.  The concepts of linear and 
angular momentums are used to formulate the rigid body dynamical 
equations of motion which are expressed in terms of  the  
rectangular  Cartesian  coordinates of a dynamically  equivalent 
constrained system of particles.  This groups the advantages of the 
automatic elimination of the unknown internal constraint forces, the 
absence of any rotational coordinates in addition to the rotational 
transformation matrices, and the elimination of the necessity to 
distribute the external forces and force couples over the particles.  
Also, the formulation can be considered as a natural extension to the 
finite element representation for a deformable body.  Some useful 
geometric relations are used which result in a reduced system of 
differential-algebraic equations.  The formulation can be applied to 
open and/or closed-chain with the common types of kinematical 
joints.  The developed formulation with its interesting characteristics 
may be found useful in some applications. 
 

 

Figure 5a. The time variation of the x-coordinate of particle 2. 

 

 

Figure 5b. The time variation of the y-coordinate of particle 2. 

 

 

Figure 5c. The time variation of the z-coordinate of particle 2. 
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