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Numerical Solution of the Falkner-
Skan Equation Using Third-Order and
High-Order-Compact Finite Difference
Schemes

We present a computational study of the solutiothefFalkner-Skan equation (a third-
order boundary value problem arising in boundaryda theory) using high-order and
high-order-compact finite differences schemes. &la@e a number of previously reported
solution approaches that adopt a reduced-order esysof equations, and numerical
methods such as: shooting, Taylor series, Rungé&kartd other semi-analytic methods.
Interestingly, though, methods that solve the adginon-reduced third-order equation
directly are absent from the literature. Two higiter schemes are presented using both
explicit (third-order) and implicit compact- diffence (fourth-order) formulations on a
semi-infinite domain; to our knowledge this is tfisst time that high-order finite
difference schemes are presented to find numesohltions to the non-reduced-order
Falkner- Skan equation directly. This approach nims the simplicity of Taylor-series
coefficient matching methods, avoiding complicatednerical algorithms, and in turn
presents valuable information about the numericehdviour of the equation. The
accuracy and effectiveness of this approach isbéisteed by comparison with published
data for accelerating, constant and deceleratimmyvl; excellent agreement is observed. In
general, the numerical behaviour of formulationatteeek an optimum physical domain
size (for a given computational grid) is discusdgdsed on new insight into such methods,
an alternative optimisation procedure is proposedttshould increase the range of initial

seed points for which convergence can be achieved.
Keywords: laminar boundary layer, similarity analysis, highder-compact finite differences

I ntroduction

The Falkner-Skan equation, originally derived irB19Falkner
and Skan (1931), is of central importance to th&fmechanics of
wall-bounded viscous flows. It is derived from tino-dimensional
incompressible Navier-Stokes equations for a odeesibounded
flow using a similarity analysis (see Cebeci andd®haw (1977))
and its solution describes the form of an extelaainar boundary
layer in the presence of an adverse or favourableamwise
pressure gradient. Despite the apparent simplityhe Falkner-
Skan equation (a one-dimensional ordinary diffea¢nequation)
solving it accurately can be fraught with diffiulthese problems
mainly stem from its non-linearity and third-degarder. There are
some examples of analytical solutions to the Fal8iean equations
for special cases (see, e.g., Fang and Zhang (20@BMagyari and
Keller (2000)), but most studies have focused eittan
demonstrating a solution’s existence and uniquewesinding a
numerical/computational solution for particular bdary-layer
conditions.

Results for solution existence and uniqueness ¢oRalkner-
Skan equation can be found in Rosenhead (1963), \(1&y2),
Hartman (1972) and Tam (1970). In some of thes&syoanges of
validity for the boundary-layer parameters and kirty variable
are established (see, e.g., Pade (2003)). Morattgc¥ang (2008)
presents a non-existence result that places uppktoaver bounds
on, in essence, the non-dimensional wall sheasstrdowever,
despite the amount of effort dedicated to this [@ah this two-
point boundary value problem still lacks a geneckdsed-form
solution, and as such, numerical treatments aranbs common
and valuable route for its study and solution.
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A raft of computational approaches and methodokdiave
been presented for the solution of the FS equasiea,for example
Hartree (1937), Asaithambii (1997), Asaithambi (@92004b,
2005), Abbasbandy (2007), Alizadeh et al. (2009) Zhang and
Chen (2009). The most widely used and ‘classicapraach to
numerical solution is to reduce the boundary vateblem to an
initial value problem via a shooting method (seebé&x¢ and
Bradshaw (1977); Cebeci and Keller (1971) for ardghgh
discussion). This involves prescribing known coiodis at the wall
boundaries along with an estimate for the velogitgfile’s first
derivative at the wall, which is successively refiruntil known far-
field boundary conditions are satisfied. A receevelopment in
shooting methods, presented by Liu et al. (200&)ws that, in fact,
trial imposition of known boundary conditions istmecessary, as
they can be formulated as unknowns of the solysirmeedure. Even
so, shooting methods have the significant disadgntof being
more time consuming, as they essentially solve dwemore initial
value problems during each iteration, Asaithami8i9g), requiring
a larger amount of computational nodes and memapadty than
other approaches. Another equally significant sirdble feature of
shooting methods is their known convergence dillies, which
have to be overcome with modifications that siguaifitly increase
algorithm complexity, Asaithambi (2004b).

To circumvent the need for a shooting algorithmd ahe
attendant difficulties and complexities relatedtidinite-difference
schemes (FDS) can be applied directly to the FalEkan as a
boundary-value problem (i.e. not as an initial-ealproblem).
Asaithambi (1998, 2004a) and Elbarbary (2005) applow-order
FDS (to a reduced-derivative-order equation sety abtained
results in excellent agreement with those from shgomethods,
despite the low-order approximation of the differenschemes
adopted. Results for higher orders of accuracyehmeen found by
Salama and Mansour (2005a,b) where FDS of founthsartth order
are used to solve steady and unsteady two-dimemisiaminar
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boundary-layer equations. However, in the works tineed above,
the original third-order boundary-value problem tte Falkner-
Skan equation is either transformed into a redsgstem of a first-
and a second-order equation (to be solved by alediggcheme) or
solved using other complex numerical methods, soegiring

additional adjustment coefficients to be calculatedsome cases,
additional ‘fictitious’ end points are added, degiey on the accur-
acy and range of applicability of the particularmarical model

proposed. Also, in addition to the mathematical glaxity often

involved, the numerical methods proposed tend touire

significant computational time, as noted by Asaitba (1998) and
Salama and Mansour (2005b).

In the present work, we show how solutions to thigimel
third-order Falkner-Skan boundary value problem B\tan be
obtained using FDS, without the need for compled amolved
mathematical algorithms, and at a relatively lowgsamming and
computational cost compared to other approacheshef same
accuracy. Moreover, the approach presented in faper is
conceptually less complex, and at the same time #&blobtain
results with the same precision and bounding dimdgits as those
previously reported. As such, the procedure isruicive and
helpful, not just in terms of solutions to the Fedk-Skan equations,
but to the direct application of FDS in cases whaoemally, either
a reduction of derivative order or an additioniofifious end points
would be required.

