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Output-Only Structural Identification 
of Random Vibrating Systems 
A new form to carry out stochastic identification of structures in operational conditions 
using a non recursive method, the statistic analysis and the wavelet transform, is 
presented. The statistic analysis contributed to select the best system order and to 
automation of computational procedures. In general the identification of low frequencies is 
a difficult task. The wavelet transform is an essential tool for compression of data making 
possible the complete identification including low frequencies. In addition it improves the 
computational efficiency. The study of four degrees of freedom simulated system is 
presented and the results are compared with the analytical modal parameters. 
Keywords: Operational modal analysis, identification methods, eigensystem realization 
algorithm, output-only identification 
 
 
 

Introduction 

One of the main objectives of Experimental Modal Analysis is 
Systems Identification.  Systems Identification is a name for several 
methods that build a mathematical model for dynamic systems using 
input and output data. Nowadays the development of these methods 
in the time-domain has been applied mainly in the identification of 
systems with high modal density, especially subspace-based system 
identification methods applied to the realization systems. They 
supply reliable state-space models for multivariate systems (Viberg, 
1995).1 

A modal test with multiple inputs is frequently recommended 
because it presents more realistic results, although the high cost for 
its accomplishment. Frequently the structure is tested in laboratory 
with only one excitation point, that is to say, under boundary 
conditions different from the real operational conditions. This 
procedure generally compromises the identification results. The 
solution of this problem is the accomplishment of the test with the 
structure in work. In these cases the system is multi-excited and the 
forces are not totally known. In general, under certain operational 
conditions, the input data can be approximate to white noise 
(Desforges, Cooper and Wright, 1995). Therefore the development 
of methods for study the dynamic behavior of systems excited by 
random forces becomes important. 

James et al (1995) contributed to introduce in mechanical 
engineering community the idea that it is possible to extract the 
modal parameters of systems excited by unknown forces. The 
authors demonstrate that the correlation functions have the same 
form as impulse response functions and so they can be used in the 
identification algorithms of traditional Modal Analysis. Classical 
techniques like Least Squares Complex Exponential (LSCE), 
Ibrahim Time Domain (ITD), Polyreference Technique (PRCE) and 
Eigensystem Realization Algorithm (ERA) (Maia et al, 1997) are 
appropriate to extract the modal parameters from the measured 
response data of structures undergoing ambient excitation. 

In analysis of large flexible structures the ERA presents some 
advantages. The algorithm finds the model of smallest order that fits 
the data, within a precision; besides it is an effective method for 
analysis of structures with close frequencies, with or without noise 
in the data.  

Based on theoretical results of realization theory, Ho and 
Kalman (1966) developed an algorithm that fits a state-space model 
of minimum order starting from the dynamic impulse response and 
based on the concepts of controllability and observability. Later, 
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Juang and Pappa (1985) proposed the incorporation of the singular 
value decomposition (Golub and Loan, 1989) into Ho-Kalman 
algorithm, creating the Eigensystem Realization Algorithm, that is a 
method of balanced realization based on orthogonal subspace 
decomposition. 

This algorithm uses the system response in a special form, 
called Markov Parameters. Frequently these parameters are obtained 
from input-output data. The identified model is a representation of 
the realistic system and can be used to evaluate the natural 
frequencies and damping factors, as to predict the response of the 
system when it is excited by different forces.  

In this work the algorithm ERA was applied to a simulated 
system of four degrees of freedom excited by uncorrelated random 
forces, with non proportional damping matrix, in order to obtain the 
space-state model of tested structure. 

State-Space Representation 

Vibration tests are, frequently, performed in order to estimate 
the modal parameters of a structure that are used in the analysis of 
its dynamic behavior. 

The behavior of many dynamical systems can be expressed by 
ordinary differential equations. A typical mechanical linear and 
time-invariant system, with n degrees of freedom, can be 
characterized by the following second order vectorial differential 
equation, denominated equation of motion: 

 

( ) ( ) ( ) ( )Mw t Zw t Kw t f t+ + =&& &  (1) 
 

where t represents the continuous time, , , n nM Z K ×∈R  are the mass, 

damping and stiffness matrices respectively, 1( ) nf t ×∈R  is the vector 

of force or excitation, and 1( ) nw t ×∈R  is the displacement vector. 

