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Generalized Integral Transform 
Solution for Hydrodynamically 
Developing Non-Newtonian Flows in 
Circular Tubes 
The Generalized Integral Transform Technique (GITT) is applied to the solution of the 
momentum equations in a hydrodynamically developing laminar flow of a non-Newtonian 
power-law fluid inside a circular duct. A primitive variables formulation is adopted in 
order to avoid the singularity of the auxiliary eigenvalue problem in terms of Bessel 
functions at the centerline of the duct when the GITT approach is applied. Results for the 
velocity field and friction factor-Reynolds number product are computed for different 
power-law indices, which are tabulated and graphically presented as functions of the 
dimensionless coordinates. Critical comparisons with previous results in the literature are 
also performed, in order to validate the numerical codes developed in the present work 
and to demonstrate the consistency of the final results. 
Keywords: Generalized integral transform technique, non-Newtonian fluids, power-law 
model, hydrodynamically developing laminar flow, primitive variables formulation  
 
 
 

Introduction 

The analysis of hydrodynamically developing laminar flows 
inside ducts of cylindrical geometry has been a subject of great 
interest as demonstrated by the currently literature, mainly to the 
interest in flows within concentric circular ducts. Therefore, a 
correct prediction related to the heat transfer between the channel 
wall and the fluid studied is extremely important in equipment 
design and thermal devices in general. Heat transfer to purely 
viscous non-Newtonian fluids is frequently encountered in various 
industrial processes (e.g., chemical, petrochemical and food 
processing). These fluids are commonly processed under laminar 
flow conditions because of their high apparent viscosities and also 
the small hydraulic diameters employed in compact heat 
exchangers. An important feature of most purely viscous non-
Newtonian fluids is that some of their rheological and 
thermophysical properties are very sensitive to temperature. This 
variation can have a large effect on the development of the velocity 
and temperature profiles, consequently on the pressure drop and 
heat transfer rates.1 

A brief literature survey indicates that Lin and Shah (1978) have 
studied the heat transfer problem of power-law fluids with yield 
stress, flowing in the entrance region of a circular duct and of 
parallel plates; they used a forward marching procedure to solve the 
related momentum and energy equations. Cuccurullo and Berardi 
(1998) investigated the simultaneously developing of velocity and 
temperature profiles in the entrance pipe flow. The flow was 
assumed to be steady state for a non-Newtonian fluid in 
incompressible laminar pipe flow. The fluid behavior was assumed 
to follow the Ostwald-de Waele power-law model. The developing 
velocity and temperature profiles were solved by the integral 
method. Results were presented and discussed in terms of axial and 
radial velocity profiles, Fanning friction factors and Nusselt 
numbers for different fluid properties and thermal boundary 
conditions. 

In this context, the present study applies the Generalized 
Integral Transform Technique (GITT) in the solution of the 
momentum equations for a non-Newtonian power-law fluid flowing 
in the entrance region of circular tubes, and for this purpose, the 
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boundary-layer formulation in terms of primitive variables is 
adopted in order to avoid singularities in the auxiliary eigenvalue 
problem expressed as Bessel functions at the centerline of the duct. 
The GITT approach is an extension of the Classical Integral 
Transform Technique, which is based on eigenfunction expansions 
yielding to solutions where the most features are the automatic and 
straightforward global error control and an only mild cost increase 
in overall computational effort for multidimensional situations. The 
most recent contributions are aimed at finding accurate solution of 
non-linear heat and fluid flow problems, which include problems 
with variable properties, moving boundaries, irregular geometries, 
non-linear source terms, non-linear boundary conditions, Navier-
Stokes equations and boundary layer equations (Machado and Cotta, 
1991). In recent works, Quaresma (1997), Magno (1998), 
Nascimento (2000) and Chaves (2001) carried out important studies 
related to the GITT application to different kinds of problems. A 
detailed compilation dealing with the advances of this technique on 
diffusion-convection problems can be found in Cotta (1993, 1998) 
and Cotta and Mikhailov (1997). Numerical results for the velocity 
field and local Fanning friction factor are obtained considering the 
effect of the power-law index, and the results for velocity profile are 
compared with those reported in literature. The convergence 
behavior is also illustrated showing the consistency of the final 
results. 