The paper is structured as follows. In Section & Ealkner-
Skan equation is introduced and briefly discussed @wo-point
boundary value problem, along with its characteristoundary
conditions. Section 2 details the modificationsfgened in the
formulation of the Falkner-Skan equation in order make it
suitable to the numerical treatment of this paperSections 3, 4
and 5, two different implementations are presentieé,first using
direct third- and fourth-order FDS, and the secamsing a
methodology based on high-order-compact finite edéffices. In
Sections 6 to 9 numerical results from the two su®e are
presented and their accuracy discussed. Finallgettion 10, some
conclusions are drawn.

Nomenclature

f = velocity function

f = vector with the values of

g = velocity function

h  =mesh size

J = Jacobian matrix ofY

N  =number of discrete points in the approximation

p = fluid pressure

Re =Reynolds number of the air flow, Reynolds number
U =free-stream velocity

u =x-component of velocity

VvV =y-component of velocity

Y =setof non-linear equations

Z = boundary condition function af =1

Greek Symbols

a = value of the second derivative df at the wall
[ =dimensionless pressure-gradient parameter
£ = convergence criterion

Y =dimensionless pressure-gradient parameter
L =fluid density

7 =dimensionless spatial variable
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K = accuracy order of the approximation

V  =kinematic viscosity

& =dimensionless spatial variable

Y = Falkner-Skan conventional stream function
{ =dimensionless coordinate

Subscripts

oo = relative to infinite

The Falkner-Skan Equation: a Two-Point Boundary-
Value Problem

The Laminar boundary layers exhibiting self-sintiarhave
been the subject of a large body of research asptwvide useful
insight into many key features of wall-bounded fipvas well as
being the basis of approximate methods for calmgatmore
complex, non-similar boundary-layer problems. Hakner-Skan
equation is obtained when a similarity analysipasformed on the
two- dimensional, steady, incompressible Naviek8soequations
for a one-sided bounded flow. The simplified couniiy and
momentum equations are as follows:

ou ov

—+-—=0, @
ox oy

2
WM Mo _1dp, OU @
X pdx  dy

whereX is the streamwise ang is the wall-normal coordinatep
is the fluid density,V is the kinematic viscosityp is the fluid
pressure, andu and v are the Xx— and y—components of

velocity, respectively. For the boundary layer,séhequations are
subject to a simple set of boundary conditions:

at
at

y=0, u=0

®3)

where U is the free-stream velocity, which is assumed ¢oab
function of X. In this paper, only walls with non-transpiratiand

no-slip are considered, hence both components lotcite at the
wall are zero. In order to perform a similarityalysis on Egs. (1)
and (2), Falkner and Skan (1931) proposed the \idlig

transformation:

Sy
VX

and an implicit dimensionless stream functitg{f(x, y) such
that:

wlx &% y)] = JU ()vxglé(x y)],

where {// is a conventional stream function used to defiresttvo-
dimensional velocity field:

(4)

(%)

and vy= —%
ox
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The two velocity components can be expressed imsteof

g({) as follows:
Wwwg
2\U dx ™

with the prime symbol denoting a derivative witrspect to .

Using Eq. (4), Eq. (5) and Eg. (6), the momentumagign (2) can
be rewritten, after some algebraic manipulation, as

dg)' |,
dé ’

where ) is a dimensionless pressure-gradient parameter:

1

2\/?(69'—9)-

u=Ug' and y== (6)

d’g WAz

)
a&® 2

2
dg ., 1-

gdfz

,=xdu
U dx’
Note, for zero pressure gradient, wiyen 0, Eq. (7) reduces to the

Blasius equation. The boundary conditions, Eq. (&n now be
rewritten using definitions for the velocity comgoits given in Eq. (6):

at
at

é=0,
oo,

g=0, 0,

g’ =
g'=1 (8)

Hartree (1937) introduced an additional simplifiatto Eq. (7),
defining the following linear transformation:

:Lﬂ' and f:7y+1
n,/zf ,/29,

such that the Falkner-Skan equation, Eq. (7), cam Ipe rewritten
in its most common form:

3 2 2
d f+fd f+,81— ﬂ
dp®  dp? dn

where £ is the dimensionless pressure-gradient parameter:

(9)

(10)

0,

2
p="=r (11)
y+1
The range of values for whiclg is physically meaningful is
approximately — 0.2 < B <o (corresponding to- 009< y<co.
For 0< B < 2, the physical interpretation of the solution o th

Falkner-Skan equation is the laminar boundary layer an infinite
wedge of vertex anglegn (£ =0 corresponds to the Blasius

boundary layer).

Finally, using Hartree’s transformation, the bouryda
conditions are:

at n7=0 f=0 f'=0, (12)

aa ) -, f'=1 (13)
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with the prime symbol denoting a derivative witBpect to/) .

Note that transformations related to similarity lgsis such as
the one proposed by Falkner and Skan, herein pesterare
particularly appropriate for two-dimensional boundaayers. If
required, solutions for three-dimensional boundeyers can be
obtained by a different transformation to that bgrealiscussed.
Since the primary aim of these methodologies i®tice the partial
differential formulation to ordinary differentialybreducing in one
the number of spatial variables, then in the thtieeensional case,
though slightly different, such transformation wiloduce a system
of two ODEs instead of just one equation, likehia present case. A
simple example of such transformation and the systbtained can
be found in Hogberg and Henningson (1998).

