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and inverse problems are described, formulated soided. After the use of an experiment
design technique, the hybrid combination ANN-LMy&Aded good estimates for the heat
and mass transfer problem of interest. The propg®iae of the set of parameters to be
estimated allowed the design of an experiment Widiher sensitivity coefficients. One
ANN was used to generate the initial guess forLtkle another one to approximate the
gradient needed by LM, and, finally, the global imiam was searched using the SA. The

experimental data considered in the inverse problas generated using the solution for
the direct problem with the addition of naise
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Introduction

The modeling and analysis of the simultaneous bedt mass
transfer phenomena in porous media has been tadktechany
researchers, and different formulations have beewveldped
(Whitaker, 1977; Pavén-Melendez et al.,, 2002; Migih and
Olwal, 2005; Kanevce et al., 2002a). In this wdrk mathematical
model used is based on Luikov's equations (Mikhadod Ozisik,
1994; Luikov and Mikhailov, 1965).

More recently, the inverse problem of simultanebest and
mass transfer has attracted the attention of aeasig number of
researchers (Kanevce et al., 2002a,b; Dantas, @08i3; Huang and
Yeh, 2002; Lugon and Silva Neto, 2004; Pedrefio-Mpolet al.,
2005a,b,c; Bialobrzewski, 2007). The Levenberg-Mardt (LM)
method was used in Kanevce et al. (2002a), and adaat al.
(2003). Huang and Yeh (2002) used Alifanov's ltiekat
Regularization method. A hybrid combination of LMdaSimulated
Annealing (SA) was used in Lugon and Silva NetaO@0 Artificial
Neural Networks (ANN) were used in Pedrefio-Molina a.
(2005a,b,c) and Bialobrzewski (2007).

In the present work we extend the results of Lugod Silva
Neto (2004) using one ANN (Haykin, 1999; Soeiraakt 2004a,b;
Silva Neto and Soeiro, 2003) to generate the Ingigess for the
LM, and another one to approximate the gradientiegeby LM.
Another improvement introduced in the present wsrthe use of a
different choice of the parameters to be estimatéth respect to
the usual set of unknowns considered in previousksyallowing
the design of an experiment with higher sensitiityefficients
(Dowding et al., 1999; Beck, 1988).

Nomenclature

a = thermal diffusivity of the porous mediunt/sn

a, = moisture diffusivity of the porous mediunt/sn

¢ = specific heat of the porous medium, J/kg K

h,, = mass transfer coefficient between the porousiumednd
the air, kg/m s°M

h = heat transfer coefficient between the porowsliom and
the air, W/ K

kn = moisture conductivity, kg/m°s

k = thermal conductivity, W/m K

| = thickness of the medium, m
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g =thermal flux supplied at the left side of fiwrous medium,
wint

R = latent heat of evaporation, J/kg

To = initial uniform temperature of the porous meditt

Ts =temperature of the surrounding air, K

Up = initial moisture potential?M

u = moisture potential equilibrium with the surround air,°M

X = coordinate axis, m

Greek Symbols

& =thermogradient coefficientiM/K
¢ = phase indicator (i.e.£ = 1 — vapor, € = 0 — liquid),
dimensionless

Direct Problem

In Fig. 1, adapted from Mwithiga and Olwal (200%),is

represented the drying experiment setup considieréde present
work. It was introduced the possibility of usingeale to weigh the
samples and sensors to measure temperature imnEes as well

as inside the drying chamber. In order to obtaie variation of

moisture content with time, from time to time saegphre extracted
from the drying chamber and weighed.

Experiment Design
dT= awr and sample temperature difference
du = air and sample moisture potential difference
1 =sample wadth
) =heat flux

air heating control
(du and dT)

[ scale™ / drying chamber »

%mﬁ -‘/ dry ai

sampling

to computer
electric power

i y
temperature flux control
probe /

air fluxy «+—

sample

amr heating chamber

5

N Sensors are placed in the sample
heat flux control ()

and inside the drying chamber

Figure 1. Drying experimental setup adapted from Mwithiga and Olwal (2005).

In accordance with the schematic representatiowshio Fig. 2,

consider the problem of simultaneous heat and tressfer in a one-
dimensional porous medium in which heat is suppl@edhe lower
surface of the porous media, at the same timedityaair flows over
the upper boundary surface.
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Figure 2. Drying process schematic representation.

