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Numerical Simulation of Fluid Flow in 
CFB Risers – a Turbulence Analysis 
Approach 
Turbulence parameters are derived from results of numerical simulation of gas-solid flow 
in circulating fluidized bed (CFB). A two fluid model with constant viscosity is applied 
considering an Eulerian continuum approach for both phases. An analysis is performed 
using a direct numerical integration of balance equations without an explicit use of any 
turbulence model for both phases. Even though velocity fluctuations of lower scales are 
eliminated by the considered computational mesh, fluctuations of larger scales are 
detected and analyzed. The results show that the Reynolds stresses behave according to the 
expected for a turbulent flow, and a reasonable agreement is found regarding literature 
experiment. Following the literature, granular temperature is derived from the Reynolds 
stresses, and qualitatively matches the expected behavior as described by the kinetic theory 
of granular flow. Finally, it is seen that solid’s phase turbulence is captured using the 
present approach. 
Keywords. Circulating fluidized beds, hydrodynamics, multiphase flow, riser, turbulence 
 
 
 

Introduction 

Turbulence modeling of multiphase flows is quite complex. In 
addition to the formulation difficulties found in single-phase flows, 
in multiphase fluids the interface interactions must be described. 
When the interface is well defined, as in gas-liquid stratified flows, 
a more rigorous modeling approach can be performed. In gas-solid 
and other multiphase non-stratified flows, where the interface is not 
well defined, modeling is much less straightforward.1 

In order to recover scales of turbulent fluctuations, which are 
lost in view of numerical mesh scales, models need to artificially 
incorporate them into the conservative balance equations. Besides, 
interface interactive terms must be formulated so that the turbulence 
of a phase is allowed to affect the other phase and vice-versa. 
Concerning artificially introduced fluctuations, a number of 
procedures are available for single-phase flows. Those procedures 
are also applied to multiphase flows, even though modified so that 
the multiphase physics can be better approached. 

In gas-solid flows properties of solid phases have been derived 
from the so-called kinetic theory of granular flow (KTGF), which is 
an analogy with the kinetic theory of dense gases (Chapman and 
Cowling, 1970). Parameters analogous to thermodynamic and 
physical properties have been derived such as granular temperature 
and solid phase viscosity. Newtonian rheology has been applied to 
both phases, and turbulence has been accounted for through 
artificial procedures like the well known k-ε model (Peirano and 
Leckner, 1998). 

Many authors consider the KTGF to account for the turbulence 
of the solid phase in a similar way as the k-ε model does (Peirano 
and Leckner, 1998, and Gidaspow, 1994, among others). However, 
as pointed by Sinclair (1997), this is still a very open question. 
Sinclair notes that granular temperature is related to velocity 
fluctuations of individual particles, while the velocity fluctuations of 
collections of particles relate to turbulent kinetic energy. The 
concepts are quite distinct and should not be mixed up. It is not 
possible to determine the thermodynamic temperature from 
macroscopic continuum hydrodynamic predictions. The same way, 
it is not fair to determine granular temperature from the mean 
motion of collections of particles (a continuum defining the solid 
phase). Granular temperature should be determined either from 
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velocity fluctuations of particles, or by solving a conservative 
equation for granular energy. 

In this work the turbulence of the solid and gas phases is 
approached through the direct numerical integration procedure 
commonly applied in single-phase turbulence analysis. The 
principle is that, if a computational mesh is sufficiently fine, all 
hydrodynamic phenomena of a continuum flow field can be 
resolved through the conventional Navier-Stokes equations. A not 
fine enough mesh size shall filter turbulent scales of higher 
frequencies. A relatively coarser mesh shall allow detection of 
turbulent scales only at lower frequency levels. By applying this 
approach to the gas and solid phases for a given mesh size, 
fluctuations of higher frequencies are filtered. However, fluctuations 
of lower frequencies characterizing large scales of turbulence 
imposed for instance by geometry, can be predicted. Thereby it is 
possible to state that at least the large-scale turbulence can be 
predicted by the usual two fluid model, and no additional procedure 
is required to deal with turbulence. The way by which the larger 
scales depend upon smaller scales, and vice-versa, is quite unknown 
and is a matter for further research. Sundaresan (2000) observes that 
this relationship mechanism is apparently much different as 
compared to that observed in turbulent single-phase flows. 