Computational Domain M apping and Problem Definition

The spatial variablgy of Eq. (10) is defined in a semi-infinite
physical domain [0,«). For computational purposes different
approaches to mapping or truncating the semi-fidiéenain have
been presented in Asaithambi (2004b), AsaithamB0%2, Cebeci
and Keller (1971) and Asaithambi (2004a). Asaithar(®005)
highlights problems relating to stability and corgence when
attempting to directly solve the equation for thére mapped semi-
infinite domain. To avoid this, in the same wayiasAsaithambi
(1998, 2005); Abbasbandy (2007); Asaithambi (2008ajama and
Man- sour (2005a), we identify an upper limit vahkfethe variable
n, denoted agp_, which allows a normalized finite computational
domain to be established. This upper limit can e \slue that is
sufficiently greater than the (transformed) bougdayer thickness,
at which point it is safe to assume the velocigfite asymptotically
approaches the free stream limit. However, thiseafimit on 77 is
not known a priori, and must, therefore, be made p& the
solution, as will be discussed later.

A common methodology of mapping the physical donisaito
use /7, as a normalization parameter fgr, and some relation

betweenf ands_ for the normalization off . Here though,f is

not normalized, as there is no clear advantagedfimg so, with
only ;7 being normalized usingy_; this offers a simple and

straightforward solution to the definition of theonsputational
domain. The coordinate transformation adopted iseas follows:

This maps the physical domair{o,qw] to the fixed

computational domair{o;l_]. After some algebraic manipulation,
Eqg. (10) can be rewritten:

2
j;‘; .t 3;‘; -, ,8(3;) +13B=0, 14)
The boundary conditions are then:

at ¢=0 f=0, f'=0, (15)
aa ¢=1 f'=n,, (16)

where the prime symbol denotes a derivative widipeet tol .
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As mentioned previously, the valug_ is not known a priori, Formulation with an Explicit Third-Order Finite

and must be found as part of the computationattisoluGiven that Differ ence Scheme
N IS significantly greater than the boundary-layédrckness
(formally defined as the point whewe= 0.99J), the functionf can
be assumed to behave asymptotically. As such wereglace the
boundary condition onf’, which requires the unknown value of

The first approach we consider is the use of higleo
explicitly-defined difference formulae. For thesfir and second-

order derivatives of , these are fourth-order accurate expressions,
obtained using standard Taylor expansions, withoiBtpstencils.
However, in order to preserve a minimum accurac@ﬁhs), the
third-order derivative was discretized using a @patencil. This

1., » with a boundary condition on the second deriatie.:

2
at ¢ =1 "= d”f =0. (17) selection was chosen to experiment with fourth-orde
dg? approximations for the equation’s non-linear termbBereas for the
linear term f " a lower (third) order approximation was used so as
After solution, the value ofyy_ is found from the value of " not to increase excessively the number of stemiiitp required. As

The second derivative of is directly related to the wall shear Such. this produces a formulation that is formathyrd-order
. . . . accurate; however, as will be demonstrated laterpriactice, it
stress, and is often used to characterize the isoluibtained.

Coppel (1960) showed that this value is a functibthe parameter eXhIEItS ornders T achcuracy .betvr\:een ff 3 . and d 4 E‘I'e'
pfor 5> 0, and Veldman and Van der Vooren (1980) exteribisd O(h )5 O(h )S O(h ) where n is the effective order o

result for 8 < 0. It is common to express this relationshipaas accuracy).
boundary condition: If the computational domair D[O,l] is divided into N -1

equally spaced subintervals usify discrete points, such that:

d?f
at =0, — (18)
4 a0 a(,B),

¢, =(i-Dh

wherea s a function ofs Coppel (1960). for a mesh with grid sizé, = %N _y and if f, = f((j ). then
M ethod of Solution the Falkner-Skan equation, Eq. (14), can be expdess discrete

. . . . . form as follows:
Numerical approaches to solving high-order derivatising

FDS are limited by the large number of stencil p@irequired for " " ,
high accuracy. In the case of the Falkner-Skan tguatypically fj 1. fj fj ‘Uwﬁ(fj )2 +’7°3°,3 =0, (19)
this is overcome by replacing the third-order baanydvalue
problem with a set of two or more ordinary diffetiah equations for j=12...,N. The boundary conditions Eg. (15), Eqg. (16) and
of a lower derivative order. This approach, thoulghs a number E .

e . . . . g. (17) are then:
of difficulties; it requires a more complex algbmt and is
somewhat expensive, computationally. Direct subnstih of high-
order accurate finite-difference expressions it ariginal third-
order Falkner-Skan equation, Eq. (14), is concdptua
algorithmically and computationally simpler, butstihas not been In total there areN unknowns, i.e.N —1 values of f for
reported previously, presumably because of thethanglgebraic !
manipulation arising from the  discretization of tmen-linear ] = 23..,N and the value ofy_ as the N -th unknown. As
terms. In this paper, however, a direct replaceniertt the full mentioned above, theN —1) values for f are solved for an initial

thlrd-oerer BVP _has b_een achieved by taking adgmtt modern Bredicted (or previous iteration) value gf , which is subsequently
symbolic manipulation software (here we have use %

MATHEMATICA ®). corrected, and the procedure repeated, until cgenee.

