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Solution for Hydrodynamically
Developing Non-Newtonian Flows in
Circular Tubes

The Generalized Integral Transform Technique (GITT) is applied to the solution of the
momentum equations in a hydrodynamically developing laminar flow of a non-Newtonian
power-law fluid inside a circular duct. A primitive variables formulation is adopted in
order to avoid the singularity of the auxiliary eigenvalue problem in terms of Bessel
functions at the centerline of the duct when the GITT approach is applied. Results for the
velocity field and friction factor-Reynolds number product are computed for different

power-law indices, which are tabulated and graphically presented as functions of the
dimensionless coordinates. Critical comparisons with previous results in the literature are
also performed, in order to validate the numerical codes developed in the present work
and to demonstrate the consistency of the final results.
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Introduction

The analysis of hydrodynamically developing lamirflnws
inside ducts of cylindrical geometry has been ajestibof great
interest as demonstrated by the currently liteegtunainly to the
interest in flows within concentric circular duct$herefore, a
correct prediction related to the heat transfewbeh the channel
wall and the fluid studied is extremely important équipment
design and thermal devices in general. Heat transfepurely
viscous non-Newtonian fluids is frequently encouedein various
industrial processes (e.g., chemical, petrochemiaatl food
processing). These fluids are commonly processeterutaminar
flow conditions because of their high apparent ag#ties and also
the small hydraulic diameters employed in compaaath
exchangers. An important feature of most purelycais non-
Newtonian fluids is that some of their rheologicand
thermophysical properties are very sensitive topenature. This
variation can have a large effect on the developrokthe velocity
and temperature profiles, consequently on the presdrop and
heat transfer rates.

A brief literature survey indicates that Lin anda8h(1978) have
studied the heat transfer problem of power-lawdiuivith yield
stress, flowing in the entrance region of a circudact and of
parallel plates; they used a forward marching ptaoce to solve the
related momentum and energy equations. Cuccurutb Berardi
(1998) investigated the simultaneously developihgeocity and
temperature profiles in the entrance pipe flow. Thev was
assumed to be steady state for a non-Newtoniand flini
incompressible laminar pipe flow. The fluid behaweas assumed
to follow the Ostwald-de Waele power-law model. Tdeveloping
velocity and temperature profiles were solved by fhtegral
method. Results were presented and discussedms & axial and
radial velocity profiles, Fanning friction factorand Nusselt
numbers for different fluid properties and thermiadundary
conditions.

In this context, the present study applies the Gxized
Integral Transform Technique (GITT) in the solutiaf the
momentum equations for a non-Newtonian power-laxid fflowing
in the entrance region of circular tubes, and fos fpurpose, the

Paper accepted September, 2005. Technical Editor: Atila P. Silva Freire.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright O 2006 by ABCM

boundary-layer formulation in terms of primitive riables is
adopted in order to avoid singularities in the darji eigenvalue
problem expressed as Bessel functions at the tieeterf the duct.
The GITT approach is an extension of the Classicaégral
Transform Technique, which is based on eigenfuncérpansions
yielding to solutions where the most features heeautomatic and
straightforward global error control and an onlyfidiost increase
in overall computational effort for multidimensidrstuations. The
most recent contributions are aimed at finding esteusolution of
non-linear heat and fluid flow problems, which ¢ problems
with variable properties, moving boundaries, irleguyeometries,
non-linear source terms, non-linear boundary cast Navier-
Stokes equations and boundary layer equations (Mechnd Cotta,
1991). In recent works, Quaresma (1997), Magno &}1,99
Nascimento (2000) and Chaves (2001) carried oubitapt studies
related to the GITT application to different kinds problems. A
detailed compilation dealing with the advanceshig technique on
diffusion-convection problems can be found in C¢ft@93, 1998)
and Cotta and Mikhailov (1997). Numerical resutis the velocity
field and local Fanning friction factor are obtaineonsidering the
effect of the power-law index, and the resultsvielocity profile are
compared with those reported in literature. The veogence
behavior is also illustrated showing the consisgen€ the final
results.

