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Numerical Solution of the Falkner-
Skan Equation Using Third-Order and 
High-Order-Compact Finite Difference 
Schemes 
We present a computational study of the solution of the Falkner-Skan equation (a third-
order boundary value problem arising in boundary-layer theory) using high-order and 
high-order-compact finite differences schemes. There are a number of previously reported 
solution approaches that adopt a reduced-order system of equations, and numerical 
methods such as: shooting, Taylor series, Runge-Kutta and other semi-analytic methods.  
Interestingly, though, methods that solve the original non-reduced third-order equation 
directly are absent from the literature. Two high-order schemes are presented using both 
explicit (third-order) and implicit compact- difference (fourth-order) formulations on a 
semi-infinite domain; to our knowledge this is the first time that high-order finite 
difference schemes are presented to find numerical solutions to the non-reduced-order 
Falkner- Skan equation directly. This approach maintains the simplicity of Taylor-series 
coefficient matching methods, avoiding complicated numerical algorithms, and in turn 
presents valuable information about the numerical behaviour of the equation. The 
accuracy and effectiveness of this approach is established by comparison with published 
data for accelerating, constant and decelerating flows; excellent agreement is observed. In 
general, the numerical behaviour of formulations that seek an optimum physical domain 
size (for a given computational grid) is discussed. Based on new insight into such methods, 
an alternative optimisation procedure is proposed that should increase the range of initial 
seed points for which convergence can be achieved. 
Keywords: laminar boundary layer, similarity analysis, high-order-compact finite differences 
 
 
 

Introduction1 

The Falkner-Skan equation, originally derived in 1931, Falkner 
and Skan (1931), is of central importance to the fluid mechanics of 
wall-bounded viscous flows. It is derived from the two-dimensional 
incompressible Navier-Stokes equations for a one-sided bounded 
flow using a similarity analysis (see Cebeci and Bradshaw (1977)) 
and its solution describes the form of an external laminar boundary 
layer in the presence of an adverse or favourable streamwise 
pressure gradient. Despite the apparent simplicity of the Falkner-
Skan equation (a one-dimensional ordinary differential equation) 
solving it accurately can be fraught with difficulty; these problems 
mainly stem from its non-linearity and third-degree order.  There are 
some examples of analytical solutions to the Falkner-Skan equations 
for special cases (see, e.g., Fang and Zhang (2008) and Magyari and 
Keller (2000)), but most studies have focused either on 
demonstrating a solution’s existence and uniqueness or finding a 
numerical/computational solution for particular boundary-layer 
conditions. 

Results for solution existence and uniqueness to the Falkner-
Skan equation can be found in Rosenhead (1963), Weyl (1942), 
Hartman (1972) and Tam (1970). In some of these works, ranges of 
validity for the boundary-layer parameters and similarity variable 
are established (see, e.g., Pade (2003)). More recently, Yang (2008) 
presents a non-existence result that places upper and lower bounds 
on, in essence, the non-dimensional wall shear stress. However, 
despite the amount of effort dedicated to this problem, this two-
point boundary value problem still lacks a general closed-form 
solution, and as such, numerical treatments are the most common 
and valuable route for its study and solution. 

                                                           
Paper received 25 October 2010. Paper accepted 21 J une 2011. 
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A raft of computational approaches and methodologies have 
been presented for the solution of the FS equation, see for example 
Hartree (1937), Asaithambii (1997), Asaithambi (1998, 2004b, 
2005), Abbasbandy (2007), Alizadeh et al. (2009) and Zhang and 
Chen (2009). The most widely used and ‘classical’ approach to 
numerical solution is to reduce the boundary value problem to an 
initial value problem via a shooting method (see Cebeci and 
Bradshaw (1977); Cebeci and Keller (1971) for a thorough 
discussion). This involves prescribing known conditions at the wall 
boundaries along with an estimate for the velocity profile’s first 
derivative at the wall, which is successively refined until known far-
field boundary conditions are satisfied. A recent development in 
shooting methods, presented by Liu et al. (2008), shows that, in fact, 
trial imposition of known boundary conditions is not necessary, as 
they can be formulated as unknowns of the solution procedure. Even 
so, shooting methods have the significant disadvantage of being 
more time consuming, as they essentially solve two or more initial 
value problems during each iteration, Asaithambi (1998), requiring 
a larger amount of computational nodes and memory capacity than 
other approaches.  Another equally significant undesirable feature of 
shooting methods is their known convergence difficulties, which 
have to be overcome with modifications that significantly increase 
algorithm complexity, Asaithambi (2004b). 

To circumvent the need for a shooting algorithm, and the 
attendant difficulties and complexities related to it, finite-difference 
schemes (FDS) can be applied directly to the Falkner-Skan as a 
boundary-value problem (i.e. not as an initial-value problem). 
Asaithambi (1998, 2004a) and Elbarbary (2005) applied low-order 
FDS (to a reduced-derivative-order equation set), and obtained 
results in excellent agreement with those from shooting methods, 
despite the low-order approximation of the difference schemes 
adopted.  Results for higher orders of accuracy have been found by 
Salama and Mansour (2005a,b) where FDS of fourth and sixth order 
are used to solve steady and unsteady two-dimensional laminar 
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boundary-layer equations. However, in the works mentioned above, 
the original third-order boundary-value problem for the Falkner-
Skan equation is either transformed into a reduced system of a first- 
and a second-order equation (to be solved by a coupled scheme) or 
solved using other complex numerical methods, some requiring 
additional adjustment coefficients to be calculated. In some cases, 
additional ‘fictitious’ end points are added, depending on the accur- 
acy and range of applicability of the particular numerical model 
proposed. Also, in addition to the mathematical complexity often 
involved, the numerical methods proposed tend to require 
significant computational time, as noted by Asaithambi (1998) and 
Salama and Mansour (2005b). 