The methodology of solution proposed is to genesatkrect The 5-point centred-difference formulae used foe th-th
high-order accurate finite-difference representatiof the point (assuming a grid of equal spacmare:
function f and its derivatives. These expressions are sutestit

f,=0, f'=0 f\=n, ;=0 (20)

into the FS equations, which are solved using dofaypefficient f_r:i(f_ —8f +8f.—f )+ O(h“)
matching approach, for an initial guess/pf. The value of f' at 'oqont o T T e
{ =1 is then used to provide a corrected valuggf and the FS fr= 1 (_ f_, +16f_ —30f +16f, - f. 2)+ O(h“)
i 2 i— i~ i i+ i+ "
equation then resolved; the procedure is continuedil a 12h
convergence criterion is met. What follows are thescriptions ) o ] ) )
of two approaches that differ only in the finiteffdience For the third derivative, an asymmetric 6-point fefiénce

formula adopted: the first uses explicit third- afudirth-order formula is used:

accurate finite-difference stencils; the secondsuwee implicitly-

defined high-order compact difference scheme. Te d@hbthors’ w1 _ _ _
knowledge, neither has previously been appliedctliyeto the P 4h3( fio = fiy #1016 —14F,, + 71, fi+3) (21)

third-order Falkner-Skan equation in its non-realf@m.
q + O(hB)
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Equation (19) can be now expressed as follows:

- fi,—f,+10f -14f,  +7f., - fi.;
4h®

+1, fi[_ fi, +16f,, _12?]} +16f,, - fi—zj (22)
f,-8f_ +8f, —f,.,)
—nwﬂ( T Zj +n2B=0,

with j = 3...,,N - 3. If the terms of orderQ(h®) or higher are
ignored, and Eq. (22) is expanded, a non-linearebaltic
representation of Eq. (19) can be obtained. Let[ingenote a vector
with the values off for a six-point stencil, pivoted at tie- th point,
ie.:

fiT = [fi—z fi—1 fi fi+1 fi+2 1:i+3]’ (23)

then the non-linear algebraic expression can beesegpd as follows:

Yolfnih Bn.) =0, (24)

for m=3...,N -3, with Y. being them—th non-linear function
of f and parameterll, g ands, .

Equation (24) provideN —5 equations for theN—1 variables
{fj}'_“z. The four additional equations required for a ctatg
j=
system are obtained using asymmetric differenceesemtations of
the boundary conditions given in Eq. (20). For tlirst-order

derivative at the wall (or ‘leftmost’) boundary pti we use a
fourth-order asymmetric 5-point difference formula:

1
fi'= E(_ 25f; +48f;,, -36f,, -16f,; _3fi+4) (25)

+ O(h“),

which combined with the first two boundary conditgoin Eq. (20),
and ignoring the terms of accuracy equal or highan O( 4),
yields:

48f,-36f, +16f, - 31,
12h

This can be expressed in a shorter form as:

Y,(f5;h) =0, (27)

i.e., a functionY of the values inf,. A second complementary

equation is obtained by replacing the boundary itmms at 7 =0
directly into the Falkner-Skan equation, yielding:

f"+ niB=0.

A forward-sided 4th-order accuracy finite differerformula for
the third derivative is given by:

(28)

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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- -+ = . + .
i"'=i3 491, +2321,,, - 461f,,, + 496, + of)
8h -307f,, +104f, —15f,,

After substitution into Eqg. (28) (along with Eq.0{2, and
ignoring terms of equal or higher order th@th* |, it is possible to
obtain:

232f, - 461f, + 4961, - 3071, +104f, —15

f
8h? “+1.8=0.

(29)

This can be expressed in a shorter form as a famdfi of f,

and parameterfl, g and7},,:

Y,(f,;h,B.n,)=0. (30)

The two remaining equations are obtained in a amitay at
the free-stream (or ‘rightmost’) boundary poigt, =1.

A suitable asymmetric 5-point difference formula is

f’\":i 3fy.,—16f,_,+36f,_, +O(h4), (31)
12h -48f,_, +25f

and using the third boundary condition in Eq. (28d ignoring
terms of O(h“) and higher, yields:

3tyq=161,.3+36fy, ~ 481y, + 256y (3
12h ° T

This can be rewritten as follows:

Yya(fy_zihin,) =0, (33)

where the subindedN —1 has been assigned for convenience. The
fourth, and final, additional equation is obtairteg evaluating the
Falkner-Skan equation ag =1, using the boundary conditions

fy =1, and f =0:

f=0. (34)

The asymmetric backwards difference formula useeviduate
the third derivative is as follows:

fN'"=i3 15f, , -104f, , +307f,_, - 496f, , +ofn)
8h +461f,_, —232f,_, +49f,

and after substitution into Eq. (19), and some &fioation, yields:

15f, -104f, . +307f, , - 496, .
8h?
, 461f,_, ~232f, , +49f, _
8h?

(35)
0.

Again, this can be expressed as a non-linear fomdg_, ,

October-December 2011, Vol. XXXIII, No. 4 / 385



Yy_o(fusih) =0, (36)

where f | _,
k=N-§...,N. Finally, the full system ofN —1) equations can

be summarized:

is now defined as a vector with componertts for

vi(fs)
Yz(f4;h1ﬂv,7w)

: (37)
Y(FihBn.)=| Yalfwih Bin.,)
Yoo (Fasih)
Yya(fuz:hi,)

with m= 3...,N — 3. Now letting:
fr :[fl for fus fN]

be a vector with the set dl —1 variables or unknown{fj}'_\‘ L

j=
and consider the syste as a non-linear system fn only. Then
solving the non-linear system described by:

Y (F;h,4.1.)=0,

is equivalent to finding a solution to Eqg. (19).

In this work an iterative process based on a Newype
method has been used to solve Eq. (38). Any Newytpa-method
seeks a solution to a non-linear problem by sohdangonsecutive

sequence of linearizations of the original probldretting f° be an
initial guess or ‘seed point’ (here seed point nsearset of values
for the unknows at an initial iteration or startipgint) for the

(38)

Duque-Daza et al.

The system solved using Eq. (39) is the solutignafo arbitrary
n., - Letting 7', represent thd —th iteration value forp,, f*' the

k—th iteration of f for a givens, and Af*' the increment
required by the Newton-method correction within the th iteration
for a givenqlo , the system in Eq. (38) can be expressed as fallow

Y(f<';h,B.1.)=0. (41)

The general Newton-type method can now be restaked
follows:

JY(fk,l )Afk,l :—Y(fk;h,ﬂ,ﬂl,),

feor =t e A k= 04... (42)
A convergence criterion is established, for a pesly defined

tolerance‘i‘f , on the norm of the correction:

ot | <&, (43)

wherel[[ll denotes arl, -norm.

