Analytical and Numerical Approaches to Study the ...

Antonio F B. de A Prado

Instituto Nacional de Pesquisas Espaciais
12227-010 Sao José dos Campos, SP. Brazil
prado@dem.inpe.br

Analytical and Numerical Approaches
to Study the Gravitational Capture in
the Four-Body Problem

The objective of this paper is to study the probkdhgravitational capture in the bi-
circular restricted four-body problem. A gravitatial capture occurs when a massless
particle changes its two-body energy around onestill body from positive to negative
without the use of non-gravitational forces. Itmsinly studied the effect of the fourth-body
included in the dynamics. The Earth-Moon systerh thi¢ inclusion of the Sun is used for
the numerical simulations. The results show thenggvobtained in this more realistic
model when compared with the more traditional riestd three-body problem model. It is
clear that large savings are obtained thanks todffect of the Sun, if a proper geometry is
used for the maneuver.
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Introduction

The ballistic gravitational capture is a charastési of some
dynamical systems in celestial mechanics, as irrd¢bgicted four-
body problem that is considered in this paper. Basic idea is that
a spacecraft (or any particle with negligible mas®) change from
a hyperbolic orbit with a small positive energy ard a celestial
body into an elliptic orbit with a small negativeeegy without the
use of any propulsive system. The force responsfbte this
modification in the orbit of the spacecraft is tymvitational force
of the third and the fourth bodies involved in theramics. In this
way, this force is used as a zero cost controlivedent to a
continuous thrust applied in the spacecraft. Oneth& most
important applications of this property is the domstion of
trajectories to the Moon.

The application of this phenomenon in spacecrafettories is
recent in the literature. The first demonstratioh tlis was in
Belbruno, 1987. Further studies include Belbrur@@@ and 1992);
Krish (1991); Krish, Belbruno and Hollister (1992)iller and
Belbruno (1991); Belbruno and Miller (1990 and 1p9Bhey all
studied missions in the Earth-Moon system thathisetechnique to
save fuel during the insertion of the spacecrafttsnfinal orbit
around the Moon. Another set of papers that madedmental
contributions in this field, also with the main ebjive of
constructing real trajectories in the Earth-Mooastsyn, are those of
Yamakawa, Kawaguchi, Ishii and Matsuo (1992 and 3)99
Yamakawa (1992) and Kawaguchi (2000). The first application
of a ballistic capture transfer was made duringearergency in a
Japanese spacecraft (Belbruno and Miller, 1990ferAhat, some
studies that consider the time required for thasisfer appeared in
the literature. Examples of this approach can lb@dan the papers
by Vieira-Neto and Prado (1995 and 1998). An exten®f the
dynamical model to consider the effects of the ettty of the
primaries is also available in the literature (véeNeto and Prado,
1996; Vieira-Neto, 1999). A study of this probledipm the
perspective of invariant manifolds, was developsad Belbruno
(1994). An application for a mission to Europaliewn in Sweetser
(1997).

Looking in the literature related to the weak digbboundaries,
it is possible to see that there are several difits of ballistic
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gravitational depending on the dynamicgstesn
considered.

Those differences exist to account for the diffeteehavior of
the systems. In the restricted four-body probleime tsystem
considered in the present paper, ballistic graeital capture is
assumed to occur when the massless particle stags ¢ the
second primary (the Moon) of the system for sonmaeti A
permanent capture is not required, because an smpumaneuver
will be performed to complete the maneuver.

For the practical purposes of studying spacearatdtories, the
majority of the papers available in the literatstedy this problem
looking in the behavior of the two-body energy bé tspacecraft
with respect to the Moon. A quantity call€ (that is twice the
total energy of a two-body system) is defined, wigspect to the
closer primary, byC, =V?-2u/r , whereV is the velocity of the

spacecraft relative to the closest primaryis the distance of the
spacecraft from this primary apds the dimensionless gravitational
parameter of the primary considered. From the valu€; it is
possible to know if the orbit is ellipticaCg¢ < 0), parabolicC; = 0)