In the present work, we show how solutions to the original 
third-order Falkner-Skan boundary value problem (BVP) can be 
obtained using FDS, without the need for complex and involved 
mathematical algorithms, and at a relatively low programming and 
computational cost compared to other approaches of the same 
accuracy. Moreover, the approach presented in this paper is 
conceptually less complex, and at the same time able to obtain 
results with the same precision and bounding error limits as those 
previously reported. As such, the procedure is instructive and 
helpful, not just in terms of solutions to the Falkner-Skan equations, 
but to the direct application of FDS in cases where, normally, either 
a reduction of derivative order or an addition of fictitious end points 
would be required. 

The paper is structured as follows. In Section 1 the Falkner-
Skan equation is introduced and briefly discussed as a two-point 
boundary value problem, along with its characteristic boundary 
conditions. Section 2 details the modifications performed in the 
formulation of the Falkner-Skan equation in order to make it 
suitable to the numerical treatment of this paper. In Sections 3, 4 
and 5, two different implementations are presented, the first using 
direct third- and fourth-order FDS, and the second using a 
methodology based on high-order-compact finite differences. In 
Sections 6 to 9 numerical results from the two schemes are 
presented and their accuracy discussed. Finally, in Section 10, some 
conclusions are drawn. 

Nomenclature 

f  = velocity function 

f   = vector with the values of f  

g  = velocity function 

h  = mesh size 
J   = Jacobian matrix of Y  

 N  = number of  discrete points in the approximation 
p  = fluid pressure 

Re = Reynolds number of the air flow, Reynolds number 
U  = free-stream velocity  
u  = x – component of velocity 
v  = y – component of velocity 
Y  = set of non-linear equations 
Z  = boundary condition function at 1=ζ  

Greek Symbols 

 α   = value of the second derivative of f  at the wall 

 β   = dimensionless pressure-gradient parameter 

 ε  = convergence criterion 
 γ  = dimensionless pressure-gradient parameter 

 ρ  = fluid density  

 η   = dimensionless spatial variable 

 κ   = accuracy order of the approximation 
 ν  = kinematic viscosity 

 ξ  = dimensionless spatial variable 

 ψ  = Falkner-Skan conventional stream function 

 ζ  = dimensionless coordinate 

Subscripts 

∞  = relative to infinite 

The Falkner-Skan Equation: a Two-Point Boundary-
Value Problem 

The Laminar boundary layers exhibiting self-similarity have 
been the subject of a large body of research as they provide useful 
insight into many key features of wall-bounded flows, as well as 
being the basis of approximate methods for calculating more 
complex, non-similar boundary-layer problems.  The Falkner-Skan 
equation is obtained when a similarity analysis is performed on the 
two- dimensional, steady, incompressible Navier-Stokes equations 
for a one-sided bounded flow. The simplified continuity and 
momentum equations are as follows: 
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wherex  is the streamwise and y  is the wall-normal coordinate, ρ  

is the fluid density, ν  is the kinematic viscosity, p  is the fluid  

pressure, and u  and v  are the −x  and −y components of 

velocity, respectively. For the boundary layer, these equations are 
subject to a simple set of boundary conditions: 
 

at     ,0=y       ,0=u        ,0=v     

at       ,∞→y     ),(xUu =                                                    (3)  

 
where U  is the free-stream velocity, which is assumed to be a 
function of x . In this paper, only walls with non-transpiration and 
no-slip are considered, hence both components of velocity at the 
wall are zero.  In order to perform a similarity analysis on Eqs. (1) 
and (2), Falkner and Skan (1931) proposed the following 
transformation: 
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ξ =                                                                              (4) 

 
and an implicit dimensionless stream function ( )[ ]yxg ,ξ  such 

that: 
 

[ ] [ ],),()(),(, yxgxxUyxx ξνξψ =                               (5) 

 
where ψ  is a conventional stream function used to define the two-

dimensional velocity field: 
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The two velocity components can be expressed in terms of  

( )ξg  as follows: 
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with the prime symbol denoting a derivative with respect to ξ . 

Using Eq. (4), Eq. (5) and Eq. (6), the momentum equation (2) can 
be rewritten, after some algebraic manipulation, as: 
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where γ  is a dimensionless pressure-gradient parameter: 

 

.
dx

dU

U

x=γ                                           

 
Note, for zero pressure gradient, when y = 0, Eq. (7) reduces to the 

Blasius equation. The boundary conditions, Eq. (3), can now be 
rewritten using definitions for the velocity components given in Eq. (6): 

 
at     0,ξ =       ,0=g        ,0=′g    

at       ,∞→ξ            ,1=′g                                                     (8)  

 
Hartree (1937) introduced an additional simplification to Eq. (7), 

defining the following linear transformation: 
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such that the Falkner-Skan equation, Eq. (7), can now be rewritten 
in its most common form: 
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where β  is the dimensionless pressure-gradient parameter: 
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The range of values for which β  is physically meaningful is 

approximately ∞<≤− β2.0  (corresponding to ∞<≤− γ09.0 . 

For 20 ≤≤ β , the physical interpretation of the solution of the 

Falkner-Skan equation is the laminar boundary layer over an infinite 
wedge of vertex angle βπ  ( 0=β  corresponds to the Blasius 

boundary layer). 
Finally, using Hartree’s transformation, the boundary 

conditions are: 
 

at     ,0=η       ,0=f        ,0=′f                                         (12) 
 

at       ,∞→η    ,1=′f                                                           (13) 
 

with the prime symbol denoting a derivative with respect to η . 