Nomenclature

Ai(R) = coefficient defined in Equation (19a)
By = coefficient defined in Equation (19b)
C; = coefficient defined in Equation (19c)
Dj =coefficient defined in Equation (22a)
Ejx = coefficient defined in Equation (22b)

f = Fanning friction factor

f; = coefficient defined in Equation (21)

Fqi = coefficient defined in Equation (22c)

G = coefficient defined in Equation (22d)

H; = coefficient defined in Equation (22€)

Jo, J1 =Bessel functions of the first kind of orders zenal ane,
respectively

K = consistency index of the fluid

n = power-law index

NC = truncation order for the velocity eigenfunatiexpansion

N; = normalization integral
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p, P = pressure field, dimensional and dimensianles The dimensionless groups employed in the abovetieggare:
respectively

ry = tube radius rR=_—". u=4. y=V. z-2. p-_P .

rR= radla_l coordinate, dimensional and dimerisiss Ny Ug ' Ug T pu% '
respectively .

Re = apparent Reynolds number Re= PU0 "rw (5a.f)

Ui (2) = transformed potential for the velocity field K '

Ur(R,Z) = filtered potential for the velocity field

Uw(R) = fully developed longitudinal velocity

u, U = longitudinal velocity component, dimensioaall
dimensionless, respectively

Up = inlet velocity

To improve the computational performance in thetmh of the
velocity field, with respect to the direct proceeufCotta and
Carvalho, 1991), the fully developed flow situatien separated
from the complete potential, in the form:

U. = longitudinal velocity component at the centezlof the U(R,Z) = Uy (R) + UE(R,2) (6)
circular tube
v, V = radial velocity component, dimensional and n+1
dimensionless, respectively Ugg(R) = N+l 1-R N @
X" = dimensionless longitudinal coordinate define@&guation n+1
(26)
z, Z = longitudinal coordinate, dimensional and eliirsionless,

This is a commonly used strategy in the integrahdform

respectively approach (Cotta and Serfaty, 1991; Cotta, 1993)ishequivalent to
Greek Letters the separation of the steady state solution inaastent problem,
5, = Kronecker delta which acts by filtering the equation source teresponsible for the
njz coefficient defined in Equation (3) slower convergence rates in non-homogeneous prabléihen,
1, = eigenvalues of problem (14) after the_sut_)stitutic_)n of the splitting-up scheige, (6), the problem
p|= fluid density formulation is rewritten as:
Wi(R) = eigenfunctions of problem (14) ou 19
0; (R) = normalized eigenfunctions B_ZF + EB_R(RV) =0 (®)

Subscriptsand Super scripts

. _ . 1
i, j, k = order from eigenvalue problem U , | U |3+l ¢

fd = referred to fully developed situation (Ue+ de)aT \ 3R h RO ||=
F = referred to filtered potential ©)
_ = integral transformed quantities
~ =referred to normalized eigenfunction = —E +iii R aU_F +dU_fd
0Z ReROR oR dR
Analysis
where
Within the range of validity of the boundary layeypothesis,
the continuity and momentum equations in primithaeiables n-1
formulation for this problem are written in dimemisiess form as: 172]| 2
0Ug (3n+1)_=
U 19 n= B R™ (10)
%+ 2 9 (RV)=0; 0<R<1; Z>0 @) R n

0Z ROR

and the inlet and boundary conditions become:
U, ,0u_ 9P 11 a[ U

U—+V_—=-—+—=—|nR—=|; 0<R<1; Z>0(2)
0Z oR 0Z ReROR

oR Z=0: Ug(R,2)=1-Uyx(R); V(R,Z)=0  (1lab)
where
R=0: w:o; V(R,2)=0 (11c,d)
n-1 oR
U2
n= [ﬁ) (3) R=1: Ug(R,2)=0; V(RZ)=0 (11e,f)
The next step in the solution of Egs. (8) to (16) the
with the following inlet and boundary conditions: elimination of the transversal velocity componeAtR,Z), and the
pressure gradient, dP/0Z). First, the continuity equation (8) is
Z=0: UR,2)=1; V(R,Z2)=0; (4a,b) integrated, to yield:
0U(R,Z _11,.0Up
r=0: 22 -0, vr2)=0; (4c.d) VRZ) =g ]Ri & (12)
R=1: UR.Z)=0: V(R.2)=0: (de.n while the momentum equation is integrated overcti@nnel cross-

section to provide an expression for the presstagient:
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2]

