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Analytical and Numerical Approaches 
to Study the Gravitational Capture in 
the Four-Body Problem  
The objective of this paper is to study the problem of gravitational capture in the bi-
circular restricted four-body problem. A gravitational capture occurs when a massless 
particle changes its two-body energy around one celestial body from positive to negative 
without the use of non-gravitational forces. It is mainly studied the effect of the fourth-body 
included in the dynamics. The Earth-Moon system with the inclusion of the Sun is used for 
the numerical simulations. The results show the savings obtained in this more realistic 
model when compared with the more traditional restricted three-body problem model. It is 
clear that large savings are obtained thanks to the effect of the Sun, if a proper geometry is 
used for the maneuver. 
Keywords: Astrodynamics, gravitational capture, celestial mechanics, restricted four-body 
problem 
 
 
 

Introduction 

The ballistic gravitational capture is a characteristic of some 
dynamical systems in celestial mechanics, as in the restricted four-
body problem that is considered in this paper. The basic idea is that 
a spacecraft (or any particle with negligible mass) can change from 
a hyperbolic orbit with a small positive energy around a celestial 
body into an elliptic orbit with a small negative energy without the 
use of any propulsive system. The force responsible for this 
modification in the orbit of the spacecraft is the gravitational force 
of the third and the fourth bodies involved in the dynamics. In this 
way, this force is used as a zero cost control, equivalent to a 
continuous thrust applied in the spacecraft. One of the most 
important applications of this property is the construction of 
trajectories to the Moon. 

The application of this phenomenon in spacecraft trajectories is 
recent in the literature. The first demonstration of this was in 
Belbruno, 1987. Further studies include Belbruno (1990 and 1992); 
Krish (1991); Krish, Belbruno and Hollister (1992); Miller and 
Belbruno (1991); Belbruno and Miller (1990 and 1993). They all 
studied missions in the Earth-Moon system that use this technique to 
save fuel during the insertion of the spacecraft in its final orbit 
around the Moon. Another set of papers that made fundamental 
contributions in this field, also with the main objective of 
constructing real trajectories in the Earth-Moon system, are those of 
Yamakawa, Kawaguchi, Ishii and Matsuo (1992 and 1993), 
Yamakawa (1992) and Kawaguchi (2000). The first real application 
of a ballistic capture transfer was made during an emergency in a 
Japanese spacecraft (Belbruno and Miller, 1990). After that, some 
studies that consider the time required for this transfer appeared in 
the literature. Examples of this approach can be found in the papers 
by Vieira-Neto and Prado (1995 and 1998). An extension of the 
dynamical model to consider the effects of the eccentricity of the 
primaries is also available in the literature (Vieira-Neto and Prado, 
1996; Vieira-Neto, 1999). A study of this problem, from the 
perspective of invariant manifolds, was developed by Belbruno 
(1994). An application for a mission to Europa is shown in Sweetser 
(1997). 1 

Looking in the literature related to the weak stability boundaries, 
it is possible to see that there are several definitions of ballistic 
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gravitational capture, depending on the dynamical system 
considered. 

Those differences exist to account for the different behavior of 
the systems. In the restricted four-body problem, the system 
considered in the present paper, ballistic gravitational capture is 
assumed to occur when the massless particle stays close to the 
second primary (the Moon) of the system for some time. A 
permanent capture is not required, because an impulsive maneuver 
will be performed to complete the maneuver.  

For the practical purposes of studying spacecraft trajectories, the 
majority of the papers available in the literature study this problem 
looking in the behavior of the two-body energy of the spacecraft 
with respect to the Moon. A quantity called C3 (that is twice the 
total energy of a two-body system) is defined, with respect to the 
closer primary, by rVC µ22