Note that transformations related to similarity analysis such as 
the one proposed by Falkner and Skan, herein presented, are 
particularly appropriate for two-dimensional boundary layers. If 
required, solutions for three-dimensional boundary layers can be 
obtained by a different transformation to that hereby discussed. 
Since the primary aim of these methodologies is to reduce the partial 
differential formulation to ordinary differential by reducing in one 
the number of spatial variables, then in the three-dimensional case, 
though slightly different, such transformation will produce a system 
of two ODEs instead of just one equation, like in the present case. A 
simple example of such transformation and the system obtained can 
be found in Hogberg and Henningson (1998). 

Computational Domain Mapping and Problem Definition  

The spatial variable η  of Eq. (10) is defined in a semi-infinite 

physical domain ),0[ ∞ . For computational purposes different 

approaches to mapping or truncating the semi-finite domain have 
been presented in Asaithambi (2004b), Asaithambi (2005), Cebeci 
and Keller (1971) and Asaithambi (2004a). Asaithambi (2005) 
highlights problems relating to stability and convergence when 
attempting to directly solve the equation for the entire mapped semi-
infinite domain. To avoid this, in the same way as in Asaithambi 
(1998, 2005); Abbasbandy (2007); Asaithambi (2004a); Salama and 
Man- sour (2005a), we identify an upper limit value of the variable  
η , denoted as ∞η , which allows a normalized finite computational 

domain to be established. This upper limit can be any value that is 
sufficiently greater than the (transformed) boundary layer thickness, 
at which point it is safe to assume the velocity profile asymptotically 
approaches the free stream limit. However, this upper limit on η  is 

not known a priori, and must, therefore, be made part of the 
solution, as will be discussed later. 

A common methodology of mapping the physical domain is to 
use ∞η  as a normalization parameter for η , and some relation 

between f  and ∞η  for the normalization of f .  Here though, f  is 

not normalized, as there is no clear advantage for doing so, with 
only η  being normalized using ∞η ; this offers a simple and 

straightforward solution to the definition of the computational 
domain. The coordinate transformation adopted here is as follows: 

 

.
∞

=
η
ηζ   

 
This maps the physical domain [ ]∞η,0  to the fixed 

computational domain [ ]1,0 . After some algebraic manipulation, 

Eq. (10) can be rewritten: 
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The boundary conditions are then: 
 
at     ,0=ζ       ,0=f        ,0=′f    

                                      (15)  

  
at       ,1=ζ      ,∞=′ ηf                                                        (16)  

 
where the prime symbol denotes a derivative with respect to ζ . 
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As mentioned previously, the value ∞η  is not known a priori, 

and must be found as part of the computational solution. Given that 
η
∞
 is significantly greater than the boundary-layer thickness 

(formally defined as the point where u = 0.99U), the function f  can 

be assumed to behave asymptotically. As such we can replace the 
boundary condition on f ′ , which requires the unknown value of  

∞η , with a boundary condition on the second derivative, i.e.: 

 

at     ,1=ζ               .02

2

==′′
ζd

fd
f                                      (17)  

 
After solution, the value of  ∞η  is found from the value of f ′ . 

The second derivative of f  is directly related to the wall shear 

stress, and is often used to characterize the solution obtained. 
Coppel (1960) showed that this value is a function of the parameter 
b for b ≥ 0, and Veldman and Van der Vooren (1980) extended this 
result for b < 0. It is common to express this relationship as a 
boundary condition: 
 

at        ,0=ζ          ( ),2

2

βα
ζ

=
d

fd                                         (18) 

 
where a is a function of b Coppel (1960). 

Method of Solution 

Numerical approaches to solving high-order derivates using 
FDS are limited by the large number of stencil points required for 
high accuracy. In the case of the Falkner-Skan equation, typically 
this is overcome by replacing the third-order boundary value 
problem with a set of two or more ordinary differential equations 
of a lower derivative order. This approach, though, has a number 
of difficulties; it requires a more complex algorithm and is 
somewhat expensive, computationally. Direct substitution of high-
order accurate finite-difference expressions into the original third-
order Falkner-Skan equation, Eq. (14), is conceptually, 
algorithmically and computationally simpler, but this has not been 
reported previously, presumably because of the lengthy algebraic 
manipulation arising from the discretization of the non-linear 
terms. In this paper, however, a direct replacement into the full 
third-order BVP has been achieved by taking advantage of modern 
symbolic manipulation software (here we have used 
MATHEMATICA ®). 

The methodology of solution proposed is to generate a direct 
high-order accurate finite-difference representation of the 
function f  and its derivatives. These expressions are substituted 

into the FS equations, which are solved using a Taylor-coefficient 
matching approach, for an initial guess of ∞η . The value of f ′  at 

1=ζ  is then used to provide a corrected value of ∞η , and the FS 

equation then resolved; the procedure is continued until a 
convergence criterion is met. What follows are the descriptions 
of two approaches that differ only in the finite-difference 
formula adopted: the first uses explicit third- and fourth-order 
accurate finite-difference stencils; the second uses an implicitly-
defined high-order compact difference scheme. To the authors’ 
knowledge, neither has previously been applied directly to the 
third-order Falkner-Skan equation in its non-reduced form. 

 

Formulation with an Explicit Third-Order Finite 
Difference Scheme 

The first approach we consider is the use of high-order 
explicitly-defined difference formulae. For the first- and second-
order derivatives off , these are fourth-order accurate expressions, 

obtained using standard Taylor expansions, with 5-point stencils. 