Both time and space mesh scales can be further refined 
regarding those applied in this work. However, caution is required 
not to undertake the minimum limit on spatial mesh size having in 
view the validity of the average Eulerian continuum equations for 
the solid phase. It is not possible to refine the mesh beyond that 
limit and still maintain the validity of a continuum formulation. 
Either, for gas and particulate, the limit is of about one order of 
magnitude above the mean free path among molecules or particles. 
The limit for the particulate results several orders higher than that 
for the gas phase. The limit for the gas phase is much lower than 
that required for catching the smallest turbulent structures, which is 
about one order above the mean free path among the Kolmogorov 
dissipative scales. 

In this work Reynolds stresses and granular temperature are 
derived from numerical data. It has been pointed out above that 
granular temperature should not be determined through continuum 
hydrodynamic data. In spite of that this is done in this work for two 
reasons. First, to follow a literature common tendency in view of 
favorable comparison to experiment (Matonis, Gidaspow and 
Bahary, 2002). Second, to allow for an evaluation on the validity of 
such a procedure. Following Peirano and Leckner (1998) and 
Matonis, Gidaspow and Bahari (2002), granular temperature is 
assumed equal to two thirds of the turbulent kinetic energy. 
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Nomenclature 

CDs – drag coefficient for a single particle in an infinite medium 
dp – particle diameter, (m) 
g – gravity acceleration, (m/s2) 
g0 – radial distribution function 
G – solid elasticity modulus (N/m2) 
ks – solid phase turbulent kinetic energy by unit of mass (m2/s2) 
P – gas pressure (Pa) 
Res – Reynolds number based on particle diameter 
Rg – ideal gas constant, (kJ/kgK) 
Rmin – radius of the minimum spherical volume for continnum 

validity, (m) 
t – time, (s) 
u – velocity component in radial direction, (m/s) 
v – velocity component in axial direction, (m/s) 
vg and vs – control volume average velocities, (m/s) 
∆V – minimum volume for continuum validity (m3) 
β – interface drag function, (kg/m2s) 
µ – dynamic viscosity, (kg/ms) 
αg and αs – volumetric fractions 
θs – solid phase granular temperature (m2/s2) 
ρg and ρs – densities, (kg/m3) 
τg and τs – viscous stress tensors, (Pa) 
φs – particle sphericity 
Subscripts 
(g) and (s) – gas and solid phases 

Formulation 

Mathematical Model 

The simulations presented in this work are generated through the 
hydrodynamic model B developed at IIT (Illinois Institute of 
Technology) by D. Gidaspow and co-workers. In particular, the 
MICEFLOW code (Jayaswal, 1991) is utilized. A summary of the 
governing equations is presented in Table 1. More detailed 
descriptions can be found in Jayaswal (1991), Gidaspow (1994), 
Enwald, Peirano and Almstedt (1996) and Cabezas-Gómez and 
Milioli (2001). The model, generally known as traditional two fluid 
model, is based on a continuum Eulerian description for each phase. 
More recently, it has been enhanced by the introduction of the 
kinetic theory of granular flow (KTGF) (see for instance Gidaspow, 
1994). 

 
Table 1. Mathematical Model B (Gidaspow, 1994). 
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The general model accounts for conservation of mass, 
momentum and energy for all the phases, and turbulent kinetic 
energy for solid phases. Newtonian rheology is assumed for all the 
phases. The computational code allows the description of 
multiphase flows including two different fluid phases, and several 
different solid phases, each one characterized by averages of particle 
diameter, density and shape factor. In this work a gas-solid flow is 
considered comprising one gas phase (air) and one solid phase 
(glass beads). Only mass and momentum conservative equations are 
solved for both phases in two-dimensional flow, and no interface 
mass transfer is considered. The pressure of the solid phase is 
modeled by applying the concept of solid’s phase elasticity module 
through the correlation of Rietema and Mutsers (Rietema and 
Mutsers, 1973, apud Jayaswal, 1991). The interface drag function is 
modeled through a literature commonly used procedure (Gidaspow, 
1994), using Ergun’s correlation (Ergun, 1952) when solid’s 
fraction is equal or higher than 0.2, and Wen and Yu’s correlation 
(Wen and Yu, 1966) when solid’s fraction is lower than 0.2. 