To find appropriate successive values fgr, a discrete form of

the last boundary condition in Eq. (20) is employsdan auxiliary
function. Using a 5-point backwards finite diffecenthe condition
is expressed as,

Z(fl’””):lzlh2

(35, —104f,_, +114f,_, —56f,_, +11f,_,),
(44)

with f' being the converged value 6f' for a given n.. In
accordance with the asymptotic condition for theosel derivative,

unknows{fj}:_\':l, and letting Y be at least once continuosly this function Z must be zero an((:]_)_ Since Z is an

differentiable inf (see Deuflhard (2006)), then a linearization with!nknown implicit function of 7., finding the correctsy, is

a general Newton-type method leads to:
3, )ark = -y (f<) fer=fr+nff, k=01.. (39

where J,, is the Jacobian matrix df in f defined by:

9y, oM

of, of,,
J (\f)= : : ,
() Y, Y,

of, of,,

which has a pentadiagonal-like structure, excepttfe first, second
and penultimate rows. Each element of the cenitat §) rows of

J, (rowsM = 3,...N - 3) is defined by the appropriate derivative
of Eq. (24). For the other entries i, , terms are calculated using Sk

appropriate derivatives of the functiong, Y,, Y,_, andY,_,

defined by Eq. (27), Eq. (30), Eq. (33) and Eq.) (@pectively (in
the interest of brevity these expressions are ed)itt

386 / Vol. XXXIIl, No. 4, October-December 2011

equivalent to finding the root oZ . Therefore, using a simple
secant method as a root-finding algorithm, the @sscof finding
n., can be written as:

/1 N/
- Z| _Zl—l Zl'

1+

nt=n., (45)

This particular root-finding method was selectedife ease of

(40) implementation. A convergence criterion is definfed,a previously

defined tolerancé‘Z , as follows:

‘Z(f',/]w} <e,. (46)

SFormulation with Fourth-Order Compact Finite Differences

In this section, we describe the method for soltimg Falkner-
an equation, Eq. (14), using the implicit comgagte difference
schemes presented by Collatz (1966) (and extengléelb (1992)).

In such an approach a gain in accuracy is obtafioedhe same
stencil breadth, by satisfying each individual eliéince equation at
different points, rather than just one as in statidaxplicit

ABCM
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difference schemes. For the current case, schenitbs Sapoint
stencils were selected for all the derivativesugag in the Falkner-
Skan equation Eq. (14). For a third-order derivathis is given by:

2

h?

+Lht0 =0
60

fily + 21" £ + (fi—z -2fi +2f, - fi+2)

This scheme is accurate to fourth-order accuratly wi5-point
stencil, as compared to that adopted in the previmction, which
used a 6-point stencil to provide a third-ordeaate approximation.
Ignoring terms of order greater than or equalhtb or derivatives
greater than 6th order, the scheme can be sinaptiie

fo 4267 17
) ()

+F(fi_2 -2f_ +2f, - fi+2) =0

The Falkner-Skan equation Eq. (19) can be useddtairothe
third-order derivative at an arbitrary computatiopaint i using
standard difference expressions for the first ascbsd derivative.
Evaluating this derivative at poinis-1, i andi+1 (with standard
symmetric and asymmetric differences, preserving tverall
accuracy and 5-point stencil), allows substitutioto the implicit
Eq. (47) leading to:

n.B —3fi, —10f , +18f -6, + fi., ’
” 12h
-n.f. 11f,, - 20f,, +6f +4f, - f.,
0 12n°
f._,—-8f  +8f, —f
+ i-2 i-1 i+l i+2
214 ( 12h j (48)
- f,_, +16f_, —30f, +16f,,, - f,
_ f i-2 i-1 i i+l i+2
o[t )
- f,_, +6f_ —18f, +10f , +3f,, )’
+ i-2 i-1 i i+l i+2
st o
-n_f. - fi, +4f, +6f —20f,, +11f.,
o Ti+l 12h2
_4’75 + 2 (fi—2_2fi—1+2fi+1_ fi+2)=0’

n?

Eq. (27), Eq. (30) and Eg. (33). However, the fowtuation for this
scheme was obtained by replacing the boundary tondtq. (16)
into Eq. (19) expressed at the nddla.e.:

fr+n, fyfh =0

which using backwards formulas fdv; and f,/ of an appropriate

accuracy (and ignoring terms of order greater thém becomes:

15f,; ~104f, ; +307f,, ~496f, , +461f, , ~232f,, +49f, 29 ,
8n’ 15 "
et -10f, +61f,_, ~156f,_, +2214fN_2 -154f,, +45f, 137 ©=q
12h 18C

(50)

and completes the set of non-linear equations. [Eistsrelation can
be written as,

YN—2(f;1—3;ha’7w): 0, (51)

where f .

i =N -3, in a similar fashion to the definition given bg.H23). In
this way, using Eq. (27), Eq. (30), Eq. (33), ER)(and Eq. (51), a
non-linear system ofN— 1) unknowns withN — 1) equations can be
written as follows:

represents a vector with seven grid points cedtate

Yi(f1:h)
Yz(f4;h,,8,/7w)

52
Y(t:h,80.)= ©2

Y, (fnihB.) |
YN—Z(f;l—S;hinm)
YN—l(fN—Z;h’”oo)

wherem= 3...,N —3. This non-linear system is solved f¢r and
1., using the same method as detailed in Section 4.