Note that forcing vector can be written as( ) ( )f t Uu t= , where 
n rU ×∈ R  describes the r inputs in space and 1( ) ru t ×∈R  describes them 

in time. 
The system described by Eq. (1) is equivalent to the following 

continuous time space-state model: 
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and L is a matrix which contains information about the location of 
measurement points relative to the variables in the generalized 
coordinates. When the output are only measurements in function of 
the acceleration, L is such that y (t) = L w&& (t). 

In special cases the state variables can be considered as output 
system. However, usually it is impossible to observe all the state 
variables directly, for reasons of inaccessibility. In these cases only 
a set of m output variables 1my ×∈R , dependent of x (t) and u (t), 

can be measured where always m n≤ . In this work ( )y t is the 

measurement of the system accelerations in specific structure points 
at the instant of time t. 

For practical purposes, we are concentrated in the situation 
where the variables are measured only in discrete intervals instead 
of continuous time, producing the so called Discrete Systems. 
Therefore the variables are defined at fixed-time intervals: 

0, ,2 , , , ( 1) ,t t t k t k t= ∆ ∆ ∆ + ∆K K , where ∆t is constat. 

Thus, it is obtained an approximation of the continuous time 
representation, denominated discrete time state-space model: 
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where 
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Solving Eq. (3) for yk, we can write the direct relationship 

between input and output 
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Consider the case where the state matrix A is asymptotically 

stable. There is a sufficiently large integer p such that 0kA ≈ , for all 

k p≥ . Consider the output equation after p time instants: 
 

 pkpkpk uDxCy +++ +=  (6) 

 
As it has been done for the original Eq. (3), the following input-

output relationship can be obtained: 
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Since 0kA ≈ when k p≥ and the observed state vector 
 

[ ]110 −−= plxxxX L  (8) 

 
is limited, the residual effect p

kCA x can be ignored. 

If a sufficient number of points from the initial part of the output 
data set are ignored, Eq. (4) can be written in the following 
condensed form: 
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Therefore the output in any time can be written as a sum of 

present and past inputs by a weighted sequence of 
matrices m r

kP ×∈ R , known as Markov parameters. The number p 

determines the maximum number of independent Markov 
parameters. It is important to observe that for each system there is a 
unique system of Markov parameters. In fact, they are the impulse 
response, as it is shown, for instance, in Tsunaki (1999). So these 
parameters represent a complete characterization of the system and 
can be used as a base for identification of the mathematical model of 
linear dynamic systems. 

Stochastic Identification 

The stochastic identification problem deals with the 
determination of the state-space model using only output data. 
Starting from identified matrices A and C the modal parameters can 
be calculated. 

It is possible to consider the stochastical components present in 
data and then the following combined deterministic-stochastic state-
space model can be obtained: 
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where the vectors 1n

ks ×∈ R  and 1m
kv ×∈ R  are both considered zero 

mean white noise. The covariance matrices are given by: 
 

( ) [ ] [ ]
[ ] [ ] 








=















εε
εε

=






















ε

TS

SQ

vvsv

vsss
vs

v

s
TT

qp
T
qp

T
qp

T
qpT

q
T
q

p

p ´  (11) 

 
where (.)ε is the expectation operator. 

The stochastical systems identification is defined when 0ku ≡ . 

Then in cases where the system input can not be measured, it is 
assumed that the excitation effect is modeled by the disturbances 

ks  and kv . Then 
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The stochastic process kx  is considered stationary and zero 

mean, and the noisesks  and kv are considered independents of the 

current state. 
Let the output and state-output covariance matrices, 

respectively, given by 
 

[ ]T
kiki yyR +ε=  , for 0,1,2,i = K  (13) 
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[ ]T
kk yxG 1+ε=  (14) 

The matrices 
iR  satisfy the following properties: 
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These properties provide a characterization of the output 

covariance matrices in function of the matrices A, G, C and R0. 
As well as in deterministic models, Markov parameters are used 

as a base for system identification using ERA algorithm. In the 
stochastic model the matrices 

iR can be seen as impulse response 

and used for system identification instead the originals Markov 
parameters. 

