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Application of Time-Delay Neural and 
Recurrent Neural Networks for the 
Identification of a Hingeless 
Helicopter Blade Flapping and 
Torsion Motions 
System identification consists of the development of techniques for model estimation from 
experimental data, demanding no previous knowledge of the process. Aeroelastic models 
are directly influence of the benefits of identification techniques, basically because of the 
difficulties related to the modelling of the coupled aero- and structural dynamics. In this 
work a comparative study of the bilinear dynamic identification of a helicopter blade 
aeroelastic response is carried out using artificial neural networks is presented. Two 
neural networks architectures are considered in this study. Both are variations of static 
networks prepared to accomodate the system dynamics. A time delay neural networks 
(TDNN) for response prediction and a typical recurrent neural networks (RNN) are used 
for the identification. The neural networks have been trained by Levemberg-Marquardt 
algorithm. To compare the performance of the neural networks models, generalization 
tests are produced where the aeroelastic responses of the blade in flapping and torsion 
motions at its tip due to noisy pitching angle are presented. An analysis in frequency of the 
signals from simulated and the emulated models are presented. In order to perform a 
qualitative analysis, return maps with the simulation results generated by the neural 
networks are presented. 
Keywords: System identification, helicopter blade, time delay neural networks, recurrent 
neural networks. 
 
 
 

Introduction 

Aeroelastic instabilities are factors that can limit aircraft 
capacity of flight and, therefore, must be carefully examined during 
the design and development stages of any aircraft. Modern fixed- 
and rotary-wing aircraft are requested to fly at higher speeds and to 
have less weight, thus increasing its structural flexibility. Therefore, 
a safe analysis of the fluid-structure interactions must be taken in 
order to obtain a dynamic model presenting all these relevant 
characteristics (Belo and Souza, 2001).1 

The helicopters are aircraft with rotating wings, which leads to 
complex aeroelastic features. An example is the helicopter main 
rotor blades that are thin and flexible and then, even in normal 
operation conditions can undergo large elastic deformations. Such 
effects can lead to treatment beyond the theoretical limits considered 
by linear beams hypothesis (Celi, 1999). These and other factors 
make the linear models inadequate for the necessary analyses for 
rotorcraft aeroelasticity. Consequently, linear models are substituted 
by non-linear ones. This procedure has been facilitated by the 
increasing availability of faster and more powerful computers. 
However, the mathematical modelling of non-linear systems is 
considerably more complex than linear ones, becoming some times 
impracticable for short-term and even some times, unfeasible. 

Due to the difficulty in representing non-linear systems by 
analytical models, there has been an increase of works on 
identification system. System identifcation is the process of finding 
a model of a physical system given input-output measurements. It is 
commonly referred to as an inverse problem, because it is the 
opposite of the problem of computing the response of a system with 
known characteristics. Non-linear system identification is a much 
younger discipline than linear system identifcation and the theory 
for the nonlinear case is often an extension of the linear case.  
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Some novel representations used in the modelling of non-linear 
systems are: i) neural networks; ii) functions of radial base; iii) 
Volterra Series; iv) Wavelets transforms; v) polynomial and rational 
functions and vi) polynomial differential equations. It is worth 
noticing that bilinear models constitute a special class of non-linear 
polynomial models (Aguirre et al., 1998).  

According to Cruz (1998), Artificial Neural Networks have been 
considered a powerful identification tool, allowing the modelling of 
the processes from their input and output data. Beyond all 
advantages, neural networks possess reasonably high processing 
speed as compared to other conventional methods, as well as 
learning capacity in some way similar to the human one. 

Narendra and Parthasarathy (1990) have presented a 
comprehensive study on the applicability of multilayer neural 
networks for identification and subsequent use to control non-linear 
dynamic systems. Takahashi (1999) has presented a multilayer 
neural network trained by using the backpropagation algorithm to 
detect the critical aerodynamic loading for the occurrence of flutter 
and the limit conditions in the structure. Maghami et al. (2000) have 
presented a new procedure for developing and training artificial 
neural networks, useful for fast and efficient control as well as for 
the analysis of flexible space systems. In Greenwood (1997), the 
long time performance of the multilayer networks applied to the 
estimation of dynamic systems behaviour has been studied. 
Giannakis et al. (2001) have presented a survey related to the 
identification of non-linear systems and its applications. In Tsoi 
(1998), a quite complete review on recurrent neural networks can be 
found. 