Equations (12) and (13) relate the transversal citgloand

ap 13)

dUp 2 [ (dug
=4[ "R(Ugg +Up) —E dR- =
JoR Wi + ) 0z Re{n[ drR e

pressure gradient to the longitudinal velocity diehs required for

completion of the integral transformation proceBsllowing the
formalism in the generalized integral transform htéque, to
construct the eigenfunction expansions, an auyilieigenvalue
problem is selected as:

dR( dy; (R)j+“i2Rqu(R) =0; iNn0<R<1 (14a)

dy; (R
% =0, W(R)y, = (14b,c)
R=0
The eigenfunctions and the transcendental expressm
calculate the eigenvalues are given, respectibsty,
Wi(R)=Jo(1iR); Jo(Hi) =0 (14d.e)

The eigenfunctions of this eigenvalue problem enfine
following orthogonality property:

0 i#]j

L - (14)

[oRT: RIT;(RMR =3 ={

where ; (R) = ¢; (R)/4/N; is the normalized eigenfunction and

the normalization integral is defined as:

N, :I;Rwiz(R)dR=%J12(ui) (149)

The problem given by Egs. (14) allows the defimtiof the
following integral-transform pair:

Ui(2) = [ RT; (R)UE(R, 2)dR , transform (15)
Ur(R,2) :iqﬁi (R)U; (2), inversion (16)
i=1

In terms of the transformed potentials defined loy @&5), the
transversal velocity component and pressure gradien rewritten
as:

2 A;(R) dU;(2)

V(RZ)=3 = (17)
i=1
& & 3n+1 du,
aZ ;%QJU d—+22|:de| (_jC :| az
{n (lZ)KZlIJ 0T, ] [3“;1]} (18)
=1

where

AR=[LET, @)oE:uN—l_yz[Jl(ui)—RJl(wR)];
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Brai = [{RUr (R)P; (R)dR (19a,b)
1
= [ (R (R)dR ;
L—J.
ne2= HZHJ.(DU (Z)J (:‘h 1)} (19c,d)

Equation (9) is now integral transformed through tperator
I(l)RlTJi(R)dR, to yield the transformed ordinary differential

equations:
had 3n+1
) { Z[Duk +Ej —4A (0)5,k]U + Faik ~ ( - jGik
k=1 ( j=1
3n+1 dUk
-2A, (0)| Brgy - Cy| t—X=H, 20
|()|:fdk [n]k}}dz i (20)

The inlet condition, Eq. (11a), is similarly integjtransformed
to provide:

Ui 0) =f; = [{RFi (R)1- Ugg (R)]dR (21)
where the various coefficients in Eq. (20) are gilg:
Dix = [oRT; (R (R)T (R)IR;
Eik = [0 (RIT}(R)AL(R)R (22a,b)
Fraik =Ic1,Rde (R)P; (R)P (R)AR;
Gic =I;R%l]]i(R)Ak(R)dR (22¢,d)

H, {n(lz){[zwk() j [3nn+1ﬂ}Ai(0)
‘Riefére@;(R)n(R,Z)[[éﬂi'k(R)UkJ (3"” 1jRn]dR (22¢)

The inversion formula, Eq. (15), and Eq. (6) arealied to
construct the original potential for the longitualin velocity
component, in the form:

NC _
U(R,Z) = U (R) + X B (R)U; (2)
i=1

(23)

where NC is the truncation order for the velociigeafunction
expansion.

Quantities of practical interest can be analyticavaluated
from their usual definitions, such as the local miag friction
factor:
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n-1

(=2||(ouf 2 a0l
Re [\0R oR| 'OR

R=1

=[§¢J} o (Z>J—(3“n+1j (24,25
i=1

R=1

Results and Discussion

Numerical results for the velocity profiles and Ry friction
factors were produced for different values of poleer indices,
namely n = 0.5; 0.75; 1.0; 1.25 and 1.5, at theaace region of a
circular tube. The computational code was develapdedDRTRAN
90/95 programming language and implemented on aTREN-IV
1.3 GHz computer.