However, in order to preserve a minimum accuracy of )( 3hO , the 

third-order derivative was discretized using a 6-point stencil. This 
selection was chosen to experiment with fourth-order 
approximations for the equation’s non-linear terms, whereas for the 
linear term f ′′′  a lower (third) order approximation was used so as 

not to increase excessively the number of stencil points required. As 
such, this produces a formulation that is formally third-order 
accurate; however, as will be demonstrated later, in practice, it 
exhibits orders of accuracy between 3 and 4 (i.e. 

( ) ( ) ( )43 hOhOhO n ≤≤ , where n  is the effective order of 

accuracy). 
If the computational domain [ ]1,0∈ζ  is divided into 1−N  

equally spaced subintervals using N  discrete points, such that: 
 
 ,)1( hjj −=ζ     

 

for a mesh with grid size 
)1(

1
−= Nh , and if ( )jj ff ζ= , then 

the Falkner-Skan equation, Eq. (14), can be expressed in discrete 
form as follows: 
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for Nj ,...,2,1= . The boundary conditions Eq. (15), Eq. (16) and 

Eq. (17) are then: 
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In total there are N  unknowns, i.e. 1−N  values of 

jf  for 

Nj ,...,3,2=  and the value of ∞η  as the thN −  unknown. As 

mentioned above, the ( 1−N ) values for f  are solved for an initial 

predicted (or previous iteration) value of ∞η , which is subsequently 

corrected, and the procedure repeated, until convergence. 
The 5-point centred-difference formulae used for the thi −  

point (assuming a grid of equal spacing h) are: 
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For the third derivative, an asymmetric 6-point difference 

formula is used: 
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Equation (19) can be now expressed as follows: 
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with 3,...,3 −= Ni . If the terms of order )( 3hO  or higher are 

ignored, and Eq. (22) is expanded, a non-linear algebraic 
representation of Eq. (19) can be obtained. Letting if  denote a vector 

with the values of f  for a six-point stencil, pivoted at the i – th point, 

i.e.: 
 

[ ],32112 +++−−≡ iiiiii
T
i fffffff                       (23) 

 
then the non-linear algebraic expression can be expressed as follows: 
 

( ) ,0,,; =∞ηβhY mm f                                                           (24) 

 
for 3,...,3 −= Nm , with mY  being the thm−  non-linear function 

of mf  and parameters h , β  and ∞η . 

Equation (24) provides 5−N  equations for the 1−N  variables 

{ }N

jjf
2=
. The four additional equations required for a complete 

system are obtained using asymmetric difference representations of 
the boundary conditions given in Eq. (20). For the first-order 
derivative at the wall (or ‘leftmost’) boundary point, we use a 
fourth-order asymmetric 5-point difference formula: 
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which combined with the first two boundary conditions in Eq. (20), 
and ignoring the terms of accuracy equal or higher than ( )4hO , 

yields: 
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This can be expressed in a shorter form as: 
 

,0);( 31 =hY f                                                                         (27) 

 
i.e., a function Y of the values in 3f . A second complementary 

equation is obtained by replacing the boundary conditions at 0=ζ  

directly into the Falkner-Skan equation, yielding: 
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A forward-sided 4th-order accuracy finite difference formula for 

the third derivative is given by: 
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After substitution into Eq. (28) (along with Eq. (20)), and 

ignoring terms of equal or higher order than ( )4hO , it is possible to 

obtain: 
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This can be expressed in a shorter form as a function Y  of 4f   

and parameters h , β  and ∞η : 
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The two remaining equations are obtained in a similar way at 

the free-stream (or ‘rightmost’) boundary point, 1=Nζ . 

A suitable asymmetric 5-point difference formula is: 
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and using the third boundary condition in Eq. (20), and ignoring 
terms of  ( )4hO   and higher, yields: 
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This can be rewritten as follows: 
 

,0),;( 21 =∞−− ηhY NN f                                                         (33) 

 
where the subindex 1−N  has been assigned for convenience. The 
fourth, and final, additional equation is obtained by evaluating the 
Falkner-Skan equation at 1=ζ , using the boundary conditions 

∞=′ ηNf  and 0=′′Nf : 

 
.0=′′′Nf                                                                                   (34) 

 
The asymmetric backwards difference formula used to evaluate 

the third derivative is as follows: 
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and after substitution into Eq. (19), and some simplification, yields: 
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Again, this can be expressed as a non-linear function 

2−NY , 
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,0);( *
32 =−− hY NN f                                                              (36) 

 

where *
3−Nf  is now defined as a vector with components 

kf  for 

NNk ,...,6−= .  Finally, the full system of ( )1−N  equations can 

be summarized: 
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with 3,...,3 −= Nm . Now letting: 

 

[ ]NN
T ffff 121 −= Lf  

 

be a vector with the set of 1−N  variables or unknowns { }N

jjf
1=
, 

and consider the system Y  as a non-linear system in f  only. Then 
solving the non-linear system described by: 
 

( ) ,0,,; =∞ηβhfY                                                               (38) 

 
is equivalent to finding a solution to Eq. (19). 