or hyperbolic C; > 0) with respect to the Moon. Based upon this
definition, it is possible to see that the valueCgfis related to the
velocity variation AV) needed to insert the spacecraft in its final
orbit around the Moon. In the case of a spaceagiroaching the
Moon, it is possible to use the gravitational foafethe Earth to
lower the value ofC; with respect to the Moon, so the fuel
consumption required to complete this maneuveedsiced. In that
way, the search for trajectories that arrives at Moon with the
maximum possible value for the reduction@fis very important.
In the majority of the studies relative to this lplem, a numerical
approach of verifying the values 6% during the trajectory is used
to identify useful trajectories. If there is a charof sign inC; from
negative (closed trajectory) to positive (open ettyry) when
leaving the Moon, it means that a ballistic graigtaal capture
occurs in the positive sense of time and this paldr trajectory can
be used to reduce the amount of fuel in an EartiofMeansfer. The
present paper has the goal of developing analygcgiations to
estimate the effects of the fourth body in the otidm of C;. This
paper was first presented at the Xl Internationgin@osium on
Dynamic Problems of Mechanics — XI DINAME.

capture,

Mathematical M odel and Some Properties

The model used in this paper is the planar bi-tarctestricted
four-body problem. This model assumes that two nhaidies 11

and M) are orbiting their common center of mass in dacu
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Keplerian orbits and a third bodyMg) is orbiting these two The Gravitational Capture

primaries describing circular orbits around theteenf mass of the
first two primaries. Then, it is desired to stutg motion of a fourth
body, Mg, that is supposed to stay in the plane of the onadif the
other three bodies and that is affected by alhefit, but it does not
affect their motion (Szebehely, 1967). The standaahonical
system of units associated with this model is ugeé unit of
distance is the distand#1-M2 and the unit of time is chosen such

To define the gravitational capture it is necesdaryse a few
basic concepts from the two-body celestial meclsanithose
concepts are:

a) Closed orbit: a spacecraft in an orbit arourn@rsral body is
in a closed orbit if its velocity is not large emgbuto escape from the
central body. It remains always inside a sphereeced in the
central body;

that the period of the motion of MaroundMy is 27). Under this b) Open orbit: a spacecraft in an orbit aroundrareébody is in
model, the equations of motion of the masslessigmrtin the an open orbit if its velocity is large enough tacase from the
inertial reference system, are: central body. In this case the spacecraft can gafittty, no matter
what is its initial position.
%= (x=x.) —,U (x-x,) i (x-xs) @ To identify the type of orbit of the spacecrafisipossible to use
o Moop? s the definition of the two-body energyE)(of a massless particle
orbiting a central body. The equationts=V?/2—- u/r , whereV is
§=—p y _SyE)—,UM (y_SYM ) - y _SyS) (2) the velocity of the spacecraft relative to the ranbody, p is the
N 2 s gravitational parameter of the central body and tthe distance
between the spacecraft and the central body.
= \/(x— XE)Z + (y— yE)z ©) With this definition it is possible to say that thgacecraft is in

an open orbit if its energy is positive and thasiin a closed orbit if
its energy is negative. In the two-body problens #mergy remains
r,= \/(x— X ) +(y=yy ) (4) constant and it is necessary to apply an exteoraéfto change it.
This energy is no longer constant in the bi-circulaur-body

problem. Then, for some initial conditions, a sgaaf can alternate

r,= \/ (x=x ) +(y-vys) (5) the sign of its energy from positive to negativefrom negative to
positive. When the variation is from positive togative the
x. =4, codt) (6) Maneuver is called a "gravitational capture”, tqpbasize that the

spacecraft was captured by gravitational forceg,omith no use of
an external force, like the thrust of an engine.e Topposite

Ye =~Hu sm(t) ) situation, when the energy changes from negativ@dsitive is
called a "gravitational escape”. In the bi-circutaur-body problem
Xu = He COS(‘) (8) and in the restricted three-body problem there dspermanent
gravitational capture. If the energy changes frowsifpve to