3 −= , where V is the velocity of the 

spacecraft relative to the closest primary, r is the distance of the 
spacecraft from this primary and µ is the dimensionless gravitational 
parameter of the primary considered. From the value of C3 it is 
possible to know if the orbit is elliptical (C3 < 0), parabolic (C3 = 0) 
or hyperbolic (C3 > 0) with respect to the Moon. Based upon this 
definition, it is possible to see that the value of C3 is related to the 
velocity variation (∆V) needed to insert the spacecraft in its final 
orbit around the Moon. In the case of a spacecraft approaching the 
Moon, it is possible to use the gravitational force of the Earth to 
lower the value of C3 with respect to the Moon, so the fuel 
consumption required to complete this maneuver is reduced. In that 
way, the search for trajectories that arrives at the Moon with the 
maximum possible value for the reduction of C3 is very important. 
In the majority of the studies relative to this problem, a numerical 
approach of verifying the values of C3 during the trajectory is used 
to identify useful trajectories. If there is a change of sign in C3 from 
negative (closed trajectory) to positive (open trajectory) when 
leaving the Moon, it means that a ballistic gravitational capture 
occurs in the positive sense of time and this particular trajectory can 
be used to reduce the amount of fuel in an Earth-Moon transfer. The 
present paper has the goal of developing analytical equations to 
estimate the effects of the fourth body in the reduction of C3. This 
paper was first presented at the XI International Symposium on 
Dynamic Problems of Mechanics – XI DINAME. 

Mathematical Model and Some Properties 

The model used in this paper is the planar bi-circular restricted 
four-body problem. This model assumes that two main bodies (M1 
and M2) are orbiting their common center of mass in circular 
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Keplerian orbits and a third body (M3) is orbiting these two 
primaries describing circular orbits around the center of mass of the 
first two primaries. Then, it is desired to study the motion of a fourth 
body, M4, that is supposed to stay in the plane of the motion of the 
other three bodies and that is affected by all of them, but it does not 
affect their motion (Szebehely, 1967). The standard canonical 
system of units associated with this model is used (the unit of 
distance is the distance M1-M2 and the unit of time is chosen such 

that the period of the motion of M2 around M1 is 2π). Under this 
model, the equations of motion of the massless particle, in the 
inertial reference system, are: 
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( )ψcosRx SS =  (10) 

 
( )ψsinRy SS =  (11) 

 
 tSωψψ += 0  (12) 

 
where x,y are the coordinates of the massless particle, µE 

(0.9878715), µM (0.0121285), µS (328900.48) are the gravitational 
parameters of the Earth, Moon and Sun, respectively, (xE,yE) (xM,yM) 
(xS,yS) are the coordinates of the Earth, Moon and Sun, respectively, 
r1, r2, r3 are the distances between the massless particle and the 
Earth, Moon and Sun, respectively, RS (389.1723985) is the distance 
between the Sun and the origin of the reference system, ωS 

(0.07480133) is the angular velocity of the Sun, t is the time. Figure 
1 shows a sketch of the system considered. 
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Figure 1. Restricted four-body model (Cartesian Coordinates). 

The Gravitational Capture 

To define the gravitational capture it is necessary to use a few 
basic concepts from the two-body celestial mechanics. Those 
concepts are:  

a) Closed orbit: a spacecraft in an orbit around a central body is 
in a closed orbit if its velocity is not large enough to escape from the 
central body. It remains always inside a sphere centered in the 
central body; 

b) Open orbit: a spacecraft in an orbit around a central body is in 
an open orbit if its velocity is large enough to escape from the 
central body. In this case the spacecraft can go to infinity, no matter 
what is its initial position. 

To identify the type of orbit of the spacecraft it is possible to use 
the definition of the two-body energy (E) of a massless particle 
orbiting a central body. The equation is rVE µ−= 22 , where V is 

the velocity of the spacecraft relative to the central body, µ is the 
gravitational parameter of the central body and r is the distance 
between the spacecraft and the central body.  

With this definition it is possible to say that the spacecraft is in 
an open orbit if its energy is positive and that it is in a closed orbit if 
its energy is negative. In the two-body problem this energy remains 
constant and it is necessary to apply an external force to change it. 
This energy is no longer constant in the bi-circular four-body 
problem. Then, for some initial conditions, a spacecraft can alternate 
the sign of its energy from positive to negative or from negative to 
positive. When the variation is from positive to negative the 
maneuver is called a "gravitational capture", to emphasize that the 
spacecraft was captured by gravitational forces only, with no use of 
an external force, like the thrust of an engine. The opposite 
situation, when the energy changes from negative to positive is 
called a "gravitational escape". In the bi-circular four-body problem 
and in the restricted three-body problem there is no permanent 
gravitational capture. If the energy changes from positive to 
negative, it will change back to positive in the future.  