The aim of this work is the application of artificial neural 
networks in the identification of a hingeless helicopter blade 
flapping an torsion aeroelastic motion. Two neural networks 
architecture are considered in this study. Both are variations of static 
networks prepared to accommodate the system dynamics. A time-
delay neural network (TDNN) for response prediction and a typical 
recurrent network (RNN) are used for the identification study. 
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The blade has been modelled by the finite element method and a 
bilinear state space representation is produced. The mildly non-
linear features of the bilinear model are explored to achieve a 
database for further neural network training. Comparisons between 
the TDNN and RNN models are presented. A qualitative analysis of 
the models are proceeded by means of the respective construction of 
the return maps. 

Helicopter Blade Non-linear Mathematical Model 

The hingeless helicopter blade is modelled as a rotating 
cantilever beam with length R, undergoing the coupling motions of 
flapping, lead-lagging, axial stretching and torsion. Detailed 
modelling aspects have been presented in Marques (1993). Figure 
1(a) shows the main coordinate system x, y and z, that is fixed to the 
blade root with its origin in the intersection of the blade root cross-
section and the elastic axis. When the blade is not deformed the x-
axis is exactly coincident with the elastic axis. It is also supposed 
that elastic and mass axes are noncoincidents. Figure 1(a) also 
shows the deformed blade and elastic displacements u, v and w, in 
the x, y and z directions, respectively. Figure 1(b) shows an arbitrary 
blade cross-section and its local coordinate system η and ζ. A 
pretwist angle θt and the torsional deflection φ  can also be seen. 

 
 

Elastic axisElastic axis

 
(a) 

Elastic axisElastic axis

 
(b) 

Figure 1. (a) Blade coordinate system and elastic displacement and (b) 
cross-sectional coordinate system (Marques, 1993). 

Strain and Kinetic Energy 

The strain energy, considering a rotating beam undergoing axial 
stress, shear in the lead-lagging plane and in the flapping plane, is 
given by (Marques, 1993): 

 

( ){ ( )

}dxwFvFGJ

wvEIwvEIuEAU

cc

tty
R

ttz

222

2

0

22

  

cossinsincos
2
1

′+′+′+

′′+′′−+∫ ′′+′′+′=

φ

θθθθ
 (1) 

where, EA, EIy,  EIz and GJ are the axial, lead-lagging, flapping and 
torsional  stiffness, respectively. The term Fc is the centrifugal 
effect and is a function of the mass (m) and the blade rotational 
speed (Ω), that is: 
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The kinetic energy equation is given by: 
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where, 
dt
rd  is the velocity vector of an arbitrary point in the blade 

cross-section. 

Aerodynamic Loading 

A quasi-steady aerodynamic approach has been adopted to yield 
the expressions of lift (L), drag (D) and aerodynamic moment (M) in 
the hovering flight condition (Marques, 1993). The induced 
velocity, which yields a free airflow velocity parallel to the y-axis, 
has been neglected. The small displacement consideration results in 
the assumption that the blade cross-section remains parallel to the yz 
plane. Mass and elastic axes are not coincident, but the aerodynamic 
centre is taken at the same point of the elastic axis and cross-section 
intersection. The NACA 0015 airfoil has been assumed, which leads 
to coincident blade cross-section aerodynamic and pressure centres. 
A blade element dx has been taken and the corresponding load 
element has been computed. Considering that the blade elastic 
displacements in the free air flow and an operational region for the 
blade angle of attack, the aerodynamic loading results: 
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where, e is the offset between elastic and mass axis; ρarar

 is the air 
mass density; c is the blade cross-section chord; pθ  is the command 

pitch angle; Θ
0
 is the nominal value of pitch angle in the operational 

region (10° maximum). 
Proper linearization can be achieved by supposing, for instance, 

small displacements and neglecting higher order terms. Nonetheless, 
it is desired to maintain some degree of non-linearity. Here, mildly 
non-linear effect can be attained by keeping coupling terms, such as 
those relating the states and input variables. 