Numerical Results

A large number of solutions to the Falkner-Skanatigm have
been reported in the literature for varying valwés 5 (though

physically-relevant solutions only exist for —0.B38< 5 < 2.0). In

With i = 3,...N — 2 being a valid range for the discrete Eq. (48)uch studies, it is common to use the value os#wnd derivative

Owing to the 5-point nature of the scheme, thiy gmnbvides N — 4)

at the wall (denoted ag) as a means to evaluate the quality and

equations for theN — 1) variables{fj}_N , Here, though, Eq. (48) accuracy of the solution:
j=

only need to be applied for thi £ 5) points defined biy=3,...N—3,
as there are sufficient boundary conditions fronetiBe 2. These
equations are conveniently expressed as:

Yo (fih, 8..) =0, (49)

for m=3...,N-3, wherer is them — th non-linear function of

and parameterh, £ andp_ . The vectof is as defined in Eq. (23).

In a similar manner to the method in Section 4e¢hof the
additional equations required for a complete set @ovided by

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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d*f

= i

’
n=0

which is directly related to the skin-friction ciefent,
20ly+1
c, =2,
Re,
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Since, though, there is no general analytical swiutthe
accuracy of numerical solutions is commonly evadain an
indirect way, without reference to a true value pogsenting results
for ¢ as a limit value to a given precision. The two esoks
proposed herein were tested for nine valuesgafanging from
—-0.1988 to 2.00, in accordance with the range dfies having
physical meaning: for decelerating flows up to flosv separation
limit, —0.19884< g < 0; for accelerating flows, 8 5 < 2.0; and for
constant flowsg = 0.

The actual order of accuracy for each scheme,doh @alue of
S, is inferred using a common stability analysis e(se.g.,
Asaithambi (2005)). As the numerical method usethis work is
of a Taylor-series coefficient matching type, thesaute error for
a is related to the grid size as follows:

a-a, =Ch", (53)

Duque-Daza et al.

cases, the initial guess fgy_ was p° = 35, though convergence
times were fairly insensitive to this seed poinhyided « it wasn't
too large, as will be discussed later, and excephégative values
of 5. The initial guess forf was given byf° =0572Z,, with no
other requirement for the distribution being observtests with
nonlinear initial functions off were performed, but there was no
significant improvement in the quality of the sidm or on the rate
of convergence. For all cases reported in this ipygeconvergence
of the inner loop (associated with, for a fixed /7°t ) was reached

after 5 - 7 iterations, on average; the convergaidle outer loop
(associated withe, ) took around 20 - 25 iterations, except for some
negative values gf which typically required more iterations.

Results forh = 0.00125 and h = 0.002 are presented in Table 1,
given to 6 significant figures, alongside valuesadted by Salama
and Mansour (2005b) and Asaithambi (2005, 2004&g fesults
obtained with the current explicit formulation arealmost exact

where g is the true valueq, the converged value for a grid size 3greement with those obtained in previous studiesnost cases
h, C is a proportionality constant angl is the accuracy order of coinciding up to 5 significant figures for the futbnge of 5

the approximation, i.e. the remainder after then¢aiion of the
Taylor series in the discrete formula.
If h, h, andh, are three different grid sizes related by:

_h _h,
h =-t, h,=-2,
) 2

the order of accuracy can be calculated from EB). 45:

a., —a
IOQE h2 hlj
K= Qpg — 0y

Jlog2

, (54)

with Ay Oy s g being the computed values af for hr h2
and h3, respectively.

Resultsfor Explicit Third-Order Finite Difference Scheme

The explicit finite difference scheme of Sectionhds been
tested using four grid sizel:= 0.004,h = 0.002,h = 0.00125 and
h = 0.001. All numerical tests were performed usingspribed error

_ _ _ -15 ) ) . . )
limit £, =1x10 10 and &, =1x107" | to define convergence. In all Figure 1. Velocity profiles for accelerating, consta

Table 1. Values of a obtained using the current explicit scheme for var

considered. Figure 1 shows normalized velocity ifg®fobtained
using the current explicit scheme, for select valoég, at a grid
resolution ofh = 0.00125. Visual inspection shows these profites t
be in close agreement with others presented initirature, e.g.,
Salama and Mansour (2005b), Schlichting and Gerg&ea0) and
Cebeci and Bradshaw (1977). Close inspection efddta shows
that for higher values of, a smallersy produces an optimum

solution, as noted in the literature (see, e.gaithambi (2005);
Salama and Mansour (2005b)).

L | R
S2erw
Sowmoo

Gro

t

i
3

—— [=-0.198§|

0 1 2 3 4 5 6
n

nt and decelerating flows.

ying B.

Y& (hiuggr(])tz) (h :Cg.r(r)%rltzs) Salama and Mansour (2005&)) Asaithambi (2004a) Azaibi (2005)
2.0000 1.687221 1.687219 1.687218 1.687218 1.687218
1.0000 1.232588 1.232588 1.232588 1.232588 1.232589
0.5000 0.927680 0.927680 0.927680 0.927680 0.927680
0.0000 0.469600 0.469600 0.469600 0.469600 0.469600
-0.1000 0.319270 0.319270 0.319270 0.319269 0.31927
-0.1200 0.281760 0.281761 - 0.281759 -

-0.1500 0.216361 0.216361 0.216362 0.216358 0.21636
-0.1800 0.128636 0.128636 0.128637 0.128624 0.12863
-0.1988 0.005216 0.005218 0.005226 0.005239 0.0D522
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Table 2. Numerical verification of order of accuracy
scheme, K, for different B.