One of the most important applications of the gravitational 
capture can be found in trajectories to the Moon. The concept of 
gravitational capture is used together with the basic ideas of the 
gravity-assisted maneuver and the bi-elliptic transfer orbit to 
generate a trajectory that requires a fuel consumption smaller than 
the one required by the Hohmann transfer. This maneuver consists 
of the following steps: i) the spacecraft is launched from an initial 
circular orbit with radius r0 to an elliptic orbit that crosses the 
Moon's path; ii) a Swing-By with the Moon is used to increase the 
apoapsis of the elliptic orbit. This step completes the first part of the 
bi-elliptic transfer, with some savings in ∆V due to the energy 
gained from the Swing-By; iii) With the spacecraft at the apoapsis, a 
second very small impulse is applied to rise the periapsis to the 
Earth-Moon distance. Solar effects can reduce even more the 
magnitude of this impulse; iv) The transfer is completed with the 
gravitational capture of the spacecraft by the Moon. 

Forces Involved in the Dynamics 

To understand better the physical reasons of this phenomenon, it 
is useful to calculate the forces acting over the massless particle. 

Figure 2 shows the gravitational force gF
�

 of the Earth acting in a 

spacecraft M3 that is approaching the Moon and Fig. 3 shows the 
gravitational force of the Sun and the centrifugal force acting in the 
same situation. There is also the Coriolis force, given by 

vME

��
×− −ω2 , where v

�
 is the velocity of the spacecraft. This force is 

not analyzed in detail because the main idea of this paper is to 
explain the ballistic gravitational capture as a result of perturbative 
forces acting in this direction and the Coriolis force acts 
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perpendicular to the direction of motion of the spacecraft all the 
time. In this way, it does not contribute to the phenomenon studied 
here. The direction r

�
 points directly to the center of the Moon and 

the direction p
�

 is perpendicular to r
�

, pointing in the counter-
clockwise direction. The distance between the spacecraft and the 
Earth is d, the angle formed by the line connecting the Earth to the 
spacecraft and the direction r

�
 is γ. The angle φ is used to define 

instantaneously the direction r
�

. From geometrical considerations 
shown in more detail in Prado (2002), it is possible to write for the 
gravitational force: 
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For the centrifugal force the expression is (Prado, 2002): 
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Figure 2. Gravitational force of the Earth. 

 

 
Figure 3. The gravitational force of the Sun and the centrifugal force. 

 
Now, it is necessary to develop an equivalent equation for the 

gravitational force of the Sun (SF
�

). From Fig. 3, it is possible to 

find the following relations, where SrF
�

 stands for the radial 

component and SpF
�

 stands for the perpendicular component: 
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εcosLRRLm sunsun 2222 −+=  (20) 
 
Those equations can be used to find analytical equations for the 

radial and perpendicular components of the gravitational force of the 
Sun. 

During the approach phase, when the spacecraft is close to the 
Moon, the force that dominates the dynamics is due to the central 
body (the Moon). All others forces are perturbations on the motion 
of the massless particle. In the model considered here, the 
perturbations are due to the gravitational force of the Earth and the 
Sun and the centrifugal force due to the rotation of the system. In 
that way, an approach to understand the behavior of the perturbing 
forces is to study the components of each force during the approach 
phase. This study is performed in Prado (2002), which shows an 
equation that relates the reduction of C3 with the integral of the 
forces over the time. 

Analytical Analyses of the Forces 

The next step of this research is to use the analytical expressions 
derived in Prado (2002) for the effects of the gravitational force of 
the Earth and the centrifugal force and to derive an equivalent 
equation for the gravitational force of the Sun, in order to obtain an 
estimate of the effects of the forces studied. The main idea is to 
estimate the potential of the field around the Moon to reduce the 
value of the C3 due to the Earth and the Sun and not to make 
predictions for a single trajectory. The analytical equations to 
measure the effects of this perturbation are derived under the 
assumption that the trajectory followed by the spacecraft is an 
idealized trajectory that does not deviate from the radial direction. 
The real trajectories are not radial, as can be seen in the references 
shown in this paper, but the equations derived under this assumption 
can be used to: i) estimate the values of the possible reductions in 
the value of C3; ii) show the existence of directions of motion that 
results in larger reductions of C3, so mapping analytically the 
decelerating field that exists in the neighborhood of the Moon; iii) 
estimate the effects of the periapsis distance and the size of the 
sphere of capture, since the equations derived are explicitly 
functions of those parameters; iv) to study the effect of the fourth 
body in the savings obtained in the gravitational capture. Another 
justification for the radial trajectories used to derive the equations is 
that the reduction of C3 is a result of the effects of the forces in time 
during the whole trajectory and, even for trajectories that shows 
several loops before arriving at the periapsis, during most of the 
time the trajectory can be seen as composed by a set of trajectories 
close to radial. 