In this work an iterative process based on a Newton-type 
method has been used to solve Eq. (38). Any Newton-type method 
seeks a solution to a non-linear problem by solving a consecutive 

sequence of linearizations of the original problem.  Letting 0f  be an 
initial guess or ‘seed point’ (here seed point means a set of values 
for the unknows at an initial iteration or starting point) for the 

unknows { }N

jjf
1=

, and letting Y  be at least once continuosly 

differentiable in f  (see Deuflhard (2006)), then a linearization with 
a general Newton-type method leads to: 
 

( ) ( ),kkkJ fYffY −=∆   ,1 kkk fff ∆+=+   ,...1,0=k         (39) 

 
where 

YJ  is the Jacobian matrix of Y  in f  defined by: 
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which has a pentadiagonal-like structure, except for the first, second 
and penultimate rows. Each element of the central (N – 5) rows of 

YJ  (rows M = 3,…,N – 3) is defined by the appropriate derivatives 

of Eq. (24). For the other entries in YJ , terms are calculated using 

appropriate derivatives of the functions 
1Y , 

2Y , 
2−NY  and 

1−NY  

defined by Eq. (27), Eq. (30), Eq. (33) and Eq. (36) respectively (in 
the interest of brevity these expressions are omitted). 

The system solved using Eq. (39) is the solution for an arbitrary 

∞η . Letting l
∞η  represent the thl −  iteration value for ∞η , lk ,f  the 

thk −  iteration of f  for a given l
∞η , and lk ,f∆  the increment 

required by the Newton-method correction within the thk −  iteration 

for a given l
∞η , the system in Eq. (38) can be expressed as follows: 

 

( ) .0,,;, =∞
llk h ηβfY                                                              (41) 

 
The general Newton-type method can now be restated as 

follows: 
 

      ( ) ( ),,,;,, lklklk hJ ∞−=∆ ηβfYffY    

 

,,,,1 lklklk fff ∆+=+     ,...1,0=k                                           (42)   

 
A convergence criterion is established, for a previously defined 

tolerance fε , on the norm of the correction: 
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f
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where 
∞

⋅ denotes an ∞L -norm. 

To find appropriate successive values for ∞η , a discrete form of 

the last boundary condition in Eq. (20) is employed as an auxiliary 
function. Using a 5-point backwards finite difference the condition 
is expressed as, 
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with lf  being the converged value of lk ,f  for a given l
∞η . In 

accordance with the asymptotic condition for the second derivative, 
this function Z  must be zero at ( )1=∞ ζη . Since Z  is an 

unknown implicit function of ∞η , finding the correct ∞η  is 

equivalent to finding the root of Z . Therefore, using a simple 
secant method as a root-finding algorithm, the process of finding 

∞η  can be written as: 
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This particular root-finding method was selected for its ease of 

implementation. A convergence criterion is defined, for a previously 

defined tolerance Zε , as follows: 

 

( ) ., Z
lZ εη ≤∞f                                                                  (46) 

Formulation with Fourth-Order Compact Finite Differences 

In this section, we describe the method for solving the Falkner-
Skan equation, Eq. (14), using the implicit compact finite difference 
schemes presented by Collatz (1966) (and extended by Lele (1992)). 

In such an approach a gain in accuracy is obtained, for the same 
stencil breadth, by satisfying each individual difference equation at 
different points, rather than just one as in standard explicit 
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difference schemes. For the current case, schemes with 5-point 
stencils were selected for all the derivatives featuring in the Falkner-
Skan equation Eq. (14). For a third-order derivative this is given by: 
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This scheme is accurate to fourth-order accuracy with a 5-point 

stencil, as compared to that adopted in the previous section, which 
used a 6-point stencil to provide a third-order accurate approximation. 
Ignoring terms of order greater than or equal to 4h  or derivatives 
greater than 6th order, the scheme can be simplified to: 
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The Falkner-Skan equation Eq. (19) can be used to obtain the 

third-order derivative at an arbitrary computational point i  using 
standard difference expressions for the first and second derivative. 
Evaluating this derivative at points 1−i , i  and 1+i  (with standard 
symmetric and asymmetric differences, preserving the overall 
accuracy and 5-point stencil), allows substitution into the implicit 
Eq. (47) leading to: 
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With i = 3,….N – 2 being a valid range for the discrete Eq. (48). 
Owing to the 5-point nature of the scheme, this only provides (N – 4) 

equations for the (N – 1) variables { }N

jjf
2=

. Here, though, Eq. (48) 

only need to be applied for the (N – 5) points defined by i = 3,….N – 3, 
as there are sufficient boundary conditions from Section 2. These 
equations are conveniently expressed as: 

 
( ) ,0,,; =∞ηβhmm fY                                                             (49)  

 
for 3,...,3 −= Nm , where 

mY  is the m – th non-linear function of fm 

and parameters h , β  and ∞η . The vector fm is as defined in Eq. (23). 

In a similar manner to the method in Section 4, three of the 
additional equations required for a complete set are provided by 

Eq. (27), Eq. (30) and Eq. (33). However, the fourth equation for this 
scheme was obtained by replacing the boundary condition Eq. (16) 
into Eq. (19) expressed at the node N, i.e.: 
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which using backwards formulas for Nf ′′  and Nf ′′′  of an appropriate 

accuracy (and ignoring terms of order greater than 4h ), becomes: 
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and completes the set of non-linear equations. This last relation can 
be written as, 
 
 

( ) ,0,;*
32 =∞−− ηhNN fY                                                           (51)  

 

where *
3−Nf  represents a vector with seven grid points centered at 

3−= Ni , in a similar fashion to the definition given by Eq. (23). In 
this way, using Eq. (27), Eq. (30), Eq. (33), Eq. (49) and Eq. (51), a 
non-linear system of (N – 1) unknowns with (N – 1) equations can be 
written as follows: 
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where 3,...,3 −= Nm .  This non-linear system is solved for f  and 

∞η  using the same method as detailed in Section 4. 