Derivation of Turbulent and Flow Parameters 

Reynolds stresses are defined by products of time averaged 
velocity fluctuations (Tennekes and Lumley, 1977). For both 
phases, normal and shear Reynolds stresses are determined by the 
following (Mudde et al., 1997, Pan, Dudukovic and Chang, 2000, 
Matonis, Gidaspow and Bahari, 2002) 
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where N represents the number of vectors considered in the time 
averaged calculations. The considered time interval was 80 seconds 
of real flow, with a numerical time steps of 0.01 seconds, resulting 
N equals to 8000 vectors. The time interval was counted from 20 to 
100 seconds, since a statistically developed regime was identified 
starting at about 20 seconds of real flow. 

The solid phase granular temperature was determined as a 
function of the turbulent kinetic energy by the following (Peirano 
and Leckner, 1998, Matonis, Gidaspow and Bahari, 2002) 
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where ks is the turbulent kinetic energy by unit of mass of the solid 
phase (m2/s2). 

The dynamic viscosity of the solid phase was determined as a 
function of the granular temperature by the following (Gidaspow, 
1994) 
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where g0 is a radial distribution function associated to particles, 
determined from Bagnold’s correlation (Bagnold, 1954); and e is the 
restitution coefficient between particles of the solid phase, assumed 
equal to 0.995 (Gidaspow, 1994). 
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Geometry, Initial and Boundary Conditions 

Figure 1 shows the geometry and domain considered in the 
simulation. The initial and boundary conditions at entrance and exit 
for both phases are also presented. At entrance a one-dimensional 
plug flow is considered. At exit the continuity condition is applied 
to all variables. At the walls a non-slip condition is assumed for the 
gas phase axial and radial velocities, and for the solid phase radial 
velocity. Otherwise, a partial slip condition is applied for the solid 
phase axial velocity following Ding and Gidaspow (1990). Also, a 
zero gradient in the wall normal direction is prescribed for the gas 
phase pressure and volumetric fraction. A cartesian numerical mesh 
22x297 was applied which is uniform by blocks in the axial 
direction as shown in Figure 1. A constant solid phase viscosity was 
considered which was obtained by Gidaspow and co-workers 
(Gidaspow, Tsuo and Luo, 1989, and Tsuo and Gidaspow, 1990) 
from the experimental data of Luo (1987). 

Results and Discussion 

Simulated radial profiles of velocities for both phases and 
solid’s fraction are compared to experimental data. Radial profiles 
of solid’s phase axial velocity are considered in comparison to 
predictions of single-phase laminar and turbulent flows for 
evaluating the capability of the model of dealing with solid’s phase 
turbulence. Results of Reynolds stresses are presented and 
discussed. Owing to the lack of experimental data on CFB, the 
predicted Reynolds stresses are qualitatively compared to literature 
predictions and experiment in gas-liquid and gas-liquid-solid flows. 
The predicted granular temperature and solid’s phase dynamic 
viscosity are compared to literature data derived from predictions 
and experiment in CFB. A discussion is advanced regarding the 
validity of the continuum approach for the solid phase, and a brief 
comment is placed related to numerical diffusion. 

 
Simulation data: 
Particles diameter: dp = 520 µm 
Particle density: ρs = 2620kg/m3 
Solid phase mass velocity: Gs = 24.9 kg/(m2s) 
Gas phase viscosity: µg = 1.82x10-5 kg/(ms) 
Solid phase viscosity: µs = 0.509 kg/(ms) 
Initial conditions: 
Riser without solid 
P = 101325 Pa 
T = 300 K 
Entrance boundary conditions: 
vs = 0.386 m/s 
vg = 4.979 m/s 
αs = 0.0246 
P = 121590 Pa (this is needed for gas density calculation) 
T = 300 K 
Exit boundary condidions: 
Continuity condition for f = αg, ug or us (a zero gradient in the 
exit normal direction) 
Gas phase pressure: P = 117204.9 Pa 
Walls boundary conditions 
us = ug = vg = 0 
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Computational conditions: 
δx = 22x0.381 cm 
δy1 = 11x1.66; δy2 = 280x1.905; δy3 = 6x1.524 (cm) 
δt = 0.00005 s 
Number of cells: (22x297) = 6534 
Real time of simulation: t = 100 s 

Riser 

7.62 cm 

5.5 m 

x

y 

7.62 cm

 
Figure 1. 2D geometry and domain, initial and boundary conditions, and 
computational conditions for the simulations of the IIT installation (Luo, 
1987; Tsuo and Gidaspow, 1990). 