First, the numerical code was validated for theecas= 1.0
(Newtonian situation) against those results preskbly Hornbeck
(1964) and Liu (1974), which employed the Finiteff€ience
Method for the solution of the same problem. Theine DIVPAG
from the IMSL Library (1991) was used to numerigdiandle the
truncated version of the system of ordinary difféia@ equation
(20), with a relative error target of ¥(rescribed by the user, for
the transformed potentials. These results were ymexl for
Re = 2000, but it should be noted that the dimeress axial

coordinate X makes the results independent of the appareTf
5.0

Reynolds number. The definition of X6 written as:
Xt== (26)

Tables 1 to 3 show the convergence behavior ofothgitudinal
velocity component at the centerline of the circuigbe for power
law indices n = 0.5; 1.0 and 1.25, a convergendb ati least three
significant digits is verified. Also, for n = 1.€he comparison with
the results presented by Hornbeck (1964) and Li974L
demonstrates a good agreement, which provideseatdialidation
of the numerical code here developed. This samé/sisds also
shown in Fig. 1, where it is observed a monotowievergence for
the longitudinal velocity component at the centexlof the circular
tube, U.

Table 1. Convergence behavior of the longitudinal velocity component at
the centerline of the circular tube for power-law index n = 0.5.

X* NC =20 NC =40 NC=60] NC=8(

0.0002116 1.017 1.021 1.024 1.025
0.0005000 1.034 1.044 1.049 1.050
0.001058 1.066 1.078 1.083 1.084
0.001250 1.075 1.088 1.093 1.094
0.005000 1.200 1.215 1.220 1.22Q
0.005288 1.207 1.222 1.227 1.227
0.01204 1.329 1.345 1.351 1.351
0.01250 1.335 1.352 1.357 1.357
0.04924 1.544 1.569 1.578 1.579
0.05000 1.546 1571 1.580 1.581
0.06250 1.566 1.592 1.602 1.603
0.06281 1.566 1.593 1.603 1.604
0.07634 1.579 1.606 1.616 1.618
0.08993 1.587 1.614 1.624 1.626

10 1.592 1.666 1.666 1.666

5.0 1.667 1.667 1.667 1.667
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Table 2. Convergence behavior of the longitudinal velocity component at
the centerline of the circular tube for power-law index n = 1.0.

X+ NC=| NC=| NC=| NC= | Hornbeck| Liu
20 40 60 80 (1964) |(1974)
0.0002114 1.015| 1.033| 1.067 1.118 - 1.100
0.000500Q 1.096| 1.111f 1.127 1.14b 1.150 -
0.001058| 1.169 1.183 1.192 1.200 - 1.210
0.001250( 1.187 1.201 1.209 1.215 1.227
0.005000{ 1.393 1.408 1.414 1.415 1.433
0.005288| 1.404 1.420 1.429 1.427 - 1.439
0.01204 | 1.6077 1.62% 1.631 1.631 - 1.644
0.01250 | 1.618 1.636 1.642 1.642 1.660
0.04924 | 1.906 1.938 1.945 1.946 - 1.971
0.05000 | 1.907 1.93% 1.946 1.947 1.970
0.06250 | 1.923 1.949 1.960 1.961 1.986
0.06281 | 1.923 1949 1.960 1.961 - 1.989
0.07634 | 1.933 1.957 1.968 1.969 - 1.996
0.08993 | 1.941 1.962 1.972 1.972 - 1.999
1.0 2.000{ 2.000 2.000 2.0Q00 - -
2.000{ 2.000 2.000 2.0Q00 - -

Table 3. Convergence behavior of the longitudinal velocity component at
the centerline of the circular tube for power-law index n = 1.25.

X* NC =10 NC =20 NC =30
0.0002116 0.9983 1.025 1.038
0.0005000 1.094 1.129 1.137

0.001058 1.185 1.219 1.227
0.001250 1.201 1.241 1.249
0.005000 1.456 1.487 1.496
0.005288 1.469 1.499 1.509
0.01204 1.704 1.739 1.751
0.01250 1.717 1.752 1.764
0.04924 1.999 2.036 2.052
0.05000 1.201 2.037 2.053
0.06250 2.023 2.050 2.064
0.06281 2.021 2.050 2.064
0.07634 2.039 2.061 2.072
0.08993 2.054 2.069 2.078

1.0 2.111 2111 2111

5.0 2.111 2111 2111
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——&——  Liu(1974)
1.4 — — El- — Hornbeck (1964)
—-O—— NC=80
——¥-- NC=60
——P»——- NC=40
1.2 ——%—-- NC=20
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I ' I ' I ' I ' I '
0 0.02 0.04 0.06 0.08 0.1

X+

Figure 1. Convergence behavior of the Uc velocity component for power-
law index n = 1.0.