As in the traditional algorithm, Markov parameters was 
conveniently grouped in two special Hankel matrices, denoted by 

0H  and 
1H . We will compose such matrices with the output 

covariance matrices 
iR . For any natural numbers p and q, we have: 
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Starting from Hankel matrices it is possible to obtain the 

matrices [ ]0, , ,A G C R  of the stochastic model by applying the ERA 

algorithm. 

Correlation Functions 

The correlation function or the corresponding Fourier transform, 
known as spectral density function, measures the linear dependence 
degree between two or more data sets. These two functions give the 
same information, although historically the spectral density function 
was developed as a tool to solve problems of engineering while the 
correlation function was mainly used in statistical applications. The 
first is very popular in the experimental data analysis, however in 
some applications the second function is shown more convenient.  

According to the definition given by Eq.(13) and starting from 
output data 

ky  in discrete time 0,1, ,k l= K , the ergodic hypothesis 

enables the calculation of moment functions of an stationary random 
process from an unique measurement, sufficiently long to contain all 
the statistical information of the phenomenon. We have, by 
definition, 
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In practice, the so defined correlation functions are 

unknown, because only a finite number of data can be measured. 
Clearly it is necessary to use estimate values. Actually, no random 
process is truly stationary. However long observations of the 
process exhibit characteristics that allow them to be considered as 
stationary. Most of the results obtained in identification of 
mechanical systems are based 
on the steady-state response, which is considered a stationary 
process  satisfying the ergodic hypothesis. The stationary concept of 
a random process is similar to steady-state behavior of a 
deterministic process. The unbiased estimate of the correlation 
function used in this work is given by 
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We obtain the Hankel matrices 
0Ĥ  and 

1Ĥ  changing each 

correlation 
iR  in 

0H  and 
1H by the respective estimateˆ

iR . 

Simulated Model 

The simulated data were generated to represent a system of four 
degrees of freedom, illustrated in Fig.1. The chosen model has non 
proportional damping matrix in order to generalize the analysis of 
the identification of systems with linear viscous damping. 

Table 1 presents the physical parameters and modal 
characteristics of the simulated system, where Mi is the modulus of 
the eigenvalue λi  and ϕi is its phase angle. 

 

 
Figure 1. Four degrees of freedom model. 

 

Table 1. Physical and theoretical modal parameters. 

i 
mi 

(kg) 
zi 

(N.s/m) 
ki 

(N/m) λi (rad/s) M i cos ϕi 

1 1 8 1000 -0.5472+15.39i 15.40 0.0355 
2 5 4 8000 -3.520+95.25i 95.31 0.0369 
3 0.5 4 8000 -5.079+104.3i 104.4 0.0486 
4 0.25 2 2000 -8.053+154.5i 154.7 0.0520 
5  0.2 1000    
 
Non correlated random forces were applied in each one of the 

masses. The computational precision and the imperfections in the 
measurement instruments are possible sources of noise. In order to 
simulate a more realistic situation, an additional white noise was 
generated and added to the response data. Two levels of noise were 
considered: 1% and 5%. 

The stochastic identification requires a great number of time 
instants observed. So it is necessary at least 60 seconds of outputs 
data, recorded in intervals of 0.001 seconds. 

 

Model Order Estimate from Statistic Analysis 
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One of the most difficult tasks in modal analysis is the 
determination of the model order. According to Juang and Phan 
(1994), a trial and error process is required to find the best order. In 
general, the model order is considerably larger than the real system 
order, particularly when the data is very noisy. In this case it is said 
that the model is overdetermined. 

Using a overdetermined model, the identification procedure 
results is a set of structural and computational modes, the first one 
due to the dynamical characteristics of the structure and the last one 
due mainly to data-noise and the numeric ill-conditioning. 