On the Flow Pattern, Turbulence and Granular 
Temperature 

Figures 2 and 3a show time averaged radial profiles of, 
respectively, axial and radial velocity for both phases. The profiles 
of radial velocities are almost inversely symmetric around the axis, 
and show the expected tendency for particle migration towards the 
walls. The profiles of axial velocities also show the expected 
annular layer of solid of negative axial velocity along the walls. The 
velocity profiles unveil the annular plug flow pattern and the 
segregation of solids towards the walls typical of CFBs. This fact is 
confirmed by the radial profile of solid fraction presented in Figure 
3b, and by the instantaneous sketches of solid fraction along the 
column presented in Figure 4. The concentration of solids at the 
walls is also a cause for clustering, as observed in Figure 4 at the 
column left wall. 

 

 
 

 
Figure 2. Time averaged radial profiles of axial velocity for both phases 
3.4 m above entrance compared to the experimental data of Luo (1987). 
Time average from 20 to 100 s. 
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Figure 3. Time averaged radial profiles of radial velocity for both phases and solid fraction 3.4 m above entrance compared to the experimental data of 
Luo (1987). Time average from 20 to 100 s. 

 

 
Figure 4. Instantaneous sketches of solid fraction along the column. 

 
Still in Figure 2, the time averaged radial profiles of axial 

velocity are compared to the experimental data of Luo (1987). For 
the gas phase the relative deviations are quite significant, mainly at 
the axis. Otherwise, the axial velocity profile of the solid phase 
shows a much better behavior. This may be because turbulence is 
captured by the model for the solid phase but not for the gas phase. 
In view of the huge difference on the “particle” size of the phases, 
the applied numerical mesh is able to capture significant scales of 
turbulence for the solid phase, while severely filters turbulence of 
the gas phase. A turbulent model for the gas phase seems to be 
required. The deviations on axial velocity profiles of both phases 
related to experiment may also be due to experimental uncertainties 
on local velocities measurements. The better predictions of velocity 
profiles of the solid phase related to the gas phase are further 
discussed in Cabezas-Gómez and Milioli (2003). 

A more consistent piece of evidence showing that turbulence is 
in fact being modeled for the solid phase comes from the way that 
the dynamic viscosity of this phase affects its velocity profiles. 
Figure 5 shows time averaged radial profiles of solid’s phase axial 

velocity for different values of the solid’s phase dynamic viscosity 
defined around the experimental 0.509 kg/(ms). It is seen that the 
velocity profiles become flatter as dynamic viscosity increases. This 
behavior is consistent with single-phase turbulent flows, as shown in 
Figure 6. That figure shows predictions for the single-phase flow of 
a pseudofluid with properties consistent with the properties of the 
solid phase in the previous gas-solid flow. Those results were 
generated with the CFX code for conditions of laminar (Figure 6a) 
and turbulent (Figure 6b) flows. The same dynamic viscosities of 
Figure 5 were considered. For the laminar flow the velocity profiles 
become flatter as the dynamic viscosity is decreased, while for the 
turbulent flow the contrary happens, i.e. the profiles become flatter 
as the dynamic viscosity is increased. So, solid’s phase turbulence is 
being modeled by the traditional two fluid model beyond any doubt. 
At what accuracy, however, is a question that remains to be 
answered. Of course, the above discussion must be approached with 
care since it rests on the assumption that the gas-solid two fluid 
model is accurate. Unfortunately such accuracy is far from 
established. For instance, Sundaresan (2000) suggests that the 
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commonly assumed hypothesis of Newtonian rheology needs 
revision. The author observes that the so-called sub-grid viscosity is 
proportional to strain rate in single-phase turbulent flows, while it 
seems to be inversely proportional to strain rate in gas-solid flows. 