Yu = He sin(t) (9) negative, it will change back to positive in théufie.
One of the most important applications of the dedional
Xs = Ry codw) (10) capture can be found in trajectories to the Modne Toncept of

gravitational capture is used together with theidbédeas of the
gravity-assisted maneuver and the bi-elliptic tfansorbit to
generate a trajectory that requires a fuel consiompgmaller than
the one required by the Hohmann transfer. This onareconsists
Y=g, +at (12)  of the following steps: i) the spacecraft is laustttrom an initial
circular orbit with radiusrg to an elliptic orbit that crosses the
where xy are the coordinates of the massless partigle, Moon's path; i) a Swing-By with the Moon is usedincrease the
(0.9878715) 144 (0.0121285) 145 (328900.48) are the gravitational apoapsis of the elliptic orbit. This step completesfirst part of the
parameters of the Earth, Moon and Sun, respecti¢elye) (.ym)  bi-elliptic transfer, with some savings @V due to the energy
(xsYs) are the coordinates of the Earth, Moon and Sespectively, gained from the Swing-By; iii) With the spacecrafthe apoapsis, a
ry, Iz, 13 are the distances between the massless particlehend second very small impulse is applied to rise theapsis to the
Earth, Moon and Sun, respectiveRg (389.1723985) is the distance garth-Moon distance. Solar effects can reduce eweme the
between the Sun and the origin of the referencaesysas  magnitude of this impulse; iv) The transfer is céetgd with the
(0.07480133) is the angular velocity of the Su,the time. Figure gravitational capture of the spacecraft by the Moon
1 shows a sketch of the system considered.

Ys =Ry sin(y) (11)

A Forces Involved in the Dynamics

Spac.ecraft Qn To understand better the physical reasons of thes@menon, it

is useful to calculate the forces acting over thasstess particle.
Figure 2 shows the gravitational ford:eg of the Earth acting in a

spacecraft M that is approaching the Moon and Fig. 3 shows the

ff o gravitational force of the Sun and the centrifufgate acting in the

%, ) > same situation. There is also the Coriolis forcévery by
Earth Moon —-2a._, xV , whereV is the velocity of the spacecraft. This force is

not analyzed in detail because the main idea of gaiper is to

Figure 1. Restricted four-body model (Cartesian Coordinates). explain the ballistic gravitational capture as sufeof perturbative

forces acting in this direction and the Coriolisrc® acts
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perpendicular to the direction of motion of the cgaaft all the
time. In this way, it does not contribute to theepbmenon studied
here. The directiorr points directly to the center of the Moon and
the direction p is perpendicular tor , pointing in the counter-
clockwise direction. The distance between the spafteand the
Earth is d, the angle formed by the line connectirggEarth to the
spacecraft and the direction isy. The anglegis used to define
instantaneously the directioni . From geometrical considerations
shown in more detail in Prado (2002), it is possital write for the
gravitational force:

g - (1-p)(r +cosp)

+(1—p:j)sin¢)r)

[¢] d3
1- r +co ~ 1-u)sin -
= (=) wgr+ (1-p)sing 5 (13)
(1+r?+2rcosp)?  (1+r?+2rcosp)”?
For the centrifugal force the expression is (Pra@®_2):
Foo =~[ 1 +(1-p)cog] +(u~1)sing p (14)

Tieai
o —

Earth

Figure 2. Gravitational force of the Earth.

Ahhs

Earth

>

Figure 3. The gravitational force of the Sun and the centrifugal force.

Now, it is necessary to develop an equivalent egudbr the
gravitational force of the Sunlf(s). From Fig. 3, it is possible to

find the following relations, WherelfSr stands for the radial
component andfs:p stands for the perpendicular component:

—_ M, COST r
- 2 sp

m

= — /'ISUﬂSinT r)

m2

Fe : (15)
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2

2 —12-m
L® + m* —2Lmcos{ = cos{ - Rl -

Rin= e (16)
r=m-0-¢ (17)

d=a-o (18)
E=yY-0=y-a+o (19)

m? =L +R%_-2LR,, cose (20)

Those equations can be used to find analyticaltemsafor the
radial and perpendicular components of the graeitat force of the
Sun.

During the approach phase, when the spacecrafbse ¢o the
Moon, the force that dominates the dynamics is tuthe central
body (the Moon). All others forces are perturbatiam the motion
of the massless particle. In the model considerede,hthe
perturbations are due to the gravitational forcéhef Earth and the
Sun and the centrifugal force due to the rotatibthe system. In
that way, an approach to understand the behavitleoperturbing
forces is to study the components of each forcenduhe approach
phase. This study is performed in Prado (2002)ckvishows an
equation that relates the reduction @f with the integral of the
forces over the time.