The mathematical formulation used in this work floe direct
heat and mass transfer problem considered a cangtaperties
model, which in the dimensionless form is given(blkhailov and
Ozisik, 1994):

06,X.1) _ ;0% _ 500, g<x <1 750 )
ar ox? ox?
aHZ(X’r):LuaZHZ_Lu Pn62€1, O<X<l >0 (2)
or ax? x>
subject to the initial conditions, f@< X <1,
6,(X.0)=0 3
8,(X.0)=0 4)
and to the boundary conditions, fpr>0,
06(0,7) _ _ (%)
oX Q
06,(07) _ -PnQ (6)
oXx
04, . . .
5()3(~ 1), Bif(17) = Big - (1-£)KoLuBjp[1-6,(17)]=0  (7)
6938' ), Bir@,(L.7) = Biy, — Pn Biglo(17)-1] ®)
where
a=1+eKo LuPn (9)
B=eKolLu (10)
B, = Bi, [1- (1- ¢)Pn Ko Lu] (11)
and the dimensionless variables are defined as
T(xt)-Ty , temperature

ax.r)= 0=
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ez(x,r)z Uy —E(Xt) , moisture potential (13)
U, —Uu
x =X, spatial coordinate (14)
r= %t , time (15)
Lu= an , Luikov number (16)
a
Pn=g.le ‘Tc: , Possnov number 17)
U, —u
Ko=T Yo~ U’ Kossovitch number (18)
cT,-T,
gi =N, heat Biot (19)
q
k
Bi, = h,| , mass Biot (20)
K
g, heat flux (21)

R ()

When the geometry, the initial and boundary coodgj and the
medium properties are known, the system of equat{@j(8) can
be solved, yielding the temperature and moistus&riiution in the
media. In this work the finite difference methodused to solve
such system.

Many previous works have studied the drying invesszblem
using measurements of temperature and moisturentdteat
specific locations of the medium. But, to measure tnoisture
potential in a certain position is not an easy tdslerefore, in this
work it is used the average quantity

alt) = l—ljl U x t)dx (22)

or

g,(r)= xflez (X, r)dX (23)

Therefore, in order to obtain

of observation.

I nver se Problem Formulation

The inverse problem considered is implicitly foramgd as a
finite dimensional optimization problem where oneels to
minimize the objective function of squared resid(f&i$sa Neto and
Soeiro, 2003).

S(P) = [G CaIC(P) -G meaJT W[G calc( P) -G meaJ = FTW F (24a)
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measurementsj(t) , one has just to weigh the sample at each time
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where G eas is the vector of measurements, is the vector of

av(X,7) _
SGy k(X0 = h“/kmam/k = Bi,

The reason for choosing the second set of unknawnke
estimated is based on the use of experiment desigls and
interpretation. Consider the heat and mass Biot haum for
example. If one changes the medium width,both heat and mass
Biot numbers change. The mathematical problem wobkl
different, even though the material is still thensa because one is
estimating two different heat and mass Biot numbkrsorder to
avoid this situation, it was decided to estimate blation between
heat transfer coefficient and thermal conductivityk, and the
relation between mass transfer coefficient and ncassluctivity,
h./kn, so that we could change the medium width andimoetwith

calculated valuesP is the vector of unknowngy is the diagonal av X.1)

matrix whose elements are the inverse of the measamt
variances, and the vector of residdess given by

(30)

SCB (X,7)

(P)-G (24b)

calc meas

The inverse problem solution is the vec®r which minimizes
the norm given by Eq. (24a), i.e.

S(P) = ijn S(P) (25)

Using temperature measurements, acquired by sensors
located inside the medium, and the average of tlestare
potential, U, during the experiment, we try to estimate theameof the same value for both variables to be estimated.
unknowns P. In the present work a combination of unknown The same reasoning was used in the decision ohatitig the
variables was usedLu (Luikov number), & (thermogradient thermogradient coefficientd) and the relation between latent heat
coefficient), r/c (relation between latent heat of evaporation angf evaporation and specific heat of the mediwrg)( instead of the
specific heat of the medium)yk (relation between heat transfer Possnovi®n) and KossovitchKo) numbers. Doing so, one is able to

coefficient and thermal conductivity), arg/k,, (relation between
moisture transfer coefficient and mass conductjvity

Experiment Design

Much research effort has already been made in ¢odestimate
the Possnov, Kossovitch, heat Biot and mass Biotbais (Dantas
et al., 2003; Huang and Yeh, 2002; Lugon and Sileto, 2004),
and it was considered the possibility of optimizithg@ number and
location of temperature sensors, experiment duratéc. In this
work instead, 8, r/c, h/k and hy/k, are estimated using an
“optimum” experiment (Dowding et al., 1999; Beck8B) designed
for wood drying, and doing so it was considered tbkowing
process control parameters: heat fl§, the medium width],
difference between the medium and the air temperstu
dT =T, -T,, and difference between the moisture potentiahi
medium and the aigu=u, —-u".