Finite Element Model and Bilinear Representation 

The finite element discretization is proceeded in terms of beam 
elements with six degrees of freedom per node, viz: displacements in 
the x, y and z directions, rotations in the xy, xz planes and in the 
cross-section plane. The nodal displacements (generalized 
coordinates) form the q vector and are related with blade 
displacements through the following equations: 
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where, H1(x) through H6 (x) are the shape functions given by the 
Hermitian polynomials and the subscripts 1 and 2 are related to the 
displacements at each element node. 

The mass, gyroscopic, and stiffness matrices, Me, Ge and Ke, of 
each finite element have their respective coefficients mij, gij and kij, 
for i,j = 1,2,...n, that are obtained by substituting Eq. (5) into Eqs. 
(1) and (3). However, these coefficients are not linear in q. 
Linearization occurs by using small motion assumption about the 
equilibrium point, which yields the following expressions (Marques, 
1993): 
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Superposing each Me, Ge and Ke, respectively, and considering 

the system constraints, the global system matrices are assessed. 
Damping effects have been introduced to the model by using the 
Rayleigh approach and a damping factor ξ = 0.05 (Marques, 1993). 

By substituting Eq. (5) into Eq. (4), non-linear loading equations 
are obtained and simplified. The coupling between the generalized 
coordinate vector q and the input variable θ  (blade pitching angle) 
has been kept in the model in order to provide some degree of non-
linearity. The final blade mathematical model results in the 
following equation of motion in matrix form: 
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where, q is the nodal displacement vector, M, G, Ca, K are the 
global mass, gyroscopic, damping, and stiffness matrices, 
respectively, Q is the aerodynamic loading matrix and θ is the blade 
pitching angle. 

The presence of coupled terms (system states and input variable) 
allows bilinear system representation. Bilinear systems (Mohler, 
1991) are systems that present linear behaviour in state and linear 
behaviour in control, but they are not jointly linear in state and 
control, because products of state and control are involved. They 
comprise one of the simplest class of non-linear systems, and they 
can be produced from slight generalisations of linear systems. 
Nonetheless, with such systems the superposition principle is not 
applicable. The equation of motion given by Eq. (7) can, then, be 
conveniently transformed into state-space representation, resulting: 
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where, x is the state vector, u is the input or control vector, A is the 
state matrix, B is the control matrix, Q1 is the aerodynamic loading 
matrix with the coefficients depending on the systems states, Q2 is 
the aerodynamic loading matrix with the coefficients depending on 
the inputs and Q3 is the aerodynamic loading matrix with the 
coefficients depending on the coupling between system states and 
inputs. By grouping the terms, the traditional state-space 
representation form is obtained, that is:  

 
xu Nu BxAx 11 ++=  ,  (9) 

where, 11 Q BAA += , 21 Q BB =  , 3Q BN = , with N being the 
bilinear coupling matrix (u = θ). 

Artificial Neural Networks 

Artificial neural networks are information processing systems 
with the capability of learning through examples (Haykin, 1994). 
Based on concepts derived from neuro-biology, neural networks are 
composed by a set of interconnected processing units, called 
neurons. The neurons process the signals presented to the neural 
network by accumulating each stimulus and by transforming the 
total value using a function; that is, the activation function. The 
stimuli to and from a neuron are modified by the real value called 
synaptic weight, which characterises the respective connection 
between neurons. 

Figure 2 shows a typical representation for a generic neuron j, 
where x1, x2, ..., xp are the stimulus signals, wj1,wj2,...,wjp, are the 
synaptic weights, θj is a bias value, vj is the activation potential, oj is 
the neuron output signal, and ϕ(.) is the activation function 
(generally adopted as a non-linear sigmoid function). 