Analytical Analyses of the Forces

The next step of this research is to use the d@nalygxpressions
derived in Prado (2002) for the effects of the gedional force of
the Earth and the centrifugal force and to deriveeguivalent
equation for the gravitational force of the Sunpider to obtain an
estimate of the effects of the forces studied. Tien idea is to
estimate the potential of the field around the Maorreduce the
value of theC; due to the Earth and the Sun and not to make
predictions for a single trajectory. The analytiGduations to
measure the effects of this perturbation are dérivader the
assumption that the trajectory followed by the spsaft is an
idealized trajectory that does not deviate from rifial direction.
The real trajectories are not radial, as can be ge¢he references
shown in this paper, but the equations derived utide assumption
can be used to: i) estimate the values of the plesseductions in
the value ofC;; ii) show the existence of directions of motioratth
results in larger reductions df;, so mapping analytically the
decelerating field that exists in the neighborhebdhe Moon; iii)
estimate the effects of the periapsis distance thrdsize of the
sphere of capture, since the equations derived ex@icitly
functions of those parameters; iv) to study theafof the fourth
body in the savings obtained in the gravitatiorgbtare. Another
justification for the radial trajectories used trigte the equations is
that the reduction of; is a result of the effects of the forces in time
during the whole trajectory and, even for trajee®rthat shows
several loops before arriving at the periapsisingumost of the
time the trajectory can be seen as composed by af s®jectories
close to radial.

For the derivation performed here, the componerdsmed is
the radial, because this is the direction of motiamder the
assumption used here. Then, assuming that the gpéide in free-
fall (subject only to the gravitational and centgél forces)
traveling with zero energy (parabolic trajectoryhdathat the
trajectories do not deviate from a straight life tesult is:

Total energy =E :O:%V2 “H vy = /ﬁ - Us
r r

pm (21)
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Wheredsis the space traveled by the particle during ittne tt.
To obtain the integral of the effect of the pertngoforces with
respect to time, it is possible to perform the gttons in terms of
the radial distance, by making the substitution:

tf

J

to

St

Fdt=] (F/V)ds= T(F/V)ar

So min

(22)

The extreme points of the integration changes iposifS, by
rmin @NAS by ria) here and in all the following integrations to ¢ak
into account that the positive sense of the radigdction points
towards the Moon. Since the spacecraft is assumeghproach the
Moon on a radial trajectory the resufta=g is valid, and the
variablea is used as the independent parameter. Then, daatthal
component of the Earth’s gravity, up to the firgder, the integral is
(Prado, 2002):

(1-u)(q+cosa)
(2u/a)*(1+* +2qcosa )?*

r+(1-u)

Fla)=

_ 3(qg+cosa )’ .

[ (2u/a)*(1+ 97 +2qcosa )
o P,

q?(2u/a)**(1+ 9* + 2q cosa )2

min

Using the values,;=1838/384400 (100 km above the lunar

surface),rma,=100000/384400 (1000@mM above the lunar surface,
the usual value for the sphere of capture of theiMa the ballistic

gravitational capture studies)=0.0121 (Earth-Moon system) and
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q= (rmin + rmax)/2 (the medium point of the trajectory) the first erd
equation obtained is (Prado, 2002):

F!(a)=(0.0782+ 05902040 ))1.0176+0.264%0da))™  (24)

The equivalent equation for the second order expans
shown below, since in this form it is not too la(§eado, 2002):

F.(a)=(0283600170-00730L0175- 0264%0s7) +
+0.30761.0175-0.264%0sr)* + 0.068@0sr —0.08471.0175
+0.264%097)cosy +2(1.0175+0.264%03r)’ coxx +
+0.0168020 —0.06401.0175-0.264% 087 ) coa + 0.021220530'))
(L0175 0.264%037) ™

(25)

For the radial component of the centrifugal fotbe, integral is:

max

(F..V)ds="T"((u-1) cosar+r)2u/r) ¥dr =

max min

max (26)
fmin :[[—0.4# +§ r(#—l)cosaj(zﬂ/f)_m}

Using the same values used in the above situationtie
variables, this last equation can be reduced to:
F,(a) = —0.0887-0.5603cosa 27)

Repeating the process for the gravitational foree t the Sun,
we have:

max

Fi(a)=

VP4 g+, ~2us i + 20t~ p)cosa ~2qr,,, coda )2, cosp + 2r,pucosp )

3(2q + 2(1— ,u)cosa -2l cos(a —U/))(q +cosa -

r
3
2

min

poosa —r,, coda —y))