of the current explicit

these other solutions with adjustments in the sedaes ofzy_, still
preserving the third-order of accuracy. Howevesuls for these

i ay, a, Qs K cases, where the velocity profileg {) are more complex and have
2.000( | 1.6872447 | 1.6872205 | 1.6872183 | 3.5 no physical interpretation, have been intentionaitymited.
1.0000 | 1.23259213 1.23258805 1.23258770 R.6 L
0.500( | 0.9276793 | 0.9276799 | 0.9276800 | 3.2 Resultsfor Implicit High-Order-Compact Scheme
0.0000 | 0.46959871 0.46959986 0.46959997 B.3 o . .
20.100( | 03192689 | 0.3192696 | 0.3192697 | 3.3 The implicit compact difference scheme of Sectionds tested
-0.120(_| 0.2817595 | 0.2817604 | 0.2817605 | 3.5 using grid spacing ranging fro = 0.00025 toh = 0.01, as
0.1500 | 021636074 021636182 0.21636140 B.o Presented in Table 3. The numerical tests for suseme were
-0.180( | 0.1286353 | 0.1286361 | 0.1286362 | 3.C performed with the convergence criterigd; < 1x10™ and
-0.1988 | 0.00519723 0.00521583 0.00521790 B.2 £ <1x107°, In all cases the initial guess for, was /), = 40,

though, as in the explicit scheme, other seed gadubibited similar

In Table 2 results are presented for the numericgenvergence rates. The initial profile fof was chosen as

approximation/verification of the order of accuragfythe current
explicit formulation, for each value gf. Results foth, = 0.004,
h, = 0.002 anch, = 0.001, are used within Eq. (54) to obta#n a
numerical measure of the accuracy order. In thig, wae explicit

formulation is verified as being at least third-era@ccurate (and in a

few cases the accuracy appears to be close tohfarder). A
second branch of solutions exist in the range.1988< £ <0,

generally known as the ‘lower branch’ solutions,oaf results are
also presented in Table 2. The present methodédes dible to reach

Table 3. Comparison of values obtained for

f®=0572¢; and since this initial guess had little influerarethe
results of the explicit scheme, no other initialofjles were
considered. For the majority of cases for this s@he the
convergence of the inner loop (the one associated with, for a

fixed ¥ ) was reached after 5 - 7 iterations; and for tieoloop

(associated withg,) around 17 - 20 iterations (though this was
slightly greater for some negative valuespy.

a with the implicit scheme for different grid sizes.

B h,=001 | h,=0005 | h,=00025 | h,= 0001 | h = 00005 | h,=0.00025
2.0000 | 1.687453|  1.687234 1.687219 1.687219 1.687218 1.687218
1.0000 | 1.232631 | 1.23259 1.232!8¢8 1.23258 1.23258 1.23258
0.5000 | 0.927670 0.927680 0.927680 0.927680 0.927680 0.927680
0.0000 | 0.469599]  0.466000 0.469600 0.469600 0.469600 0.469600
-0.1000 | 0.319275]  0.319270 0.319270 0.319270 031927 0.319270
-0.1200 | 0.281767 0.281761 0.281761] 0.281761 0.28176 0.281761
-0.1500 | 0.216369|  0.216362 0.216361  0.216361 0.21636 0.216361
-0.1800 | 0.128644|  0.128637 0.128636 0.128636 0.#2863 _ 0.128636
-0.1988 | 0.005237| _ 0.005220 0.005218 0.005218 0.00521  0.005218

Results obtained from the implicit compact-differen condition, f” =0, is satisfied; i.e., ifZ = 0, then the solution

fo_rmulation fOFh - O'OO.OZS.tOh - 0'01. are presented in Table 3’can be assumed to be valid. This iterative refimgrsethe standard
with values given to six significant figures. Itrcdbe seen that

results are converged (to the precision preseritedyrids as large Procedure for solution methods that uge for normalization,
as h= 0001 In Table 4 the results of a numerical check aa thAsaithambi (1998, 2004b, 2005) and Abbasbandy (ROBibugh
order of accuracy of this implicit formulation (&ccordance with the reason and requirement for it has not prewjobskn explicitly
Eq. (54)) are presented for varyiigTwo separate accuracy ordersdiscussed. What has also been observed, but niztires, is that a
are calculated, based on results foR, = 001, h, = 0005 and relatively small initial (seed) value ofp_ is required for
h, = 0.0025; convergence in these methods. In order to shed lgh this

optimization, in Fig. 2 we present the functiod (i.e. f”"
h, = 0.0005 and h, = 0.00025 P 9 P e f.)

The tabulated values verify the fourth-order accyraf the

and k, based on results forh4=0001,

evaluated for a range ofy, at different pressure gradient

current implicit scheme. In addition to the basat sf numerical
tests outlined above, we have performed a grougalmulations to
examine some numerical properties of the currehémme, such as
bounds of solution validity and convergence chamstics. In the
solution procedure described earlier, the valugygf is refined in

order to minimize the target function Z (i..” ). The function’s
closeness to zero can be viewed as the degreeith tie boundary

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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parameters; evidently there is a wide range of ealior 7 that
produce valid solutions under this criterion, = 4 for ,8 =2;
n,=6 for f=0;andp_ =7 for f=-0.1988 and this is

independent of the grid resolution. The form of thection Z is
perhaps surprising, since it implies that providednitial choice of
n,, is sufficiently large, a valid solution will alwaybe obtained

without the need for a root-finding iterative scleem
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Table 4. Numerical verification of order of accuracy for different £ under

explicit FDS.

ﬁ Kl K2
2.0000 3.88| 3.91
1.000( 4.04 | 4.54
0.5000 3.81 4.28
0.0000 6.31| 3.80
-0.100C | 3.9¢ | 4.2C
-0.1200 | 3.97| 3.59
-0.150C | 4.0z | 3.4¢
-0.1800 3.96 4.39
-0.198¢ | 4.3€ | 5.0¢

B =-0.1988 ,
B=01988 ,
8 =-0.1988
B=
B=

0.0000 , h=2.5E-4
2.0000 , h=2.5E-4

4pbooo

Function Z

Figure 2. Function Z(f "(17m )) for B =-0.1988 at different grid sizes, and
for  =0.0and B =2.0for h=25E-3.