Numerical Results 

A large number of solutions to the Falkner-Skan equation have 
been reported in the literature for varying values of β  (though 

physically-relevant solutions only exist for −0.19884 ≤ b ≤ 2.0). In 
such studies, it is common to use the value of the second derivative 
at the wall (denoted as α ) as a means to evaluate the quality and 
accuracy of the solution: 
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which is directly related to the skin-friction coefficient, 
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Since, though, there is no general analytical solution, the 
accuracy of numerical solutions is commonly evaluated in an 
indirect way, without reference to a true value, by presenting results 
for α  as a limit value to a given precision. The two schemes 
proposed herein were tested for nine values of b ranging from 
−0.1988 to 2.00, in accordance with the range of values having 
physical meaning: for decelerating flows up to the flow separation 
limit, −0.19884 ≤ b ≤ 0; for accelerating flows, 0 ≤ b ≤ 2.0; and for 
constant flows, b = 0. 

The actual order of accuracy for each scheme, for each value of 
b, is inferred using a common stability analysis (see, e.g., 
Asaithambi (2005)). As the numerical method used in this work is 
of a Taylor-series coefficient matching type, the absolute error for 
α  is related to the grid size as follows: 

 

,~ καα Chh ≈−                                                                     (53)  

 
where α~  is the true value, 

hα  the converged value for a grid size 

h , C  is a proportionality constant and κ  is the accuracy order of 
the approximation, i.e. the remainder after the truncation of the 
Taylor series in the discrete formula. 

If 
1h , 

2h  and 
3h   are three different grid sizes related by: 
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the order of accuracy can be calculated from Eq. (53) as: 
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with 

1hα  , 
2hα  , 

3hα  being the computed values of α  for 
1h , 

2h  

and 3h , respectively. 

Results for Explicit Third-Order Finite Difference Scheme 

The explicit finite difference scheme of Section 4 has been 
tested using four grid sizes: h = 0.004, h = 0.002, h = 0.00125 and 
h = 0.001. All numerical tests were performed using prescribed error 

limit 10101 −×=fε  and 
15101 −×=zε , to define convergence. In all 

cases, the initial guess for ∞η  was 5.30 =∞η , though convergence 

times were fairly insensitive to this seed point, provided ∞ it wasn’t 
too large, as will be discussed later, and except for negative values 
of b. The initial guess for f  was given by 

iif ζη 00 5.0 ∞= , with no 

other requirement for the distribution being observed; tests with 
nonlinear initial functions of f  were performed, but there was no 

significant improvement in the quality of  the solution or on the rate 
of convergence. For all cases reported in this paper the convergence 
of the inner loop (associated with 

fε  for a fixed k
∞η  ) was reached 

after 5 - 7 iterations, on average; the convergence of the outer loop 
(associated with zε ) took around 20 - 25 iterations, except for some 

negative values of b which typically required more iterations. 
Results for h = 0.00125 and h = 0.002 are presented in Table 1, 

given to 6 significant figures, alongside values obtained by Salama 
and Mansour (2005b) and Asaithambi (2005, 2004a). The results 
obtained with the current explicit formulation are in almost exact 
agreement with those obtained in previous studies, in most cases 
coinciding up to 5 significant figures for the full range of b 
considered. Figure 1 shows normalized velocity profiles obtained 
using the current explicit scheme, for select values of b, at a grid 
resolution of h = 0.00125. Visual inspection shows these profiles to 
be in close agreement with others presented in the literature, e.g., 
Salama and Mansour (2005b), Schlichting and Gersten (2000) and 
Cebeci and Bradshaw (1977).  Close inspection of the data shows 
that for higher values of b, a smaller ∞η  produces an optimum 

solution, as noted in the literature (see, e.g., Asaithambi (2005); 
Salama and Mansour (2005b)).  

 

 
Figure 1. Velocity profiles for accelerating, consta nt and decelerating flows. 

 

 

Table 1. Values of αααα obtained using the current explicit scheme for var ying b. 

β  Current 
(h = 0.002) 

Current 
(h = 0.00125) 

Salama and Mansour (2005b) Asaithambi (2004a) Asaithambi (2005) 

2.0000 1.687221 1.687219 1.687218 1.687218 1.687218 
1.0000 1.232588 1.232588 1.232588 1.232588 1.232589 
0.5000 0.927680 0.927680 0.927680 0.927680 0.927680 
0.0000 0.469600 0.469600 0.469600 0.469600 0.469600 
-0.1000 0.319270 0.319270 0.319270 0.319269 0.319270 
-0.1200 0.281760 0.281761 - 0.281759 - 
-0.1500 0.216361 0.216361 0.216362 0.216358 0.216361 
-0.1800 0.128636 0.128636 0.128637 0.128624 0.128637 
-0.1988 0.005216 0.005218 0.005226 0.005239 0.005225 
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Table 2. Numerical verification of order of accuracy  of the current explicit 
scheme, κκκκ, for different  b. 

β  
1hα  

2hα  
3hα  κ  

2.0000 1.68724479 1.68722053 1.68721838 3.5 
1.0000 1.23259213 1.23258805 1.23258770 3.6 
0.5000 0.92767938 0.92767999 0.92768003 3.9 
0.0000 0.46959871 0.46959986 0.46959997 3.3 
-0.1000 0.31926893 0.31926967 0.31926975 3.3 
-0.1200 0.28175959 0.28176044 0.28176051 3.5 
-0.1500 0.21636074 0.21636132 0.21636140 3.0 
-0.1800 0.12863536 0.12863611 0.12863621 3.0 
-0.1988 0.00519723 0.00521583 0.00521790 3.2 
 
 
In Table 2 results are presented for the numerical 

approximation/verification of the order of accuracy of the current 
explicit formulation, for each value of b. Results for h1 = 0.004, 
h2 = 0.002 and h3 = 0.001, are used within Eq. (54) to obtain κ , a 
numerical measure of the accuracy order. In this way, the explicit 
formulation is verified as being at least third-order accurate (and in a 
few cases the accuracy appears to be close to fourth order). A 
second branch of solutions exist in the range 01988.0 <≤− β , 

generally known as the ‘lower branch’ solutions, whose results are 
also presented in Table 2. The present method has been able to reach 

these other solutions with adjustments in the seed values of ∞η , still 

preserving the third-order of accuracy. However, results for these 
cases, where the velocity profiles (f ′ ) are more complex and have 

no physical interpretation, have been intentionally ommited. 
 