+

\ 24/ (v o +ri, - 2u p* + 201 )cosa - 2ar,,,coda ~ ) - 2r,,, cop + 2r,, cosy )

+

(28)

\/%+\/%£ (q+Cosa_ﬂcoszz—rsuncos(a—l//))j

(1+ oF +r2, - 2u+ p? + 2q(L- p)cosa - 2qr,,, codar - ) - 2r,

and, using the numerical values as done before:

A (29)

where

A= 0.0377151454+ 0.2617cosa ~1031020coga - ) - 7689220cosy )2
(~82.3068- 2689200cos - 65.7260c042a) - 4.2907cod3a) -
-1192110coda - 2p) +6.5904coq3a - 24p) + 0.575%0d4a - 24p) +
+504034000coda — ) +1.736 020 - 24p) +
+128326000cod2a - ) +8451080cod3a —¢) -

-0.002%0d4a - ) +128329000c0dy) - 32.0000coq 2y ) +
+8455000c0da +)+0.08420d2a + ) +

+0.0054coq3a + ) - 2.1454c0da + 2ip)) (30)
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Han [ T2
n COSY + 2rswucosgl/)% [ V2 j[ 2

_ qrﬂ

B =|(3.7960+ coz)’(~1969700-0.000% 057 +0.134Toda - ) + cogy | -

- 02844151454 0.261Tcosy ~1031020coda - ) - 768922@osy )
(154477+37.9366c05x +88588:0420) + 0.5684c0430) +19.2626c0dar — 24p) +
+2.5985c0430 - 244) +0.1524cod4a - 21y - 66766500c0da - ) +
+13405t0420 - 21) ~169930@ 0420 — ) -111964@ 0430 —¢4) -
-0.0008cod4a - ) -1699920Ccody ) + 4.4675c0q 2 ) -
-1120040coda +)-0.0115042a + ) -
~0.0007cog3a +y)+0.2842c0da +2)) (31)

c= I(3.7960+ cosa)?(-1969700- 0.000F 05 + 0.134codar - ) + cos,l/)BJ (32)

The second order equations are too large to bershaw it also
has a small contribution compared with the othecds. It is clear
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that the best result, regarding capture, occursafap, that means Fa(0)

that the spacecraft is aligned with the Sun, wkagtn expected
result. Figure 4 shows the effects of the grawtal force of the 0.0
Sun as a function af and¢.
0.005
1 2 3 4 5 a6 O
-0.005
-0.01

Figure 6. Effects of the gravitational force of the Sun as a function of a for

=0.

-0.05
Figure 4. Effects of the gravitational force of the Sun as a function of a

. -0.1
and Y Resultant -0.15

resultant force in the radial direction is obtain@tis force will be o

calledF,(a). All the forces are plotted as a functionoofn Fig. 5, -0.25

for the case wherg/=0. The numbers represents: 1 for the 0.3

gravitational force due to the Earth; 2 for thetdé&mal force; 3 for ‘ . ‘ \ ‘ . ‘

the gravitational force due to the Sun; 4 for theuitant force. From 0 1 2 3 4 5 3 o

those_reSU|tS{ it is clear that the integral of il eﬁe?t IS alwgys Figure 7. Integral of the resultant force including the Sun (dark line) and
negative, which means that the spacecraft alwagsithavelocity exciuding the Sun.

reduced by the perturbation. It is never increaSdtere are two

points where the integral of the effect is null,isthmeans that the

two perturbing forces acting on the spacecraft eaeach other and Numerical Results

it travels as if there were no perturbations atlallthis figure it is
also possible to obtain the best point to perfolm ballistic
gravitational capture. This point is a=18C, which has the
strongest accumulated effect for the resultantefoFégure 6 shows
the perturbation of the fourth bodyy,(a) in more detail, for the
case wherg/=0. Figure 7 shows the resultant forces actinghin t
motion of the spacecraft including and excluding 8un. It is clear
that the Sun helps to increase the effect of slgwidown the
spacecraft in an amount of the order of 3%.