However, although these solutions may be validtifiat they
satisfy the far-field boundary condition d¢f') they are not

necessarily accurate in the boundary layer itsSEtiis is because
there is a trade-off, in terms of accuracy, betwdemain size (a
larger one improving the physical model) and resofuthroughout
the boundary layer. Note, the grid spacing refetoedh this paper
(and in most previous works) is spacing/resolution the

normalized computational domaid or interval [0,1] and not the

physical domainy, interval [0, ]; when the computational grid
resolution is fixed andy_ increases, the resolution in the physica[[

domain (i.e., Asp) reduces, hence the requirement for gn

optimization. A problem exists, though, due to fleem of Z,
which becomes very small, shallow, and numerigalfjged, at high
1., - This makes the minimum very difficult to find & relatively

Duque-Daza et al.

appears at a local minimum in the variation af with 77 .

Progressively refined grids are plotted on the sgraph and show

a rapid convergence towarda/* =1 for larger n,,. As an
a

alternative to procedures that attempt to minirﬁitg , We propose

that this local minimum ing be sought, which will allow a far
greater range of initial seed points to be used @noduce a more
efficient and better-behaved optimization. The ¢a@ised

optimization for the local minimum would be formtéd, using

KKT conditions, as:

. d*f
min  a(r.)=-—
e dn =0
st. 99 _

dr.,
2
_da g
dn;

1.005

1.004

1.003

1.002

1.001

oy 1
0.999
0.998

0.997

0.996

0.995

10 20 30 40 50 60 70 80 90
Moo

100

Figure 3. Variation of a) for

varying physical domain extent, .-

a (normalized with highly-resolved solution,

CPU Timeand Accuracy

An additional indication of the numerical vantag&iaed using
he high-order-compact scheme compared, partigulagainst a
conventional second-order finite differences stemeis sought by
solving Eq. (14) fors = 0 with different number of nodes and, in
both cases, gauging consumed computational timenamaerical
accuracy. Figure 4 shows a comparison of CPU tioresuemption
per number of nodes for both schemes. Computatosilis nearly

high value of77  is chosen as a seed point; this is why the rafige @ame, put with the technique proposed in this wexkibiting a

usable initial values is rather restrictive. In Figwe plota (i.e.,

clear slightly lower value. Considering that a derahumber of

f7(0)) againstyy_ for varying grid sizes (noting that constant gridmore intensive iterations were required in the fogier-compact

size quoted is the computational grid, and is nqpaivalent to
boundary-layer resolution). The values af are normalized with
respect tog”, a result from the most refined simulation desamiib
above, and that which we will assume, for the psego of
discussing accuracy, to be the correct resultacgbf an analytical
solution. As can be seen from the figure, for h# tomputational
grids considered, the most accurate result (valaggroaching
%* =1) occurs at a relatively low value qf_, and that this

390 / Vol. XXXIIl, No. 4, October-December 2011

scheme to achieve convergence for a prescribed ecgence

criterion, in contrast with that larger number aghk iterations

necessary for the second-order stencil, it is dleatr such increased
accuracy bring about a speed-up and, thereforemanovement

over traditional schemes.

The speed-up described earlier is accompaniedbglsmother
important aspect. For instance, Fig. 5 shows a eoisgn of the
relative error produced per number of nodes fohesdencil, where
even a more striking result can be appreciatedtif®same number
of nodes the high-order- scheme attain a much namairate

ABCM
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solution, as naturally expected, and, thereforquireng much less
computational time for the same level of error. ifigkinto
consideration this additional aspect then, if amorerevel is
considered as main objective to satisfy, the soperi of the
scheme here employed is even more apparent in todering in
both computational time saving and accurate saistio

103

-o- High-order-compact finite difference
-+ Second-order finite difference

CPU Time, sec (x103)
8 8 8 2

©
=3

©
D

T T T T

500 750 1000 1250

o

250 1500
Nodes number

Figure 4. CPU time employed for high-order and low-  order finite difference.

1,E+00 T

-o- High-order-compact finite difference
—+— Second-order finite difference

1,E-014

1,E-02
1,E-03

Ive error

1,E-04

Relati

1,E-05
1,E-06

1,E-07

1,E+01 1,E+02

Nodes number

1,E+03 1,E+04

Figure 5. Convergence error for high-order and low-  order finite difference.

Final Discussion and Conclusions

We have presented a computational study of theisnlof the
Falkner-Skan equation, using high-order and higlepcompact
finite differences schemes. Even though the liteeatcontains
extensive treatments of the theory behind the wwiwf differential
equations using Taylor-series expansions, RungéaHKunethods and
other semi-analytic methods, there has been aelmiise and
reporting of direct employment of Taylor-series huets for high
orders of accuracy, despite their known advantage®r
corresponding Runge-Kutta methods of the same offleis is
probably due to the perceived complexity involvedevaluating,
and simplifying the terms associated with finit€fetience schemes
of higher than second order. In this paper, digpelihis notion, we
have presented two straightforward approaches toemmenting
high-order finite difference approximations dirgcihto a third-
order nonlinear boundary value problem — the Fahl8ian
equation.

The apparent complexity in dealing with the algebr@rms
resulting from the finite difference scheme has nbesasily
overcome by taking advantage of modern symbolic ipudation
software. This allows a rapid integration betweée fproblem
formulation and the final programming language ayptl to solve
the system of equations. The number of iterati@siired to find a
converged solution was of the same order as theerted in the

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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literature for similar numerical approaches, i.etmodologies with
two steps.

The accuracy and effectiveness of this methodology been
demonstrated by comparing results with previoubarstfor a range
of parameters and physical conditions (e.g. foelrating, constant
and decelerating flows). We have numerically vedfithat the
methods are of at least third-order in the explicise and fourth-
order in the implicit compact-difference schemertkermore, the
merit of using higher-order accuracy formulations the non-linear
terms has been demonstrated as greater than tidied-accuracy is
observed globally.

Finally, a clearer understanding has been estalisif the
numerical behaviour of formulations that seek antinopm
physical domain size (for a given computationariBased on
this, an alternative method is proposed for findthg optimum
using knowledge of how the second derivative of theget
function at the wall varies with domain size; tiigl increase the
range of initial seed points for which convergenae be achieved
in such approaches.
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