For the derivation performed here, the component measured is 
the radial, because this is the direction of motion under the 
assumption used here. Then, assuming that the spacecraft is in free-
fall (subject only to the gravitational and centrifugal forces) 
traveling with zero energy (parabolic trajectory) and that the 
trajectories do not deviate from a straight line, the result is: 
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Where ds is the space traveled by the particle during the time dt. 
To obtain the integral of the effect of the perturbing forces with 
respect to time, it is possible to perform the calculations in terms of 
the radial distance, by making the substitution: 
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The extreme points of the integration changes position (S0 by 

rmin and Sf by rmax) here and in all the following integrations to take 
into account that the positive sense of the radial direction points 
towards the Moon. Since the spacecraft is assumed to approach the 
Moon on a radial trajectory the result φ=α=β is valid, and the 
variable α is used as the independent parameter. Then, for the radial 
component of the Earth’s gravity, up to the first order, the integral is 
(Prado, 2002): 
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Using the values rmin=1838/384400 (100 km above the lunar 

surface), rmax=100000/384400 (100000km above the lunar surface, 
the usual value for the sphere of capture of the Moon in the ballistic 
gravitational capture studies), µ=0.0121 (Earth-Moon system) and 

( ) 2maxmin rrq +=  (the medium point of the trajectory) the first order 

equation obtained is (Prado, 2002): 
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The equivalent equation for the second order expansion is 

shown below, since in this form it is not too large (Prado, 2002): 
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For the radial component of the centrifugal force, the integral is: 
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Using the same values used in the above situation for the 

variables, this last equation can be reduced to: 
 

F2(α) = αcos..  5603008870 −−  (27) 
 
Repeating the process for the gravitational force due to the Sun, 

we have: 
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and, using the numerical values as done before: 
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The second order equations are too large to be shown and it also 

has a small contribution compared with the other forces. It is clear 
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that the best result, regarding capture, occurs for α=ψ, that means 
that the spacecraft is aligned with the Sun, what is an expected 
result. Figure 4 shows the effects of the gravitational force of the 
Sun as a function of α and ψ. 
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Figure 4. Effects of the gravitational force of the Sun as a function of αααα 
and ψψψψ. 

 
Adding the radial effects of all the forces, the equation for the 

resultant force in the radial direction is obtained. This force will be 
called Fr(α). All the forces are plotted as a function of α in Fig. 5, 
for the case where ψ=0. The numbers represents: 1 for the 
gravitational force due to the Earth; 2 for the centrifugal force; 3 for 
the gravitational force due to the Sun; 4 for the resultant force. From 
those results, it is clear that the integral of the total effect is always 
negative, which means that the spacecraft always has its velocity 
reduced by the perturbation. It is never increased. There are two 
points where the integral of the effect is null, which means that the 
two perturbing forces acting on the spacecraft cancel each other and 
it travels as if there were no perturbations at all. In this figure it is 
also possible to obtain the best point to perform the ballistic 
gravitational capture. This point is at α=180°, which has the 
strongest accumulated effect for the resultant force. Figure 6 shows 
the perturbation of the fourth body F4b(α) in more detail, for the 
case where ψ=0. Figure 7 shows the resultant forces acting in the 
motion of the spacecraft including and excluding the Sun. It is clear 
that the Sun helps to increase the effect of slowing down the 
spacecraft in an amount of the order of 3%. 

 

 
Figure 5. Integral of the disturbing radial forces (canonical units) vs. αααα 
(rad) for ψψψψ=0. 

 

 
Figure 6. Effects of the gravitational force of the Sun as a function of αααα for 
ψψψψ=0. 

 

 
Figure 7. Integral of the resultant force including the Sun (dark line) and 
excluding the Sun. 

