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Output-Only Structural Identification
of Random Vibrating Systems

A new form to carry out stochastic identification of structures in operational conditions
using a non recursive method, the statistic analysis and the wavelet transform, is
presented. The statistic analysis contributed to select the best system order and to
automation of computational procedures. In general the identification of low frequenciesis
a difficult task. The wavelet transformis an essential tool for compression of data making
possible the complete identification including low frequencies. In addition it improves the

computational efficiency. The study of four degrees of freedom simulated system is
presented and the results are compared with the analytical modal parameters.
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Introduction

One of the main objectives of Experimental Modalalysis is
Systems Identification. Systems Identificatiomisame for several
methods that build a mathematical model for dynaswpstems using
input and output data. Nowadays the developmetitesfe methods
in the time-domain has been applied mainly in tentification of
systems with high modal density, especially subsfimsed system
identification methods applied to the realizatiopstems. They
supply reliable state-space models for multivarsgtstems (Viberg,
1995).

A modal test with multiple inputs is frequently osemended
because it presents more realistic results, altnobig high cost for
its accomplishment. Frequently the structure isete$n laboratory
with only one excitation point, that is to say, endboundary
conditions different from the real operational cibiods. This
procedure generally compromises the identificatiesults. The
solution of this problem is the accomplishment laf test with the
structure in work. In these cases the system isi#extited and the
forces are not totally known. In general, undettaieroperational
conditions, the input data can be approximate tdtewmoise
(Desforges, Cooper and Wright, 1995). Thereforedéeclopment
of methods for study the dynamic behavior of systecited by
random forces becomes important.

James et al (1995) contributed to introduce in raeidal
engineering community the idea that it is possiloleextract the
modal parameters of systems excited by unknownefordhe
authors demonstrate that the correlation functioage the same
form as impulse response functions and so theybeansed in the
identification algorithms of traditional Modal Anais. Classical
techniques like Least Squares Complex Exponentiz8CE),
Ibrahim Time Domain (ITD), Polyreference Technid@&RCE) and
Eigensystem Realization Algorithm (ERA) (Maia et #D97) are
appropriate to extract the modal parameters from rireasured
response data of structures undergoing ambientatioci.

In analysis of large flexible structures the ERAegEmts some
advantages. The algorithm finds the model of sreatieder that fits
the data, within a precision; besides it is anaife method for
analysis of structures with close frequencies, witlwithout noise
in the data.

Based on theoretical results of realization thedrg and
Kalman (1966) developed an algorithm that fitsaesspace model
of minimum order starting from the dynamic imputesponse and
based on the concepts of controllability and olegility. Later,
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Juang and Pappa (1985) proposed the incorporatitimecsingular
value decomposition (Golub and Loan, 1989) into Ké&bman
algorithm, creating the Eigensystem Realizationofithm, that is a
method of balanced realization based on orthogsddspace
decomposition.

This algorithm uses the system response in a d$pémim,
called Markov Parameters. Frequently these parasate obtained
from input-output data. The identified model isepnesentation of
the realistic system and can be used to evaluate nétural
frequencies and damping factors, as to predictrésponse of the
system when it is excited by different forces.

In this work the algorithm ERA was applied to a siated
system of four degrees of freedom excited by umtated random
forces, with non proportional damping matrix, ier to obtain the
space-state model of tested structure.

State-Space Repr esentation

Vibration tests are, frequently, performed in ortierestimate
the modal parameters of a structure that are usédei analysis of
its dynamic behavior.

The behavior of many dynamical systems can be ezpceby
ordinary differential equations. A typical mechaidinear and
time-invariant system, withn degrees of freedom, can be
characterized by the following second order veatodifferential
equation, denominatesjuation of motion:

MVI(t) + 2W(t) + Kw(t) = f (t) 1)

wheret represents the continuous timg, z K JR™ are the mass,
damping and stiffness matrices respectivelyt) ORr™ is the vector
of force or excitation, angy(t) JR™ is the displacement vector.
Note that forcing vector can be written{gg) =Uu(t) , where
u gr™ describes theinputs in space ang{)pr~ describes them
in time.