Nomenclature 

A i(R) = coefficient defined in Equation (19a) 
Bfdi = coefficient defined in Equation (19b) 
Ci = coefficient defined in Equation (19c) 
Dijk  = coefficient defined in Equation (22a) 
Eijk = coefficient defined in Equation (22b) 
f = Fanning friction factor 

if  = coefficient defined in Equation (21) 

Ffdik = coefficient defined in Equation (22c) 
Gik = coefficient defined in Equation (22d) 
Hi = coefficient defined in Equation (22e) 
J0, J1 = Bessel functions of the first kind of orders zero and one, 

respectively 
K = consistency index of the fluid 
n = power-law index 
NC = truncation order for the velocity eigenfunction expansion 
Ni = normalization integral 



Shirley C. C. Nascimento et al 

/ Vol. XXVIII, No. 1, January-Mach 2006   ABCM 126 

p, P = pressure field, dimensional and dimensionless, 
respectively 

rw = tube radius 
r, R = radial coordinate, dimensional and dimensionless, 

respectively 
Re = apparent Reynolds number 

iU (Z) = transformed potential for the velocity field 

UF(R,Z) = filtered potential for the velocity field 
Ufd(R) = fully developed longitudinal velocity 
u, U = longitudinal velocity component, dimensional and 

dimensionless, respectively 
u0 = inlet velocity 
Uc = longitudinal velocity component at the centerline of the 

circular tube 
v, V = radial velocity component, dimensional and 

dimensionless, respectively 
X+ = dimensionless longitudinal coordinate defined in Equation 

(26) 
z, Z = longitudinal coordinate, dimensional and dimensionless, 

respectively 

Greek Letters 

δij = Kronecker delta 
η = coefficient defined in Equation (3) 
µi = eigenvalues of problem (14) 
ρ = fluid density 
ψi(R) = eigenfunctions of problem (14) 

)R(~
iψ  = normalized eigenfunctions 

Subscripts and Superscripts 

i, j, k  = order from eigenvalue problem 
fd = referred to fully developed situation 
F = referred to filtered potential 
_ = integral transformed quantities 
~ = referred to normalized eigenfunction 

Analysis 

Within the range of validity of the boundary layer hypothesis, 
the continuity and momentum equations in primitive-variables 
formulation for this problem are written in dimensionless form as: 

 

( ) 0RV
RR

1

Z

U =
∂
∂+

∂
∂

;   1R0 << ;   0Z >  (1) 

 










∂
∂η

∂
∂+

∂
∂−=

∂
∂+

∂
∂

R

U
R 

RR

1

Re

1

Z

P

R

U
V

Z

U
U ; 1R0 << ;  0Z >  (2) 

 

where 
 

2

1n
2

R

U

−























∂
∂=η  (3) 

 
with the following inlet and boundary conditions: 

 
0Z = :   1)Z,R(U = ;   0)Z,R(V = ; (4a,b) 
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The dimensionless groups employed in the above equations are: 
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To improve the computational performance in the solution of the 
velocity field, with respect to the direct procedure (Cotta and 
Carvalho, 1991), the fully developed flow situation is separated 
from the complete potential, in the form: 
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This is a commonly used strategy in the integral transform 
approach (Cotta and Serfaty, 1991; Cotta, 1993) that is equivalent to 
the separation of the steady state solution in a transient problem, 
which acts by filtering the equation source terms responsible for the 
slower convergence rates in non-homogeneous problems. Then, 
after the substitution of the splitting-up scheme, Eq. (6), the problem 
formulation is rewritten as: 
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and the inlet and boundary conditions become: 
 

0Z = :   )R(U1)Z,R(U fdF −= ;   0)Z,R(V =  (11a,b) 
 

0R = :   0
R

)Z,R(UF =
∂

∂
;   0)Z,R(V =  (11c,d) 

 
  1R = :   0)Z,R(UF = ;   0)Z,R(V =  (11e,f) 

 

The next step in the solution of Eqs. (8) to (10) is the 
elimination of the transversal velocity component, V(R,Z), and the 
pressure gradient, (-∂P/∂Z). First, the continuity equation (8) is 
integrated, to yield: 
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while the momentum equation is integrated over the channel cross-
section to provide an expression for the pressure gradient: 
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Equations (12) and (13) relate the transversal velocity and 
pressure gradient to the longitudinal velocity field, as required for 
completion of the integral transformation process. Following the 
formalism in the generalized integral transform technique, to 
construct the eigenfunction expansions, an auxiliary eigenvalue 
problem is selected as: 
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The eigenfunctions and the transcendental expression to 
calculate the eigenvalues are given, respectively, by: 
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The eigenfunctions of this eigenvalue problem enjoy the 
following orthogonality property: 
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where iii N/)R()R(~ ψ=ψ  is the normalized eigenfunction and 

the normalization integral is defined as: 
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The problem given by Eqs. (14) allows the definition of the 
following integral-transform pair: 
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In terms of the transformed potentials defined by Eq. (15), the 
transversal velocity component and pressure gradient are rewritten 
as: 
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Equation (9) is now integral transformed through the operator 