 

 
Figure 2. Typical neuron representation. 

 
Then, from Figure 2, one can observe that the neuron output is 

given by: 
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Network architecture is the name given to the arrangements of 

neurons into layers and how they are connected. Typical neural 
networks have the following architecture: (1) input layer – where 
the input stimulus is presented to the network; (2) hidden layers – 
internal layers of a network, and (3) output layer – the last layer of 
the network, where the outputs are given. Such typical network 
architecture is commonly referred to as a multi-layer neural 
network.  

Once trained, one can assume that the network stored the 
knowledge supplied to it. However, the knowledge in a neural 
network is not stored in a particular localization. It depends on its 
topology and the magnitude of the weights in the input layer. 

The generalization of an artificial neural network is the capacity 
to reproduce desired signals for different input signals that have not 
been used during the network training, or either, that it is able to 
catch the dynamics of the system being emulated (Saravanan & 
Duyear, 1994). 

Recurrent Neural Networks (RNN) 

During the last years the use of neural networks in dynamic 
systems modeling has increased significantly. This is justified by its 
parallel processing capacity, its ability to approach functional 
relationship, specifically the non-linear ones, the learning capability 
and its implementation easiness. Typical neural networks can only 
deal with input-to-output mappings that are static and a solution to 
this case has been given by using the idea of regressive models, in 
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other words, models based on past values of the system input and 
output. 

Recurrent networks (RNN) are neural networks with one or 
more feedback connections that can be of local or global nature. 
Feedback allows the recurrent networks to acquire state 
representations, making them appropriate devices for different 
dynamic applications such as: forecasting or modeling non-linear 
systems, adaptive equalization of communication channels, control 
of industrial installations, diagnostic of automotive engines and 
processing of temporal signals as the voice signal (Haykin, 1994). 

In RNN’s both feedforward and feedback (recurrent) 
connections between neurons are allowed (Kling, 2003). As with 
ordinary multilayer perceptrons, recurrent multilayer perceptrons 
can perform any nonlinear mapping, but the difference is that the 
response to an input from a recurrent network is now based on all 
previous inputs, as these are used in feedback connections. 
Nonetheless, the recurrent network is a dynamic system, with the 
activations of the neurons with feedback connections being the state 
of the system. 

The output of a RNN network is a function of the current 
external input together with its previous inputs and outputs as given 
by: 

 
   ))Nk(y),...,k(y),k(y),Mk(u),...,k(u),k(u(f)k(y −−−−−= 211  (11) 

 
Time Delay Neural Networks (TDNN) are a particular case of 

recurrent neural networks. The response of these neural networks in 
time t is based on the inputs in times (t-1),(t-2), ..., (t-n). A mapping 
performed by the TDNN produces a y(k) output at time k as: 

 
))Mk(u),...,k(u),k(u(f)k(y −−= 1  (12) 

 
where )k(u  is the input at time k and M is the maximum adopted 
time-delay. 

After been adequately trained, TDNN have been used 
successfully for prediction, because they are able to capture the 
dynamics of a system and to foresee the output in the current 
time. 

Neural Network Training 
To achieve a desirable set of synaptic weights to a pre-defined 

network architecture, a training process is needed. A training 
process is generally based on an optimisation scheme to adjust the 
network parameters (mainly, the weights) in relation to a set of 
input-to-output to be matched by the neural network model 
(supervised learning scheme). The backpropagation algorithm based 
on a gradient descent technique (Haykin, 1994) has been widely 
applied for general neural network training. More efficient training 
scheme can be achieved by using the Levenberg-Marquardt 
Algorithm (LMA). 

Levenberg-Marquardt Algorithm (LMA) 

This algorithm is a variation of the Newton’s method for 
minimizing functions that are sums of squares of other non-linear 
functions (Hagan et al., 1996). The LMA provides better 
performance when compared with typical backpropagation 
algorithms. 

From Newton’s method the network update rule is: 
 

nnnn gHww 1
1

−
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where, w is the network weight matrix, n is a step of iteration, H is 
the Hessian matrix and g is the gradient matrix. 