Figures 2 and 3 bring a convergence behavior obtheelocity
component for the cases of power-law indices n5=add 1.25, and
the same observations are verified as for the chse= 1.0, i.e., a
monotonic convergence for this velocity component.

Ue

0 0.02 0.04

x+

0.06 0.08

Figure 2. Convergence behavior of the Uc velocity component for power-
law index n = 0.5.
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0.8 T T T T T T T
0 0.02 0.04

X+

0.06 0.08

Figure 3. Convergence behavior of the Uc velocity component for power-
law index n = 1.25.

Figure 4 illustrates the development of the londjital velocity
profiles for different power-law indices, namely=r0.5; 0.75; 1.0;
1.25 and 1.5, as function of the transversal coatdi R, at specific
axial positions X. From this figure it can be noticed that when the
power-law index increases there is an increaséeénvalue of the
centerline velocity. In regions near the tube wialls verified that
the velocity gradient diminishes as n increasess T$1due to an
increase of the apparent fluid viscosity, and cquoeatly an
increase of the wall stress. For practical engingeconsiderations,
this effect leads to an undesirable increase opthreping power to
promote the flow of this type of fluids inside aitar tubes.

—<—— n=05
— O— n=075
—6— n=10
—A - n=125
—V - - n=15
X*=0.8467x10°3 X*=0.125x102 X*=0375x102 X*=075x102 X*=0225x10"0
1
06 — )
| Aj iiv f
| il
02 —| y y N i
y 7 o e A
@ 7 o i !
q i v x v o4
02 | | I I* i '
" o
b by E.w 4:.41
06 —
4 B 3, v E
1
FTT T T T T T T T

0 04 08 12

AR
0 04 08 12 0 04 08 12 0 04 08 12 160 04 08 12 16 2

U(X+,R)

Figure 4. Development of the longitudinal velocity component along the
entrance region of the circular tube for different power-law indices.

Results for the product Fanning friction factor-apmt
Reynolds number are shown in Fig. 5 as functionthef axial
positions X, for n = 0.5; 0.75; 1.0; 1.25 and 1.5. It can beesved
that the product fRe diminishes until the fully éeped region is
reached, in which this parameter assumes a constdné. For
higher power-law indices, fRe increases, and thist fcan be
explained by an increase of the apparent fluidog#g in regions
near to the tube wall as n increases. Also, ibted that the product
fRe presents higher values in the entrance redidimeccircular tube
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due to higher velocity gradients experimented ®sénfluids in this
region.

280

fRe
1

0 T IIIIIII| T IIIIIII| T IIIIIII| T TTTTTm T TTTTmm

0.0001 0.001 0.01 0.1 1 10
X+

Figure 5. Development of the product Fanning friction factor-apparent
Reynolds number in the entrance region for different power-law indices.

Finally, Table 4 shows a comparison of the presestilts for
the product fRe in the fully developed region agtithose of
Quaresma and Macédo (1998). It is verified an éscehgreement
between the two sets of results, once again valigldihe numerical
codes developed here.

Table 4. Comparison of the product fRe in the fully developed region for
different power-law indices.

fRe
f Present work| Quaresma and Macédo (1998)
0.5 6.3246 6.32455
0.75 10.102 10.1023
1.0 16.000 16.0000
1.25 25.238 -
1.50 39.718 39.7175
Conclusions

Numerical results for the velocity field and protlid€anning
friction factor-apparent Reynolds number were poeduby using
the GITT approach in the solution of the momentiuquations for
the flow of non-Newtonian power-law fluids in citeu tubes.
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Results for velocity profiles indicate that an ie&se of the power-
law index promotes an increase of the centerlitecity in order to
obey the mass conservation principle, this way destnating the
strong influence of the viscous effects on the att@ristics of the
fluid flow. It was also observed that the prodWRefis higher for the
cases of dilatant fluids (n > 1) than for thosegpséudoplastic ones
(n < 1) due to an increase of the apparent flugtosity in regions
near to the tube wall.
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