∫ ψ1

0 i dR)R(~R , to yield the transformed ordinary differential 

equations: 
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The inlet condition, Eq. (11a), is similarly integral transformed 

to provide: 
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where the various coefficients in Eq. (20) are given by: 
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The inversion formula, Eq. (15), and Eq. (6) are recalled to 

construct the original potential for the longitudinal velocity 
component, in the form: 
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where NC is the truncation order for the velocity eigenfunction 
expansion. 

Quantities of practical interest can be analytically evaluated 
from their usual definitions, such as the local Fanning friction 
factor: 
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Results and Discussion 

Numerical results for the velocity profiles and Fanning friction 
factors were produced for different values of power-law indices, 
namely n = 0.5; 0.75; 1.0; 1.25 and 1.5, at the entrance region of a 
circular tube. The computational code was developed in FORTRAN 
90/95 programming language and implemented on a PENTIUM-IV 
1.3 GHz computer. 

First, the numerical code was validated for the case n = 1.0 
(Newtonian situation) against those results presented by Hornbeck 
(1964) and Liu (1974), which employed the Finite Difference 
Method for the solution of the same problem. The routine DIVPAG 
from the IMSL Library (1991) was used to numerically handle the 
truncated version of the system of ordinary differential equation 
(20), with a relative error target of 10-8 prescribed by the user, for 
the transformed potentials. These results were produced for  
Re = 2000, but it should be noted that the dimensionless axial 
coordinate X+ makes the results independent of the apparent 
Reynolds number. The definition of X+ is written as: 

 

Re

Z
X =+  (26) 

 
Tables 1 to 3 show the convergence behavior of the longitudinal 

velocity component at the centerline of the circular tube for power 
law indices n = 0.5; 1.0 and 1.25, a convergence with at least three 
significant digits is verified. Also, for n = 1.0, the comparison with 
the results presented by Hornbeck (1964) and Liu (1974) 
demonstrates a good agreement, which provides a direct validation 
of the numerical code here developed. This same analysis is also 
shown in Fig. 1, where it is observed a monotonic convergence for 
the longitudinal velocity component at the centerline of the circular 
tube, Uc. 

 

Table 1. Convergence behavior of the longitudinal velocity component at 
the centerline of the circular tube for power-law index n = 0.5. 

X+ NC = 20 NC = 40 NC = 60 NC = 80 

0.0002116 1.017 1.021 1.024 1.025 

0.0005000 1.034 1.044 1.049 1.050 

0.001058 1.066 1.078 1.083 1.084 

0.001250 1.075 1.088 1.093 1.094 

0.005000 1.200 1.215 1.220 1.220 

0.005288 1.207 1.222 1.227 1.227 

0.01204 1.329 1.345 1.351 1.351 

0.01250 1.335 1.352 1.357 1.357 

0.04924 1.544 1.569 1.578 1.579 

0.05000 1.546 1.571 1.580 1.581 

0.06250 1.566 1.592 1.602 1.603 

0.06281 1.566 1.593 1.603 1.604 

0.07634 1.579 1.606 1.616 1.618 

0.08993 1.587 1.614 1.624 1.626 

1.0 1.592 1.666 1.666 1.666 

5.0 1.667 1.667 1.667 1.667 

Table 2. Convergence behavior of the longitudinal velocity component at 
the centerline of the circular tube for power-law index n = 1.0. 