To make a numerical study of the "gravitational tuegs" we
studied this problem under several different ihitanditions. The
assumptions made for the numerical examples praane:

i) The system of primaries used is the Earth-Moan-System
(for the bi-circular restricted four-body problerapd the Earth-
Moon system (for the restricted three-body problem)

ii) The motion is planar everywhere, so the Moo &me Sun
are assumed to be in coplanar orbits;

iii) The starting point of each trajectory is 1®0 from the
surface of the Moonr‘, from the center of the Moon). Then, to

E{p) specify the initial position completely it is nesasy to give the

0.4 value of one more variable. The variable used és ahglea, an
angle measured from the Earth-Moon ling, in thentaclock-wise

0.2 3 direction and starting in the side opposite toEheth (see Fig. 8);

iv) The magnitude of the initial velocity is caletdéd from a
given value ofc3=2e =v?2 -2u/r , whereE is the two-body energy

of the spacecraft with respect to the Mownis the velocity of the

0.2 spacecrafty is the gravitational parameter of the Moon ansl the

0.4 distance between the spacecraft and the centdreoMibon. The

direction of the velocity is assumed to be perpeuldr to the line

0.6 spacecraft-center of the Moon and pointing to tbanter-clock-

) wise direction for a direct orbit and to the cloglse direction for a
0.8 retrograde orbit (see Fig. 8);

v) To consider that an escape occurred, we reqfakiwing
Figure 5. Integral of the disturbing radial forces (canonical units) vs. a  the conditions used by Yamakawa (1992), that thacesraft
(rad) for @=0. reaches a distance of 100800 (0.26 canonical units) from the
center of the Moon in a time shorter than 50 d&ygure 8 shows
the point P where the escape occurs. The anglespetifies this
point is called the "entry position angle" andsidesignated with the
letterB.
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EARTH \ MOON 1
a0 y = 180°
Figure 8. Variables to specify the initial conditions of the spacecraft. 080 — T T T T ]
I o 1] I2?ﬂ\ng|elTDeg:|2w 0 360

Then, for each initial position the trajectoriesrgg@umerically
integrated backward in time. Every escape in backwéme
corresponds to a "gravitational capture" in forwtinge. The results
are organized and plotted in the next figure. Fég@rshows the
minimum value of C3 (so, maximum savings obtained in the
maneuver) plotted against the angtén degrees in the horizontal
axis. The results are shown for the bi-circulatrieted four-body
problem (BC4B) and for the restricted three-bodghem (RP3B)
as a reference. The plots are made for a fixedevafuy, which is
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000 —

shown in every plot.

000 —

RP3E

020 —

[=]

y=10

BC4E

o L1 120 180

Angle (Deg)
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000 —

J RP3BE

020 —

8 D40 —
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D50 —
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T
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Figure 9. Savings obtained in the bi-circular four body and restricted

three-body problem.
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Figure 9. (Continued).

The results show that the savings obtained undgebiteircular
restricted four-body problem is very dependent twe initial
position of the Sun. This is expected, becauseesithe Sun
describes a circular orbit, it can be acceleratingreducing the
speed of the spacecraft during its approach td/then. In general,
the savings can go from a maximum of around —Oc@t three
times the value obtained under the restricted thosly model) up
to values close to zero. All the plots also shoat there are some
regions { close to a) where the maneuver is not possible
(discontinuities of the plot).

Conclusions

This paper had the main goal of studying the Hallis
gravitational capture problem under the model given the
restricted four-body problem. It showed an explematof the
phenomenon based in the calculation of the foroesived in the
dynamics as a function of time and in its integratiith respect to
time. It also derived analytical equations to sttidy effect of the
fourth body, under the assumption of radial motibhere are three
forces that act as disturbing forces in the dicgc@f motion: the
gravitational forces due to the Earth and the Swhthe centrifugal
force. These forces can slow down the motion of ghacecraft,
working opposite to its motion. This is equivalént applying a
continuous propulsion force against the motionhef $pacecraft. In
the radial direction the gravitational force duethie Earth and the
centrifugal force work in opposite directions, It resultant force
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always works against the motion of the spacecraith the
exception of two points where they cancel
Understanding these behaviors explains why a partigth a

velocity slower than the escape velocity can eséape the Moon.

The results also showed that the inclusion of thm & the

dynamics could increase by about 3% the effecth@fforces. The
numerical results showed that large savings caabb&ned under
the bi-circular four-body problem when comparedhe restricted
three-body problem. In order to obtain those sasjiitgs necessary
to find a proper geometry to start the maneuvethiff is not done,
the savings can be reduced or even disappear. Tiesséls are
useful to design trajectories to the Moon.
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