The system described by Eq. (1) is equivalent éfttiowing
continuous time space-state model:

{)’((t) = Ax(t) + Bu(t) @

y(t) = C x(t) + Du(t)

where
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N 0 [ ) _ Since A =0when k > p and the observed state vector
A:{ o o } is the state matrix;
- M K - M Z 2nx2n
~ 0 X :[Xo X Xipa (8)
B ={ ~ } is the input matrix;
MU 2nxr is limited, the residual effegtarx _can be ignored.
C= [— LMK -LM 'lZ]mXZn is the output matrix; If a sufficient number of points from the initiaag of the output
- _ ) ) . data set are ignored, Eq. (4) can be written in fililowing
D= [LM 1U]mx, is the direct transmissinatrix; condensed form:
X(t) = {V_V(t)} is the state vector; K
WD) g Yo = L RU )
andL is a matrix which contains information about tbedtion of =
measurement points relative to the variables i_n gbeer_alized Therefore the output in any time can be writtenaasum of
coordinates. _Whe_n the output are oply measurenerftsiction of present and past inputs by a weighted sequence of
the acceleratiort, is such thay (t) = L w (t). matricesp, JR™", known asMarkov parameters. The numberp

In special cases the state variables can be coadide output . . .
P P determines the maximum number of independent Markov

system. However, usually it is impossible to obeeall the state g :
variables directly, for reasons of inaccessibilltythese cases only parameters. It is important to observe that fohesystem there IS a
a set ofm output variabley [ R™, dependent ok (t) andu (1 unique system c_)f Markov parameters. In fact, theeythe impulse
' ' response, as it is shown, for instance, in TsufE¥®9). So these

can be measured where alwags<n. In this work y(t)is the parameters represent a complete characterizatitimeogystem and
measurement of the system accelerations in spmﬁcture points can be used as a base for identification of thédemahtical model of
at the instant of time linear dynamic systems.

For practical purposes, we are concentrated instheation
where the variables are measured only in discrétevials instead Stochastic | dentification
of continuous time, producing the so call@iscrete Systems.
Therefore the variables are defined at fixed-tintervals: The stochastic identification problem deals withe th
t=0,At, 2t ,.. KAt , &+ 1)t .., whereAt is constat. determination of the state-space model using onlfput data.

Thus, it is obtained an approximation of the cantiss time Starting from identified matrice& andC the modal parameters can

' be calculated.

representation, denominateiicrete time state-space model: It is possible to consider the stochastical comptspresent in
data and then the following combined deterministachastic state-
{XM =Ax +Bu, (3) Space model can be obtained:
Y =Cx +Du,
X = A% +BU +5, 10
where yk:(:)(k+DL|k+\/k ( )

x, = x(kat), A=e, B=(A-1)A"B, C=C, D=D where the vectorg R™ andy, JR™ are both considered zero

. . ) ) _mean white noise. The covariance matrices are diyen
Solving Eq. (3) fory,, we can write the direct relationship

between input and output
P p s, . gls,s| Els,Vq Q S
I I O | i it et 1 (12)
K K aid v 1o gv s | gv.v ST
y, =CA“x, +Du, +>CA™Bu,, (4) p P Pl
i=1
» where g(.) is the expectation operator.
- - 1=
Let R, =D andR =CA™B. Then, we have The stochastical systems identification is defiméten y, = 0.
. Then in cases where the system input can not beures it is
Y, =CA%, +>Pu, (5) assumed that the excitation effect is modeled Iy disturbances
i=0

S, andV, . Then

Consider the case where the state malrils asymptotically
stable. There is a sufficiently large integesuch thap® =0, for all {Xk . = AX, +5,

k = p - Consider the output equation afgetime instants: 12)

yk = CXk +Vk

yk+p = ka+p + Duk+p (6) . . . .
The stochastic proces¥, is considered stationary and zero

As it has been done for the original Eq. (3), #léofving input-  mean, and the nois&s and V, are considered independents of the

output relationship can be obtained:
current state.