For the performance index as a sum of squares functions, the 
Hessian matrix can be approximated in terms of the Jacobian matrix, 
J, which contains first derivatives of the network errors with respect 
to the weights and biases. Thus, 

 

JJH T≅ .  (14) 
 
When the approximation in Eq. (14) is substituted into Eq. (13), 

the Gauss-Newton method is obtained, that is: 
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A problem that may arise in the Gauss-Newton method is that 

the matrix [JTJ] may not have an inverse. This can be overcome by 
assuming a modification to the matrix [JTJ] that leads to the LMA: 
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where, I is the identity matrix and µ  is a scalar. 
The scalar µ presents an important role to the LMA. When µn is 

zero, the weight update is basically the Gauss-Newton method. 
When µn is sufficiently large, Eq. (16) becomes gradient descent 
with small step size. By choosing the proper value of µ the LMA 
provides an efficient compromise between the great performance of 
the Newton’s method and the guaranteed convergence of the 
gradient descent approach. 

Identification of Helicopter Blade Non-Linear Dynamics 

This work presents an approach for non-linear dynamics 
identification and prediction of a rotating helicopter mathematical 
model blade. It has been considered a blade with length of 4.09m 
and mass distribution of 2.3kg/m (Marques, 1993). The flight 
condition is hovering with the rotor spinning at 360 rpm. Other 
problem parameters are: axial stiffness - EA=5.09×107N; shifting 
between CG and elastic axis - e = -0.01013m; torsional stiffness - 
GJ = 2.28×104Nm; flapping stiffness - EIy = 3.22×103 Nm2; lead-
lagging stiffness - EIz = 1.18×105Nm2; radius of gyration - 
km1=0.008Ns2; km2=0.04Ns2. 

The blade has been also considered as a cantilever rotating beam 
subjected to flapping, lead-lagging and torsion displacement. The 
mathematical model has been represented in the bilinear form, as 
given by Eq. (9). The helicopter blade bilinear model has been 
obtained from finite element discretization using 5 elements. It has 
been considered the lowest level of discretization, in which the 
model presents proper system response representation. 

To obtain sets of input-output pairs, that is, necessary data for 
the training of the networks, the blade bilinear model has been 
simulated using random inputs (frequency varying from 0 to 10 Hz). 
Some simulations have been made considering the blade operating 
with a pitch angle of 5 degrees. 

Two artificial neural networks topologies have been trained. 
First, a feedforward multilayer neural network with delays in time 
(TDNN) has been trained. The predictive model follows the model 
described by Eq. (12). To train the neural network, the current and 
previous signals of the blade rotation, as well as the previous 
flapping and torsion signals at the blade tip, have been used to 
estimate flapping and torsion in the current instant. The TDNN 
topology presentes has three layers: an input layer (16 neurons), an 
output layer (2 neurons) and an hidden layer (10 neurons). Linear 
and sigmoidal tangent activation functions have been used, 
respectively at the output and hidden layers. 



Application of Time-Delay Neural and Recurrent Neural Networks for the … 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2005 by ABCM April-June 2005, Vol. XXVII, No.2 / 101 

A recurrent network (RNN) as described by Eq. (11) has been 
also implemented. The RNN network topology has been taken with 
three neuron layers, linear and tangent sigmoidal activation 
functions and 13, 2 e 6 neurons, respectively, in the input, output 
and hidden layers. 

After training, the TDNN error decay has reached a value as low 
as 10-5 and it was stabilized after 20 epochs. Similarly, the RNN 
training error decay has reached the order of 10-6 and stabilized after 
10 epochs, as can be observed in Figure 3. 

Training results have revealed a good matching between training 
samples and network outcomes. Those results have been omitted 
from this paper for the sake of conciseness. It has been considered 
more relevant to present the generalization features of the neural 
networks. A more complete analysis of the training has been 
presented in Souza (2002). 

Figure 4 show the results of generalization tests that were 
carried out with TDNN and RNN network models. 