X+ 
NC = 

20 
NC = 

40 
NC = 

60 
NC = 

80 
Hornbeck 

(1964) 
Liu 

(1974) 

0.0002116 1.015 1.033 1.067 1.113 - 1.100 

0.0005000 1.096 1.111 1.127 1.145 1.150 - 

0.001058 1.169 1.183 1.192 1.200 - 1.210 

0.001250 1.187 1.201 1.209 1.215 1.227 - 

0.005000 1.393 1.408 1.414 1.415 1.433 - 

0.005288 1.405 1.420 1.429 1.427 - 1.439 

0.01204 1.607 1.625 1.631 1.631 - 1.644 

0.01250 1.618 1.636 1.642 1.642 1.660 - 

0.04924 1.906 1.933 1.945 1.946 - 1.971 

0.05000 1.907 1.935 1.946 1.947 1.970 - 

0.06250 1.923 1.949 1.960 1.961 1.986 - 

0.06281 1.923 1.949 1.960 1.961 - 1.989 

0.07634 1.933 1.957 1.968 1.969 - 1.996 

0.08993 1.941 1.962 1.972 1.972 - 1.999 

1.0 2.000 2.000 2.000 2.000 - - 

5.0 2.000 2.000 2.000 2.000 - - 
 
 

Table 3. Convergence behavior of the longitudinal velocity component at 
the centerline of the circular tube for power-law index n = 1.25. 

X+ NC = 10 NC = 20 NC = 30 

0.0002116 0.9983 1.025 1.038 

0.0005000 1.094 1.129 1.137 

0.001058 1.185 1.219 1.227 

0.001250 1.201 1.241 1.249 

0.005000 1.456 1.487 1.496 

0.005288 1.469 1.499 1.509 

0.01204 1.704 1.739 1.751 

0.01250 1.717 1.752 1.764 

0.04924 1.999 2.036 2.052 

0.05000 1.201 2.037 2.053 

0.06250 2.023 2.050 2.064 

0.06281 2.021 2.050 2.064 

0.07634 2.039 2.061 2.072 

0.08993 2.054 2.069 2.078 

1.0 2.111 2.111 2.111 

5.0 2.111 2.111 2.111 
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Figure 1. Convergence behavior of the Uc velocity component for power-
law index n = 1.0. 

 
Figures 2 and 3 bring a convergence behavior of the Uc velocity 

component for the cases of power-law indices n = 0.5 and 1.25, and 
the same observations are verified as for the case of n = 1.0, i.e., a 
monotonic convergence for this velocity component. 
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Figure 2. Convergence behavior of the Uc velocity component for power-
law index n = 0.5. 
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Figure 3. Convergence behavior of the Uc velocity component for power-
law index n = 1.25. 

 
Figure 4 illustrates the development of the longitudinal velocity 

profiles for different power-law indices, namely, n = 0.5; 0.75; 1.0; 
1.25 and 1.5, as function of the transversal coordinate R, at specific 
axial positions X+. From this figure it can be noticed that when the 
power-law index increases there is an increase in the value of the 
centerline velocity. In regions near the tube wall, it is verified that 
the velocity gradient diminishes as n increases. This is due to an 
increase of the apparent fluid viscosity, and consequently an 
increase of the wall stress. For practical engineering considerations, 
this effect leads to an undesirable increase of the pumping power to 
promote the flow of this type of fluids inside circular tubes. 
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Figure 4. Development of the longitudinal velocity component along the 
entrance region of the circular tube for different power-law indices. 

 
Results for the product Fanning friction factor-apparent 

Reynolds number are shown in Fig. 5 as function of the axial 
positions X+, for n = 0.5; 0.75; 1.0; 1.25 and 1.5. It can be observed 
that the product fRe diminishes until the fully developed region is 
reached, in which this parameter assumes a constant value. For 
higher power-law indices, fRe increases, and this fact can be 
explained by an increase of the apparent fluid viscosity in regions 
near to the tube wall as n increases. Also, it is noted that the product 
fRe presents higher values in the entrance region of the circular tube 



Shirley C. C. Nascimento et al 

/ Vol. XXVIII, No. 1, January-Mach 2006   ABCM 130 

due to higher velocity gradients experimented by these fluids in this 
region. 
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Figure 5. Development of the product Fanning friction factor-apparent 
Reynolds number in the entrance region for different power-law indices. 

 
Finally, Table 4 shows a comparison of the present results for 

the product fRe in the fully developed region against those of 
Quaresma and Macêdo (1998). It is verified an excellent agreement 
between the two sets of results, once again validating the numerical 
codes developed here. 

 

Table 4. Comparison of the product fRe in the fully developed region for 
different power-law indices. 

fRe 
n 

Present work Quaresma and Macêdo (1998) 

0.5 6.3246 6.32455 

0.75 10.102 10.1023 

1.0 16.000 16.0000 

1.25 25.238 - 

1.50 39.718 39.7175 

Conclusions 

Numerical results for the velocity field and product Fanning 
friction factor-apparent Reynolds number were produced by using 
the GITT approach in the solution of the momentum equations for 
the flow of non-Newtonian power-law fluids in circular tubes. 