y... =CAPx +CA™By, +-.-+CBu,,_,+Du Let the output and state-output covariance matrices
kP , , ket ke (7) espectively, given by
= C Apxk + zp: R l"Ik+p—i
& R =ely. v[] .fori=zo01,2,.. (13)

100/ Vol. XXVIIl, No. 1, January-Mach 2006 ABCM



Output-Only Structural Identification of Random Vibrating Systems
_ T
G= s[xk+l ykJ (14)
The matricesR satisfy the following properties:

1) R,=CIC'+T wherex =s[xk x[] is a constant matrix.
In fact,
R = ey, w]=elcx +u) (Cx +u)]
=Ce[x, x[]CT +Cs[xk v[]+s[vk ka]CT +s[xk v[]
=CICT+T
2) R=CA7G,foridZandi=1.Infact,
R= E[yk+i y;] = 8[(C Xeri +Vk) y;]
=€ (CAlilxku"'CAlizsml*'CAﬁxwz +-+C SK+i—1+Vk) y;]
=CA x|+ CAZ s, ]+ +els. vi]+ely vi]
=CA'G

These properties provide a characterization of tutput
covariance matrices in function of the matriée§, C andR,,.

As well as in deterministic models, Markov paranmetae used
as a base for system identification using ERA afigor. In the

12
R =¢ly.., yl]=!|[g T 2 Ve Yi (15)
In practice, the so defined correlation functione a
unknown, because only a finite number of data carmmeasured.
Clearly it is necessary to use estimate valuesuaigt no random
process is truly stationary. However long obseovati of the
process exhibit characteristics that allow thenbeoconsidered as
stationary. Most of the results obtained in idécdiion of
mechanical systems are based
on the steady-state response, which is consideredationary
process satisfying the ergodic hypothesis. Th@stary concept of
a random process is similar to steady-state behawvio a
deterministic process. The unbiased estimate of dbreelation
function used in this work is given by

(16)

We obtain the Hankel matricesi, and H, changing each
correlationR in H, and H, by the respective estimate.

stochastic model the matriceR can be seen as impulse response

and used for system identification instead the ioalg Markov
parameters.

As in the traditional algorithm, Markov parameteveas
conveniently grouped in two special Hankel matriahsnoted by

Simulated Model

The simulated data were generated to represergtensyof four
degrees of freedom, illustrated in Fig.1. The chos®del has non
proportional damping matrix in order to generalihe analysis of

H, and H,. We will compose such matrices with the outputhe identification of systems with linear viscouwsping.

covariance matriceR . For any natural numbepsand g, we have:

R R R, |
et

R R Rova1 | s

R Ryt |
R

pmxgm

Starting from Hankel matrices it is possible to aibtthe

matrices| A G,C,R,] of the stochastic model by applying the ERA

algorithm.

Corréation Functions

The correlation function or the corresponding Feuniansform,
known as spectral density function, measures tieati dependence
degree between two or more data sets. These tvatidons give the
same information, although historically the spdaiensity function
was developed as a tool to solve problems of eegimg while the
correlation function was mainly used in statistiapplications. The
first is very popular in the experimental data gsigl, however in
some applications the second function is shown rooneenient.

According to the definition given by Eq.(13) andrting from
output datayk in discrete timek = 0,1,... | , the ergodic hypothesis
enables the calculation of moment functions oftatichary random
process from an unique measurement, sufficientlg o contain all

the statistical information of the phenomenon. Waveh by
definition,
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Table 1 presents the physical parameters and modal
characteristics of the simulated system, whérés the modulus of
the eigenvalud; andg is its phase angle.

o
amnE
Sttt AN et A FAAAAL
— T —

£l

Figure 1. Four degrees of freedom model.

Table 1. Physical and theoretical modal parameters.

m Z ki

i (kg) (Nsim (N /Im) Ai (rad/9 Mi CoS §;

1 1 8 1000 -0.5472+15.39i 15.40 0.0355
2 5 4 8000 -3.520+95.25i 95.31 0.0369
3 0.5 4 8000 -5.079+104.3i 104.4  0.0486
4 0.25 2 2000 -8.053+154.5i 154.7 0.0520
5 0.2 1000

Copyright 00 2006 by ABCM

Non correlated random forces were applied in eawh a the
masses. The computational precision and the imgefes in the
measurement instruments are possible sources é.nloi order to
simulate a more realistic situation, an additiowhlte noise was
generated and added to the response data. Twa lefvabise were
considered: 1% and 5%.