To apply ERA algorithm is necessary the definition of Hankel 
matrices 

0H  and 
1H  dimension, given by pm qm×  where m is the 

number of observed outputs, p and q are arbitrary numbers related to 
estimated model order. Let be p the system number of independent 
Markov parameters. It is possible to link the parameters q and p in 
the following way: 

 

2

p
q =  (17) 

 
In this way, p is a unique free parameter in identification 

procedure. Each value of  p determines one data identification that 
will be named sample.  The identification algorithm will be applied 
consecutively for positive values p increased by 2, taken from an 
initial value p(i) until a determined limit p(f).  The Fig. 2 summarizes 
the computational procedures for the storage of samples, where the 
block named ‘sample’ stores the samples collected for all value of p. 

 

 
Figure 2. Recursive procedure for storage of the samples identification. 

 
Because the noise is not correlated with the input and output 

data, it is assure that computational modes tends to change strongly 
from one to other estimate, while the natural frequencies tend to 
stabilize in certain intervals within frequency band. 

In this study, we obtained 95 identifications varying the number 
of independent Markov parameters p from 10 to 200. The results of 
these identifications are schematically represented in Fig.3, where 

the plot points correspond to the identified eigenvalues modulus for 
each p. 

 

 
Figure 3. Stability of natural frequencies values. 

 
The analysis of the stability diagram presented in Fig. 3 shows 

that the frequency interval [20,25] has one stable frequency for all 
variation band of p, while the frequency interval [15,20] presents 
two stable frequencies for the variation band 10-120 of the 
parameter p.  However it is required a formulation of an analytic 
criterion for these graphical conclusions. 

The statistic moments are fundamental in extraction process of 
the modal parameters from stationary random signals. Therefore the 
standard-deviation of the samples in a determined frequency interval 
characterizes analytically the stability of the identified frequency 
values. So, high standard-deviation indicates great variability in 
estimated frequency values while a lithe value of this index reflects 
the nearly linear behavior in some variation interval of p. These 
stabilized values characterize the system natural frequencies. 

Thus, the statistical analysis applied to a sufficient number of 
samples can determine the appropriate model order. This rule, 
applied to simulated data, shows that the estimated model order is 6, 
what does not correspond to the theoretical model order 8 - the 
simulated model has 4 degree-of-freedom. 

This incorrect order determination happened because the lowest 
frequency was not identified due to noisy data. To attenuate the 
effect of the noise in the identification process, as well to perform a 
different stochastic identification for low frequencies, we choose to 
analyze the process by frequency bands. So, it was necessary to use 
low-pass filters to carry out this task without loss of time domain 
information data. 

The Wavelet Transform 

The traditional Fourier Transform (FT) does not allow a local 
analysis of the frequency content in the signal. On the other hand, 
the Short Time Fourier Transform (STFT) allows an analysis of the 
frequency of the signal locally in time. However, STFT is not 
appropriate to analyze certain signals, because the size of the 
observation window stays constant for all the frequencies. 

To solve this problem we use the Wavelet Transform (WT), 
introduced by Morlet (Goupillaud, Grossman and Morlet, 1985). 
With WT the size of the observation window varies with the 
frequency, allowing that high frequency events can be located with 
best temporary resolution, while the low frequency components can 
be analyzed with best resolution in the Fourier domain. Therefore, 
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for high frequencies, the wavelets were moved on small steps, while 
for low frequencies, the displacement is made with large steps 
(Vetterli and Kovacevic, 1995). 

The mother-wavelet db5 was used is this work for 
decomposition at level 3 and 2 for bands of low and medium 
frequencies, respectively. Figure 4 illustrates the decomposition 
process for the signal of mass 1 acceleration. The reconstruction of 

the signal is given by 
3 3 2 1s a d d d= + + + , where 3a  is the 

approximation at level 3 and id  are the details obtained by the 

successive decompositions. 
 

 
Figure 4. Decomposition using WT with db5 at level 3. 