Results for Implicit High-Order-Compact Scheme 
 

The implicit compact difference scheme of Section 5 was tested 
using grid spacing ranging from h = 0.00025 to h = 0.01, as 
presented in Table 3. The numerical tests for this scheme were 

performed with the convergence criteria 10101 −×<fε  and 
15101 −×<zε . In all cases the initial guess for ∞η  was 0.4=∞η , 

though, as in the explicit scheme, other seed values exhibited similar 
convergence rates. The initial profile for f  was chosen as 

iif ζη 00 5.0 ∞=  and since this initial guess had little influence on the 
results of the explicit scheme, no other initial profiles were 
considered. For the majority of cases for this scheme, the 
convergence of the inner loop ∞ (the one associated with 

fε  for a 

fixed k
∞η ) was reached after 5 - 7 iterations; and for the outer loop 

(associated with 
zε ) around 17 - 20 iterations (though this was 

slightly greater for some negative values of β ).  

 

 

Table 3. Comparison of values obtained for αααα with the implicit scheme for different grid sizes.  

β  01.01 =h  005.02 =h  0025.03 =h  001.04 =h  0005.05 =h  00025.06 =h  

2.0000 1.687453 1.687234 1.687219 1.687219 1.687218 1.687218 
1.0000 1.232630 1.232590 1.232588 1.232588 1.232588 1.232588 
0.5000 0.927670 0.927680 0.927680 0.927680 0.927680 0.927680 
0.0000 0.469599 0.466000 0.469600 0.469600 0.469600 0.469600 
-0.1000 0.319275 0.319270 0.319270 0.319270 0.319270 0.319270 
-0.1200 0.281767 0.281761 0.281761 0.281761 0.281761 0.281761 
-0.1500 0.216369 0.216362 0.216361 0.216361 0.216361 0.216361 
-0.1800 0.128644 0.128637 0.128636 0.128636 0.128636 0.128636 
-0.1988 0.005237 0.005220 0.005218 0.005218 0.005218 0.005218 

 
 
Results obtained from the implicit compact-difference 

formulation for h = 0.00025 to h = 0.01 are presented in Table 3, 
with values given to six significant figures. It can be seen that 
results are converged (to the precision presented) for grids as large 
as 001.0=h . In Table 4 the results of a numerical check on the 
order of accuracy of this implicit formulation (in accordance with 
Eq. (54)) are presented for varying b. Two separate accuracy orders 
are calculated: 

1κ  based on results for 01.01 =h , 005.02 =h  and 

0025.03 =h ; and 
2κ  based on results for 001.04 =h , 

0005.05 =h  and 00025.06 =h . 

The tabulated values verify the fourth-order accuracy of the 
current implicit scheme. In addition to the basic set of numerical 
tests outlined above, we have performed a group of calculations to 
examine some numerical properties of the current scheme, such as 
bounds of solution validity and convergence characteristics. In the 
solution procedure described earlier, the value of ∞η  is refined in 

order to minimize the target function Z (i.e. ∞′′f ). The function’s 

closeness to zero can be viewed as the degree to which the boundary 

condition, 0=′′∞f ,  is satisfied; i.e., if 0≈Z , then the solution 

can be assumed to be valid. This iterative refinement is the standard 
procedure for solution methods that use ∞η  for normalization, 

Asaithambi (1998, 2004b, 2005) and Abbasbandy (2007), though 
the reason and requirement for it has not previously been explicitly 
discussed. What has also been observed, but not explained, is that a 
relatively small initial (seed) value of ∞η  is required for 

convergence in these methods. In order to shed light on this 
optimization, in Fig. 2 we present the function Z  (i.e. ∞′′f ) 

evaluated for a range of ∞η  at different pressure gradient 

parameters; evidently there is a wide range of values for ∞η  that 

produce valid solutions under this criterion: 4≥∞η  for 2=β ; 

6≥∞η  for 0=β ; and 7≥∞η  for 1988.0−=β ; and this is 

independent of the grid resolution. The form of the function Z  is 
perhaps surprising, since it implies that provided an initial choice of 

∞η  is sufficiently large, a valid solution will always be obtained 

without the need for a root-finding iterative scheme. 



Duque-Daza et al. 

390 / Vol. XXXIII, No. 4, October-December 2011  ABCM  

Table 4. Numerical verification of order of accuracy  for different b under 
explicit FDS. 

b 1κ  2κ  

2.0000 3.88 3.91 
1.0000 4.04 4.54 
0.5000 3.81 4.28 
0.0000 6.31 3.80 
-0.1000 3.93 4.20 
-0.1200 3.97 3.59 
-0.1500 4.02 3.48 
-0.1800 3.96 4.39 
-0.1988 4.38 5.09 

 
 

 

Figure 2. Function ( )( )∞′′ ηfZ  for b = −0.1988 at different grid sizes, and 
for b  = 0.0 and b  = 2.0 for h = 2.5 E – 3. 