The stochastic identification requires a great neimbf time
instants observed. So it is necessary at leaseé@nds of outputs
data, recorded in intervals of 0.001 seconds.

Model Order Estimate from Statistic Analysis
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One of the most difficult tasks in modal analyss the the plot points correspond to the identified eigdngs modulus for

determination of the model order. According to Juamd Phan eachp.
(1994), a trial and error process is requirednd the best order. In
general, the model order is considerably largen the real system
order, particularly when the data is very noisythis case it is said
that the model is overdetermined.

Using a overdetermined model, the identificatiorocedure
results is a set of structural and computationadleso the first one
due to the dynamical characteristics of the stmecand the last one
due mainly to data-noise and the numeric ill-canding.

To apply ERA algorithm is necessary the definitminHankel
matricesHo and H, dimension, given bypmxgm wherem is the

Frequency (Hz)

number of observed outputsandq are arbitrary numbers related to
estimated model order. Let Ipethe system number of independent : : : : : : : : ;
Markov parameters. It is possible to link the paetarsq andp in L e i G SR A PSRRI SR SR 7
the following way: : ; 5 ; ; 5 ; ; :

q=" (17)
2
o 1 1 1 1 1 1 1 1 1
. . . . - . ] 40 & & 1m0 120 140 180 120 00
In this way, p is a unique free parameter in identification Sequencs number
procedure. Each value gb determines one data identification that Figure 3. Stability of natural frequencies values.

will be namedsample. The identification algorithm will be applied
consecutively for positive valugs increased by 2, taken from an
initial valuep® until a determined limip”. The Fig. 2 summarizes
the computational procedures for the storage opkssnwhere the
block named ‘sample’ stores the samples colleaiedlf value ofp.

The analysis of the stability diagram presente&ig 3 shows
that the frequency interval [20,25] has one stditdquency for all
variation band ofp, while the frequency interval [15,20] presents
two stable frequencies for the variation band 10-1& the

= parametemp. However it is required a formulation of an atialy
@ criterion for these graphical conclusions.

The statistic moments are fundamental in extragimetess of
the modal parameters from stationary random sigi&lsrefore the
P standard-deviation of the samples in a determiregiliency interval
characterizes analytically the stability of therntified frequency
values. So, high standard-deviation indicates greatability in
estimated frequency values while a lithe valuehe index reflects
ERA the nearly linear behavior in some variation in&ref p. These
stabilized values characterize the system natregliencies.

Thus, the statistical analysis applied to a sudfitinumber of
samples can determine the appropriate model orfeis rule,

SAMFLE applied to simulated data, shows that the estimaedel| order is 6,
what does not correspond to the theoretical moddéro8 - the
simulated model has 4 degree-of-freedom.

pep+2 This incorrect order determination happened becthes¢éowest

frequency was not identified due to noisy data. afenuate the
l effect of the noise in the identification process well to perform a

different stochastic identification for low frequzes, we choose to
analyze the process by frequency bands. So, ineesssary to use

Mo low-pass filters to carry out this task withoutdosf time domain
information data.
Tes The Wavelet Transform
The traditional Fourier Transform (FT) does nobwalla local
analysis of the frequency content in the signal.t@mother hand,
Figure 2. Recursive procedure for storage of the samples identification. the Short Time Fourier Transform (STFT) allows aalgsis of the

frequency of the signal locally in time. HowevelTFS is not
appropriate to analyze certain signals, becausesibe of the
observation window stays constant for all the frergies.