Results for velocity profiles indicate that an increase of the power-
law index promotes an increase of the centerline velocity in order to 
obey the mass conservation principle, this way demonstrating the 
strong influence of the viscous effects on the characteristics of the 
fluid flow. It was also observed that the product fRe is higher for the 
cases of dilatant fluids (n > 1) than for those of pseudoplastic ones 
(n < 1) due to an increase of the apparent fluid viscosity in regions 
near to the tube wall. 

References 

Chaves, C.L., 2001, “Integral Transformation of the Momentum and 
Energy Equations in the Flow of Non-Newtonian Fluids in Irregular Ducts”, 
M.Sc. Thesis (in Portuguese), Chemical Engineering Department, 
Universidade Federal do Pará, Belém, Brazil. 

Cotta, R.M. and Serfaty, R., 1991, “Integral Transform Algorithm for 
Parabolic Diffusion Problems with Nonlinear Boundary Layer and Equation 
Source Terms”, Proceedings of the 7th Int. Conf. Num. Meth. for Thermal 
Problems, Stanford, Vol. II, pp. 916-926. 

Cotta, R.M. and Carvalho, T.M.B., 1991, “Hybrid Analysis of Boundary 
Layer Equations for Internal Flow Problems”, Proceedings of the 7th Int. 
Conf. Num. Meth. in Laminar and Turbulent Flow, Stanford, Vol. I, pp. 106-
115. 

Cotta, R.M., 1993, “Integral Transforms in Computational Heat and 
Fluid Flow”, CRC Press, Boca Raton, USA. 

Cotta, R.M. and Mikhailov, M.D., 1997, “Heat Conduction: - Lumped 
Analysis, Integral Transforms, Symbolic Computation”, John Wiley, New 
York, USA. 

Cotta, R.M., 1998, “The Integral Transforms Method in Thermal and 
Fluids Science and Engineering”, Begell House, New York, USA. 

Cuccurullo, G and Berardi, P.G., 1998, “Developing of Velocity and 
Temperature in Entrance Pipe Flow for Power Law Fluids”, Proceedings of  
the11th International Heat Transfer Conference, Vol. 3, pp. 15-20. 

Hornbeck, R.W., 1964, “Laminar Flow in the Entrance Region of a 
Pipe”, Applied Scientific Research, Section A, Vol. 13, pp. 224-232. 

IMSL Library, 1991, MATH/LIB, Houston, TX. 
Lin, T. and Shah, V.L., 1978, “Numerical Solution of Heat Transfer to 

Yield Power Law Fluids Flowing in the Entrance Region”, Proceedings of 
the 6th International Heat Transfer Conference, Vol. 5, pp. 317-322. 

Liu, J., 1974, “Flow of a Bingham Fluid in the Entrance Region of an 
Annular Tube”, M. S. Thesis, University of Wisconsin – Milwaukee, USA. 

Machado, H.A. and Cotta, R.M., 1995, “Integral Transform Method for 
Boundary Layer Equations in Simultaneous Heat and Fluid Flow Problems”, 
International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 5, 
pp. 225-237. 

Magno, R.N.O., 1998, “Solutions for the Boundary Layer Equations for 
a Non-Newtonian Fluid via Generalized Integral Transform Technique”, 
M.Sc. Thesis (in Portuguese), Chemical Engineering Department, 
Universidade Federal do Pará, Belém, Brazil. 

Nascimento, U.C.S., 2000, “Study of the Thermal Entry Region in the 
Laminar Flow of Bingham Plastics in Concentric Annular Ducts”, M.Sc. 
Thesis (in Portuguese), Chemical Engineering Department, Universidade 
Federal do Pará, Belém, Brazil. 

Quaresma, J.N.N., 1997, “Integral Transformation of the Navier-Stokes 
Equations in Three-Dimensional Laminar Flows”, D.Sc. Thesis (in 
Portuguese), Mechanical Engineering Department, Universidade Federal do 
Rio de Janeiro, Rio de Janeiro, Brazil. 

Quaresma, J.N.N. and Macêdo, E.N., 1998, “Integral Transform 
Solution for the Forced Convection of Herschel-Bulkley Fluids in Circular 
Tubes and Parallel-Plates Ducts”, Brazilian Journal of Chemical 
Engineering, Vol. 15, pp. 77-89. 

 