 
Because the great number of necessary time instants to carry out 

the stochastic identification, the WT was fundamental for complete 
system identification. The WT permits the compression of the 
information contained in a long data sequence to a short sequences 
according with the frequency band analyzed. 

Numerical Results 

The natural frequencies values stabilization give information on 
p value optimized for identification process within different 
frequency bands and noise levels. The wavelet-mother db5 was 
applied to simulated data in several levels according with the 
frequency band. The frequency band was divided into three sets 
called first, second and third order modes. Like this, it was applied 
db5 level 3 and 2 for low and intermediate frequencies, respectively, 
and no wavelet transform was applied for high frequency.  

Figure 5 summarizes the algorithm developed and illustrates the 
steps of the method for stochastic identification of structures.  

In this way, the identification results are presented in Fig. 6 to 8, 
with p varying from 10 to 60 for data with 1% of noise at different 
WT levels. 

 

 
Figure 5. Flow chart of stochastic identification method. 

 

 
Figure 6. Stability of low frequencies values with db5 at level 3. 

 
The application of the WT db5 level 3 became possible the 

identification of a natural frequency in the interval [0,5]  Hz, as can 
be seen in Fig. 6.  The other three system natural frequencies cannot 
be identified using this wavelet level. 

 

 
Figure 7. Stability of intermediate frequencies values with db5 at level 2. 
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Figure 8. Stability of high frequencies values without WT. 

 
In Fig. 7 it is possible to observe the first three frequencies 

values stabilized, emphasizing the clear separation of the two closed 
natural frequencies. Despite of the identification of the lowest 
frequency done with the identification process using WT db5 level 
2, the process carried out using level 3 presents better values for the 
first modal damping factor. It is clearly observed in Fig. 8 that the 
higher frequencies values stabilize for all p values. 

By this method, all system natural frequencies may be identified 
with high precision. Table 2 presents the identification results for 
data corrupted by 1% and 5% of noise, where Mi is the eigenvalue 
modulus in rad/s, and ϕi is the phase angle. The noise level was 
defined by the quotient (RMS noise)/(RMS response), where RMS 
is the signal root mean square. In this quotient, RMS of the response 
is the largest RMS among the four response signals. 

 

Table 2. Identified modal parameters. 

Identification with 1% of noise 
    Difference (%) 
i pi Mi cos ϕi Mi cos ϕi 
1 50 15.19 0.0361 1.34 1.59 
2 24 95.23 0.0342 0.08 7.43 
3 30 104.1 0.0522 0.27 7.32 
4 38 154.4 0.0523 0.19 0.50 

 

Identification with 5% of noise 
    Difference (%) 
i pi Mi cos ϕi Mi cos ϕi 
1 44 15.20 0.0371 1.32 4.42 
2 28 95.13 0.0339 0.18 8.15 
3 30 104.1 0.0529 0.23 8.70 
4 36 154.3 0.0518 0.27 0.53 

Conclusions 

The modal parameters were identified from a Hankel matrix, 
composed by estimates of the auto-correlation and cross-correlation 
functions only with the system response data, associated to ERA 
algorithm and to application of Wavelet Transform. 

The use of the correlation functions makes possible the 
identification without the knowledge of the inputs. The modal 
parameters were identified, group by group, to obtain the complete 
identification. The application of the Wavelet Transform was 
extremely important for the identification of all structural modal 
parameters in the analyzed frequency band. 

The difficulties in model order estimates were solved with a 
help of statistic analysis. The modal parameters were qualified 
without the need of modal confidence parameters. 

The effectiveness of the new algorithm implementation was 
checked by the success in the model order selection and in the 
computation of the modal parameters of a simulated system. It is 
important to note that there are low and closed eigenvalues in the 
numerical model presented. Furthermore, it can be concluded that 
this technique is a good choice for analysis when a great number of 
experimental data is necessary. 

New researches should be accomplished for studying the 
vibration modes identification and the application of this method in 
real structures when the excitation is unknown. Efforts should be 
done in future to study also the nonlinear effects in identification 
systems. 
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