To solve this problem we use the Wavelet Transf¢wT),
introduced by Morlet (Goupillaud, Grossman and Muorl1985).
With WT the size of the observation window variegthwthe

¢ frequency, allowing that high frequency events barlocated with
best temporary resolution, while the low frequenoynponents can
be analyzed with best resolution in the Fourier domTherefore,

Because the noise is not correlated with the irgnd output
data, it is assure that computational modes temdbange strongly
from one to other estimate, while the natural festpies tend to
stabilize in certain intervals within frequency dan

In this study, we obtained 95 identifications vagyithe number
of independent Markov parametgrérom 10 to 200. The results o
these identifications are schematically represeirieflig.3, where
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for high frequencies, the wavelets were moved oallssteps, while
for low frequencies, the displacement is made Jéige steps
(Vetterli and Kovacevic, 1995).

The mother-wavelet db5 was used is
decomposition at level 3 and 2 for bands of low amedium
frequencies, respectively. Figure 4 illustrates thecomposition
process for the signal of mass 1 acceleration.rébenstruction of

the signal is given bYS:a3+d3+d2+d1, where @, is the

approximation at level 3 amﬂji are the details obtained by the .ML . l‘r':’“

successive decompositions.

riginal Signal

1500 2000 2800 3000

Approximation at lewe| 2

1500 2000 2500 3000 3800

Figure 4. Decomposition using WT with db5 at level 3.

Because the great number of necessary time ingtangry out
the stochastic identification, the WT was fundarakfdr complete
system identification. The WT permits the comprassbf the
information contained in a long data sequence sbhat sequences
according with the frequency band analyzed.

Numerical Results

The natural frequencies values stabilization gifermation on
p value optimized for identification process withidifferent
frequency bands and noise levels. The wavelet-madh® was
applied to simulated data in several levels acogrdiith the
frequency band. The frequency band was divided ihtee sets
called first, second and third order modes. Likis,tlt was applied
db5 level 3 and 2 for low and intermediate freqiesiaespectively,
and no wavelet transform was applied for high feztpy.

Figure 5 summarizes the algorithm developed andtithtes the
steps of the method for stochastic identificatibstouctures.

In this way, the identification results are presédnh Fig. 6 to 8,
with p varying from 10 to 60 for data with 1% of noisegéferent
WT levels.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Figure 6. Stability of low frequencies values with db5 at level 3.

The application of the WT db5 level 3 became pdsstihe
identification of a natural frequency in the in@ry0,5] Hz as can
be seen in Fig. 6. The other three system naftegliencies cannot
be identified using this wavelet level.

T T T T T T T ¥ T

30| e > . ]

25} nesuciandsassrossbirmeineskie

. Second
IR - JOPN 510 SO P band

Frequency (Hz)

L L L
10 15 20 25 30 35 40 45 50 55 60
Sequence number p

Figure 7. Stability of intermediate frequencies values with db5 at level 2.
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Figure 8. Stability of high frequencies values without WT.

In Fig. 7 it is possible to observe the first thifeequencies
values stabilized, emphasizing the clear separatidhe two closed
natural frequencies. Despite of the identificatioh the lowest
frequency done with the identification process g3MT db5 level
2, the process carried out using level 3 presegttetbvalues for the
first modal damping factor. It is clearly obseniedrFig. 8 that the
higher frequencies values stabilize formllalues.

By this method, all system natural frequencies baydentified
with high precision. Table 2 presents the iderdifin results for
data corrupted by 1% and 5% of noise, whdrés the eigenvalue

Mério F. Mucheroni and Andréa Cardoso

The use of the correlation functions makes possithle
identification without the knowledge of the inpufS§he modal
parameters were identified, group by group, to iobtiae complete
identification. The application of the Wavelet Tséorm was
extremely important for the identification of afirectural modal
parameters in the analyzed frequency band.

The difficulties in model order estimates were sdlwith a
help of statistic analysis. The modal parametersewsgualified
without the need of modal confidence parameters.

The effectiveness of the new algorithm implemeotativas
checked by the success in the model order seleetimhin the
computation of the modal parameters of a simulateiem. It is
important to note that there are low and close@rgiglues in the
numerical model presented. Furthermore, it can dreladed that
this technique is a good choice for analysis wheneat number of
experimental data is necessary.

New researches should be accomplished for studtiregy
vibration modes identification and the applicatafrthis method in
real structures when the excitation is unknownoiEsf should be
done in future to study also the nonlinear efféntsdentification
systems.
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