 
However, although these solutions may be valid (in that they 

satisfy the far-field boundary condition onf ′′ ) they are not 

necessarily accurate in the boundary layer itself. This is because 
there is a trade-off, in terms of accuracy, between domain size (a 
larger one improving the physical model) and resolution throughout 
the boundary layer. Note, the grid spacing referred to in this paper 
(and in most previous works) is spacing/resolution on the 
normalized computational domain ζ  or interval [0,1] and not the 

physical domain η , interval [ ]∞η,0 ; when the computational grid 

resolution is fixed and ∞η  increases, the resolution in the physical 

domain (i.e., η∆ ) reduces, hence the requirement for an ∞η  

optimization. A problem exists, though, due to the form of Z , 
which becomes very small, shallow, and numerically jagged, at high 

∞η . This makes the minimum very difficult to find if a relatively 

high value of ∞η  is chosen as a seed point; this is why the range of 

usable initial values is rather restrictive. In Fig. 3 we plot α  (i.e., 

)0(f ′′ ) against ∞η  for varying grid sizes (noting that constant grid 

size quoted is the computational grid, and is not equivalent to 
boundary-layer resolution). The values of α  are normalized with 

respect to *α , a result from the most refined simulation described 
above, and that which we will assume, for the purposes of 
discussing accuracy, to be the correct result in place of an analytical 
solution. As can be seen from the figure, for all the computational 
grids considered, the most accurate result (values approaching 

1* =α
α ) occurs at a relatively low value of ∞η , and that this 

appears at a local minimum in the variation of α  with ∞η .  

Progressively refined grids are plotted on the same graph and show 
a rapid convergence towards 1* =α

α  for larger ∞η . As an 

alternative to procedures that attempt to minimize ∞′′f , we propose 

that this local minimum in α  be sought, which will allow a far 
greater range of initial seed points to be used and produce a more 
efficient and better-behaved optimization. The constrained 
optimization for the local minimum would be formulated, using 
KKT conditions, as: 
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Figure 3. Variation of αααα (normalized with highly-resolved solution, αααα*
) for 

varying physical domain extent, ∞η . 

 
CPU Time and Accuracy 

 
An additional indication of the numerical vantage attained using 

the high-order-compact scheme compared, particularly, against a 
conventional second-order finite differences stencil was sought by 
solving Eq. (14) for b = 0 with different number of nodes and, in 
both cases, gauging consumed computational time and numerical 
accuracy. Figure 4 shows a comparison of CPU time consumption 
per number of nodes for both schemes. Computational cost is nearly 
same, but with the technique proposed in this work exhibiting a 
clear slightly lower value. Considering that a smaller number of 
more intensive iterations were required in the high-order-compact 
scheme to achieve convergence for a prescribed convergence 
criterion, in contrast with that larger number of light iterations 
necessary for the second-order stencil, it is clear that such increased 
accuracy bring about a speed-up and, therefore, an improvement 
over traditional schemes. 

The speed-up described earlier is accompanied also by another 
important aspect. For instance, Fig. 5 shows a comparison of the 
relative error produced per number of nodes for each stencil, where 
even a more striking result can be appreciated. For the same number 
of nodes the high-order- scheme attain a much more accurate 
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solution, as naturally expected, and, therefore, requiring much less 
computational time for the same level of error. Taking into 
consideration this additional aspect then, if an error level is 
considered as main objective to satisfy, the superiority of the 
scheme here employed is even more apparent in order to bring in 
both computational time saving and accurate solutions. 
 

 
Figure 4. CPU time employed for high-order and low- order finite difference. 

 

 
Figure 5. Convergence error for high-order and low- order finite difference. 

Final Discussion and Conclusions 

We have presented a computational study of the solution of the 
Falkner-Skan equation, using high-order and high-order-compact 
finite differences schemes. Even though the literature contains 
extensive treatments of the theory behind the solution of differential 
equations using Taylor-series expansions, Runge-Kutta methods and 
other semi-analytic methods, there has been a limited use and 
reporting of direct employment of Taylor-series methods for high 
orders of accuracy, despite their known advantages over 
corresponding Runge-Kutta methods of the same order. This is 
probably due to the perceived complexity involved in evaluating, 
and simplifying the terms associated with finite difference schemes 
of higher than second order. In this paper, dispelling this notion, we 
have presented two straightforward approaches to implementing 
high-order finite difference approximations directly into a third-
order nonlinear boundary value problem – the Falkner-Skan 
equation. 

The apparent complexity in dealing with the algebraic terms 
resulting from the finite difference scheme has been easily 
overcome by taking advantage of modern symbolic manipulation 
software. This allows a rapid integration between the problem 
formulation and the final programming language employed to solve 
the system of equations. The number of iterations required to find a 
converged solution was of the same order as those reported in the 

literature for similar numerical approaches, i.e. methodologies with 
two steps. 

The accuracy and effectiveness of this methodology has been 
demonstrated by comparing results with previous authors for a range 
of parameters and physical conditions (e.g. for accelerating, constant 
and decelerating flows). We have numerically verified that the 
methods are of at least third-order in the explicit case and fourth-
order in the implicit compact-difference scheme. Furthermore, the 
merit of using higher-order accuracy formulations for the non-linear 
terms has been demonstrated as greater than third-order accuracy is 
observed globally. 

Finally, a clearer understanding has been established of the 
numerical behaviour of formulations that seek an optimum 
physical domain size (for a given computational grid). Based on 
this, an alternative method is proposed for finding the optimum 
using knowledge of how the second derivative of the target 
function at the wall varies with domain size; this will increase the 
range of initial seed points for which convergence can be achieved 
in such approaches. 
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