 

 
Figure 5. Time averaged radial profiles of solid’s phase axial velocity for 
different solid’s phase dynamic viscosities 3.4 m above entrance 
compared to the experimental data of Luo (1987) (Cabezas-Gómez and 
Milioli, 2003). 

 

 

 
Figure 6. CFX simulated radial profiles of axial velocity for single-phase 
flows 3.4 m above entrance for the column of Figure 1, for a pseudofluid 
with properties consistent with those of the solid phase in the concerning 
gas-solid flow (ρ = 260 kg/m3, µ = 0.25, 0.50 and 0.75 kg/(ms)). (a) For a 
laminar flow (v = 3 m/s); (b) For a turbulent flow (v = 30 m/s). 

Figures 7 and 8 show radial profiles of normal and shear 
Reynolds stresses in various different sections of the column. 
Normal stresses result mostly symmetric and one-modal. Shear 
stresses result mostly inversely symmetric and two-modal. This 
behavior is in agreement with observations for gas-liquid columns 
of bubbles (Mudde et al., 1997, and Pan, Dudukovic and Chang, 
2000). The normal axial stresses <v'v'> are superior by three orders 
of magnitude as compared to the normal radial stresses <u'u'>, and 
by two orders of magnitude as compared to the shear stresses <u'v'>. 
This is in disagreement with the results for both gas-liquid bubble 
columns of Mudde et al. (1997) and gas-liquid-solid bubble columns 
of Matonis, Gidaspow and Bahari (2002). In those cases normal 
radial and axial stresses are of the same order, and are one order 
higher than the shear stresses. However, despite the disagreement 
regarding order of magnitude, the qualitative behavior of <us'us'> 
and <us'vs'> is similar to that of the gas-liquid and gas-liquid-solid 
systems. The normal stresses <us'us'> in the bubble columns are 
maximum close to the axis, since radial velocities are maximum at 
this region owing to a spinning motion of bubble streams. 
Supposingly, the up flow around the axis is quite uniform and 
consequently characterized by low fluctuations of radial velocity 
(Mudde et al., 1997). For the concerning gas-solid flow the profiles 
of axial and radial velocities cause segregation of solids at the walls 
and impose higher normal radial stresses around the axis. 

 

 

 
Figure 7. Radial profiles of normal <us'us'> and shear <us'vs'> Reynolds 
stresses in various different sections of the column. 
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Figure 8. Radial profiles of normal <vs'vs'> Reynolds stresses and granular 
temperature in various different sections of the column. 

 
The shear stresses for the concerning gas-solid flow behaves 

similarly to that of bubble flows. Besides, just like in the bubble 
columns, the shear stresses for the gas-solid flow tend to zero in 
regions close to the walls. The major qualitative differences between 
the considered cases relate to the <vs'vs'> profiles. While in the 
bubble columns of Mudde et al. (1997), Pan, Dudukovic and Chang 
(2000) and Matonis, Gidaspow and Bahari (2002) a maximum 
appears close to the walls, in the concerning gas-solid flow a 
maximum is observed at the axis. In fact this behavior is typical of 
the <us'us'> profiles observed in the bubble columns. Mudde et al. 
and Matonis et al. attribute the behavior of the bubbly flows to the 
development of eddies with scales close to the diameter of the 
column, while according to Pan et al. it is due to the occurrence of a 
liquid downflow close to the walls. 

In the gas-solid flow, despite the existence of an annular 
downflow of solids at the walls and a diluted upflow plug around 
the axis, the normal stresses do not behave like in bubble columns. 
Despite the mismatching regarding bubble columns, there are 
evidences supporting the current predictions for gas-solid flow. 
Gidaspow and Huilin (1998) obtained experimental data on granular 
temperature in a CFB system. The results show that the axial 
component of the instantaneous particle velocity standard deviation 
is up to two orders of magnitude higher than the radial component, 
meaning that the fluctuations on axial particle velocities in fact 
determine granular temperature. Such effect is clearly seen in Figure 

8, where the profiles of granular temperature result very similar to 
the profiles of <vs'vs'>. The above allows concluding that the 
differences in magnitude of <vs'vs'> regarding both <us'us'> and 
<us'vs'>, are qualitatively correct. 