Numerical Results 

To make a numerical study of the "gravitational captures" we 
studied this problem under several different initial conditions. The 
assumptions made for the numerical examples presented are: 

i) The system of primaries used is the Earth-Moon-Sun system 
(for the bi-circular restricted four-body problem) and the Earth-
Moon system (for the restricted three-body problem); 

ii) The motion is planar everywhere, so the Moon and the Sun 
are assumed to be in coplanar orbits; 

iii) The starting point of each trajectory is 100km from the 
surface of the Moon (rp from the center of the Moon). Then, to 
specify the initial position completely it is necessary to give the 
value of one more variable. The variable used is the angle α, an 
angle measured from the Earth-Moon line, in the counter-clock-wise 
direction and starting in the side opposite to the Earth (see Fig. 8); 

iv) The magnitude of the initial velocity is calculated from a 
given value of rVEC µ223 2 −== , where E is the two-body energy 

of the spacecraft with respect to the Moon, V is the velocity of the 
spacecraft, µ is the gravitational parameter of the Moon and r is the 
distance between the spacecraft and the center of the Moon. The 
direction of the velocity is assumed to be perpendicular to the line 
spacecraft-center of the Moon and pointing to the counter-clock-
wise direction for a direct orbit and to the clock-wise direction for a 
retrograde orbit (see Fig. 8); 

v) To consider that an escape occurred, we request, following 
the conditions used by Yamakawa (1992), that the spacecraft 
reaches a distance of 100000km (0.26 canonical units) from the 
center of the Moon in a time shorter than 50 days. Figure 8 shows 
the point P where the escape occurs. The angle that specifies this 
point is called the "entry position angle" and it is designated with the 
letter β. 
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Figure 8. Variables to specify the initial conditions of the spacecraft. 

 
Then, for each initial position the trajectories were numerically 

integrated backward in time. Every escape in backward time 
corresponds to a "gravitational capture" in forward time. The results 
are organized and plotted in the next figure. Figure 9 shows the 
minimum value of C3 (so, maximum savings obtained in the 
maneuver) plotted against the angle α in degrees in the horizontal 
axis. The results are shown for the bi-circular restricted four-body 
problem (BC4B) and for the restricted three-body problem (RP3B) 
as a reference. The plots are made for a fixed value of ψ, which is 
shown in every plot. 

 

 
 

 
Figure 9. Savings obtained in the bi-circular four body and restricted 
three-body problem. 

 
 

 
Figure 9. (Continued). 

 
The results show that the savings obtained under the bi-circular 

restricted four-body problem is very dependent on the initial 
position of the Sun. This is expected, because since the Sun 
describes a circular orbit, it can be accelerating or reducing the 
speed of the spacecraft during its approach to the Moon. In general, 
the savings can go from a maximum of around –0.62 (about three 
times the value obtained under the restricted three-body model) up 
to values close to zero. All the plots also show that there are some 
regions (ψ close to α) where the maneuver is not possible 
(discontinuities of the plot). 

Conclusions 

This paper had the main goal of studying the ballistic 
gravitational capture problem under the model given by the 
restricted four-body problem. It showed an explanation of the 
phenomenon based in the calculation of the forces involved in the 
dynamics as a function of time and in its integration with respect to 
time. It also derived analytical equations to study the effect of the 
fourth body, under the assumption of radial motion. There are three 
forces that act as disturbing forces in the direction of motion: the 
gravitational forces due to the Earth and the Sun and the centrifugal 
force. These forces can slow down the motion of the spacecraft, 
working opposite to its motion. This is equivalent to applying a 
continuous propulsion force against the motion of the spacecraft. In 
the radial direction the gravitational force due to the Earth and the 
centrifugal force work in opposite directions, but the resultant force 
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always works against the motion of the spacecraft, with the 
exception of two points where they cancel each other. 
Understanding these behaviors explains why a particle with a 
velocity slower than the escape velocity can escape from the Moon. 
The results also showed that the inclusion of the Sun in the 
dynamics could increase by about 3% the effects of the forces. The 
numerical results showed that large savings can be obtained under 
the bi-circular four-body problem when compared to the restricted 
three-body problem. In order to obtain those savings, it is necessary 
to find a proper geometry to start the maneuver. If this is not done, 
the savings can be reduced or even disappear. Those results are 
useful to design trajectories to the Moon. 
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