In these tests, it can be observed that has been used a random-
type input and the results reveal that the generalization has been 
sufficiently satisfactory. The results also revealed that both the 
neural network models have better identified the torsion motion. As 
far as the flapping motion is concerned, discrepancies have been 
more evident for either TDNN and RNN models. 
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Figure 3. Error decay comparison after training the TDNN and RNN. 
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Figure 4. Flapping and torsion motions at the blade tip for the RNN and 
TDNN networks simulation. 

Using the identification results obtained from these tests, the 
signals have been analyzed in the frequency domain. Figure 5(a) to 
5(c) show the frequency spectrum of the input signal (Fig. 5(a)), 
flapping response (Fig. 5(b)), and torsional response (Fig. 5(c)). The  
normalized  power   spectra from simulated and emulated response 
by the TDNN and RNN models ensure that the network models are 
capable of capturing the system frequency contents. 
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Figure 5. (a) Frequency spectrum of input signal. (b) Frequency spectrum 
of blade tip flapping response. (c) Frequency spectrum of blade tip torsion 
response. 

 
Figure 5(b) shows frequency spectra extracted from neural 

network models and simulated signals from the blade tip flapping 
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response. Figure 5(c) also shows frequency spectra as in Fig. 5(b), 
but now considering the blade tip torsional response. One can verify 
that the frequency content in the simulated response is identified in 
the TDNN and the RNN responses. 

A qualitative analysis of the neural networks responses time 
histories are also proceeded in terms of methods for threating time 
series. Accordingly to Greenwood (1997), a dimension map is given 
by a function that is represented by: 

 
]M[ (n)1)(n xx =+  (17) 

 
where, x(n) is the value of x for time n and a particularly simple 
example, and for this reason one of the most used two-dimensional 
maps, is the Return Map. Given x(n) of any time series, the Return 
Map is the evolutuion x(n) against x(n+1) as a function of time. Such 
plotting shows how complex may be the System behaviour 

Figure 6(a) presents a comparison between the return maps of 
flapping motions at the helicopter blade tip generated by simulation 
with, respectively, the results generated by the neural network with 
delays in the time (TDNN) and the recurrent one (RNN) and Fig. 
6(b) shows a detailed area of Fig. 6(a), where one can see how the 
return maps are contained in the same orbit region. Analogly, Figs. 
7(a) and 7(b) present the same comparison, but now for the torsion 
response. 

One can observe that, either the maps plotted with the 
simulation results or the maps plotted with the results generated by 
the networks, are quite similar, which means that identification 
quality is good, i.e., both TDNN and RNN neural networks have 
provided satisfactory identification models. 
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Figure 6. (a) Flapping motion return map. (b) Detailed of the flapping 
motion return map. 
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Figure 7. (a) Torsion motion return map. (b) Detail of the torsion motion 
return map. 

Conclusions 

This work has presented an application of artificial neural 
networks in the identification of a hingeless helicopter blade 
flapping and torsion aeroelastic motions. The blade has been 
modelled by the finite element method and a bilinear state space 
representation has been produced. Two neural networks architecture 
has been considered: a time-delay neural network (TDNN) for 
response prediction and a recurrent neural network RNN for 
identification. Comparisons between the TDNN and RNN have been 
presented. 

It has been observed that the RNN model needed a lesser 
number of neurons in hidden layer that the TDNN. It has allowed 
lesser time to train the RNN and it is has reached lower error level. 
However, after adequately trained, both neural networks have 
provided satisfactory results. 

Generalization tests have been carried out and the results have 
been also satisfactory. An analysis in frequency domain with of both 
simulated and emulated models has been presented. One can be 
verify that the frequencies found in the simulated response are 
contained in the TDNN and the RNN responses, ensuring that the 
networks models are capable of capturing the system frequency 
contents. 

Return maps have been also used to explore the ability of the 
network models for prediction and identification purposes. 
Simulated and emulated results return maps have been plotted and it 
can be observed that they are quite similar. It means that both 
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TDNN and RNN neural networks have provided satisfatory 
identification models. 
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