Figure 9 shows time averaged radial profiles of granular 
temperature and solid fraction in the column’s left side. Granular 
temperature results maximum at the axis, where the solid fraction is 
minimum as expected from Gidaspow’s results (Gidaspow, 2000). 
At the central core the flow is diluted, and the mean free path 
between particles results high. As a consequence, the fluctuations in 
the motion of particles are increased and granular temperature 
grows. This behavior is physically coherent reinforcing the 
correctness of the predictions of normal axial stresses. 

 

 
Figure 9. Time averaged radial profiles of granular temperature and solid 
fraction in the column’s left side 3.4 m above entrance. 

 
Neri and Gidaspow (2000) determined granular temperature by 

solving a granular energy equation coupled with the momentum 
equations. Neri and Gidaspow’s plots of granular temperature 
against solids fraction are qualitatively similar to those obtained in 
this work, which are shown in Figure 10. Still, both the results are 
qualitatively similar to the figures of Gidaspow and Huilin (1998), 
who determined granular temperature through experiment. It seems 
that the same qualitative correct results of granular temperature are 
found by either solving a granular energy equation or deriving 
Reynolds stresses. However, despite the agreement in terms of 
qualitative behavior, the quantitative results are in significant 
disagreement. Figure 11 presents results for the dynamic viscosity 
of the solid phase determined as a function of the granular 
temperature obtained from Reynolds stresses (Equation 5). The 
average value of solids viscosity determined through Equation 5 
resulted about 7.5x10-5 kg/(ms), several orders higher than the 
experimental average of 0.509 kg/(ms) used in this work. Such 
discrepancy is clearly a major consequence of the quantitative 
deviation on granular temperature. However, it is advisable not to 
forget that the simulation was performed imposing a constant solid 
viscosity in each computational cell, disregarding its obvious 
relation to the solids fraction, which changes dramatically in time 
and all over the computational domain. The above are clearly 
matters requiring further thought. 
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Figure 10. Granular temperature determined from Equation 4 against time 
averaged solids fraction in various different sections of the column 
(figures a and b show the same data for different scales of sα ). 

 

 
Figure 11. Dynamic viscosity of the solid phase (Equation 5) against time 
averaged solids fraction. 

On the Continuum Assumption 

Celmiņš (1988) proposed a quantitative criterion for the 
minimum volume on which the volume averaged Eulerian 
continuum equations for the solid phase are valid. From Celmiņš’ 
developments, Fan and Zhu (1998) proposed the following 
correlation 
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This expression stands for spherical particles uniformly 

distributed according to a three dimensional hexagonal array. Rmin 
represents the radius of the minimum spherical volume for which 
the solid phase behaves as a continuum. δ is a relative deviation 
between the asymptotic and the ideal hexahedral particle array for 
αs values. The minimum volume is given by 

 
3
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3
4V π
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Figure 12 shows the minimum volume ∆V as a function of 

solid’s fraction for the particle size of the present simulation (δ was 
taken equal to 1% following Fan and Zhu, 1998). For solid’s 
fraction typical of the present simulation the graph shows a 
minimum volume in the range of about 3 to 20 cm3. As the present 
work deals with 2-D Cartesian simulations the face of a cube with 
the minimum volume is to be considered. It results between 2.1 and 
7.4 cm2. The computational cells applied in the present simulation 
were between 0.58 and 0.73 cm2. Even though the present 
simulation does not meet the required continuum criterion, several 
recent published simulations do not comply with the concerning 
criterion as well. At what extent such violation affects predictions is 
not known. Anyway, it is strongly advisable the utilization of 
adaptative mesh procedures through which local instantaneous 
solid’s fractions all over the domain are used to redefine cell sizes 
so that the continuum condition is always satisfied. 

 

 
Figure 12. Minimum volume for what the solid phase behaves as a 
continuum (as determined from Equations (6) and (7), with dp = 0.520 mm 
and δ = 1 %). 
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The computational mesh 22x297 used in this work is much finer 
than the 12x75 mesh used in a previous work for the same 
conditions (Cabezas-Gómez and Milioli, 2003). Figure 13 shows a 
comparison of time averaged radial profiles of axial velocities for 
the two meshes. Despite quantitative differences, the predictions 
result qualitatively similar. This shows that mesh size has no effect 
on qualitative predictions behavior, at least for the cases considered. 
One possible reason for the quantitative disagreement could be 
numerical diffusion, since an upwind discretization scheme has been 
applied. However, as seen in Figure 5, the radial profile of solid’s 
phase axial velocity for an inviscid case results quite flat and, 
therefore, free of “significant” viscous effects whether physical or 
numerical. This rules out numerical diffusion as a significant effect. 
The results of Figure 5 stand for the coarser 12x75 mesh. It may 
well be that the quantitative disagreement on the predictions for the 
different meshes is a major consequence of the extent or accuracy at 
what turbulence is captured. This reinforces the need for working 
with cell sizes that keep valid the continuum hypothesis on a local 
instantaneous basis. Suposingly, violations of the continuum shall 
provide quite inaccurate turbulent information, and thereby quite 
inaccurate predictions. 

 

 

 
Figure 13. Time averaged radial profiles of axial velocity for both phases 
3.4 m above entrance for two different meshes (mesh 1: 12x75; mesh 2: 
22x297; • experimental data of Luo (1987)). 

 

Conclusions and Remarks 

The simulations showed that the traditional two fluid model 
adequately catches the mean macroscopic features of a gas-solid 
flow in the riser of a CFB. This includes the well-known low 
frequency flow oscillations, annular plug flow pattern, and 
clustering. The effect of dynamic viscosity over solid’s phase 
velocity profiles resulted consistent with single-phase turbulent 
flows instead of laminar flows. It was found that solid’s phase 
turbulence is captured by the traditional two fluid model beyond any 
doubt. At what accuracy, however, is a question that remains 
unanswered. Such conclusion must be approached with care since it 
rests on the assumption that the gas-solid two fluid model is 
accurate. Unfortunately such accuracy is far from established. 

Turbulent parameters were determined assuming a direct 
numerical integration procedure. Despite quantitative disagreement 
regarding literature results, both simulated and experimental, the 
predictions showed a good qualitative behavior for the solid phase. 
The behavior of normal axial Reynolds stresses was different from 
that observed in gas-liquid and gas-liquid-solid systems. A dense 
downflow of solids was observed at the walls leaving a dispersed 
upflow plug around the axis. The maximum normal axial Reynolds 
stresses occurred around the axis, and caused the granular 
temperatures to be higher at this region. Contrary to the bubble 
columns, normal axial Reynolds stresses resulted orders of 
magnitude higher than normal radial and shear Reynolds stresses. 

It was pointed not to be fair to determine granular temperature 
from the mean motion of collections of particles the same way that 
it is not possible to determine the thermodynamic temperature from 
macroscopic continuum hydrodynamic predictions. However, 
granular temperature was derived from continuum hydrodynamic 
data so that such a procedure could be analyzed. Comparisons of 
granular temperature were performed against both experiment and 
granular energy predictions. Despite qualitative agreement was 
achieved, the quantitative results are in significant disagreement. 
Whether the macroscopic oscillations of the flow can be related to 
the particle’s velocity fluctuations is still an open question. It 
appears that granular temperature should be determined either from 
velocity fluctuations of particles, or by solving a conservative 
equation for granular energy. 

A minimum limit should be enforced on numerical spatial mesh 
sizes having in view the validity of the average Eulerian continuum 
equations for the solid phase. Theoretically, It is not possible to 
refine the mesh beyond that limit and still maintain the validity of a 
continuum formulation. The computational cells applied in the 
present simulation do not meet the required continuum criterion the 
same way several recent published simulations do not. At what 
extent such violation affects predictions is not known. Anyway, it is 
strongly advisable the utilization of adaptative mesh procedures 
through which local instantaneous solid’s fractions are used to 
redefine cell sizes so that the continuum condition is satisfied. 

It is suggested that quantitative disagreement on predictions for 
different meshes be a major consequence of the extent or accuracy 
at what turbulence is captured. This reinforces the need for working 
with cell sizes that keep valid the continuum hypothesis on a local 
instantaneous basis. Supposingly, violations of the continuum shall 
provide quite inaccurate turbulent information, and thereby quite 
inaccurate predictions. 
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