The sensitivity analysis plays a major role in salv@spects
related to the formulation and solution of an irseeproblem. Such
analysis may be performed with the study of thesieity
coefficients. Here we use the modified, or scalemhsgivity
coefficients

av(X,r) .
SC, (X,7)=P . j=12-N
Cpl( )=P, P i=1 o

(26)

whereV is the observable state variable (which can besared),P;
is a particular unknown of the problem, aNglis the total number
of unknowns.

optimize the experiment considering the differeromween the
medium and the air temperaturel =T, - T,, and the difference
between the moisture potential between the medind tae air,
du=u,-u", without affecting the values of the unknown
parameters.

As a general guideline, the sensitivity of the est@bservable)
variable to the unknown parameter we want to esénmaust be
high enough to allow estimation within reasonabtnfcence
bounds. Moreover, when two or more parameters
simultaneously estimated, their effects on theestariable must be
independent (uncorrelated). Therefore, when reptedegraphically
the sensitivity coefficients should not have theneashape. If they
do it means that two or more different parametéisctithe state
variable in the same way, being difficult to digtiish their
influences separately, which yields to poor estiomest

Since it was observed that the temperature seosatidon did
not influence significantly the sensitivity, we &a its location at
X =05.

In Figs. 3 and 4, it is represented the sensitiegfficients
for temperature and moisture potential for a spectfase in
which are considered the following geometric andcess
parametersi = 0.03m, Q = 6.0,dT = 12K and du = 78 M.
Since the sensitivity to the parameters too low for both the
temperature and moisture measurements, the estimafi this
parameter is not considered in this work.

are

Q=6 1=0.03 X=0.5 dT=12 du=78

oo
There is no difference between the sensitivity ficiehts for 05%?8? :
the two sets of variables, that is, the scalediteibs coefficients p IOE+OO 1R P e e W
are exactly the same for both sets of unknowns BEA00 B
{Lu,Pn, Ko, Biq,Bim,E}T and{Lu,d, v ¢ Wk h,/k..&" & -20E+00 \ 5
O -25E+00 —SCLy  —=&-SC |
aVv(X,1) aVv(X,7) N _30E+00 \ ——S5C 3Cric
T T |
SC5(X.1)= 0722 = P2 = SC, (X.7) @7) 2 5E00 “‘\E\'1 —e—SChk  —&—SC hmkm
-4 0E+00 —
_ L 0V(X,1) _ av X,1) -4 5E+00
SCI’/C(X'T) = I‘/C al'/C =Ko = Sq<0 X T (28) -5,0E+00 -
T
av(X,r) _ .. aV(X,1) Figure 3. Sensitivity coefficients for Temperature.
SC,_, (X,7) = h/k =B =SC,. (X
i (X07) = Wk = Bl aBi, g, (X:7) (29)
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Q=6 [=0.03 dT=12 du=78
40E-01 4

—sCLu —=-sCg
30E-01 44—+ sC¢ SCric

—e—SC h/k —A— SC hm/Akm ;
20E-01 P

1.0E-01

SC e

0,0E+00

T

Figure 4. Sensitivity coefficients for moisture potential.

Another important tool used in this work to desigine
experiment consists on the study of the matrix

SCpy, SCpy, - SCp
y <| SChv. SCey o SCoy 1)
SCpy, SChy, - SCp ..

whereV, is a particular measurement of temperature or ton@is

potential andm is the total number of measurements. \l\/m’t‘}1
data points for the temperature am% for the moisture potential,
2

one hasm:mgl+m§2.

Maximizing the determinant of the mati¥ Y results in higher
sensitivity and uncorrelation (Beck, 1988).

In Fig. 5 it is represented the variation of th&ueaof the matrix
YTY determinant as a function of the temperature wiffees and
moisture potential differences between the mediach the dry air
flowing over it. In order to achieve greater seamiies, while the
temperature difference has to be the lowest, thistare potential
difference has to be the highest possible. Thel sgjuare represents
the chosen designed experiment, considering thstemde of
practical difficulties that may limit our freedonfichoice.

8,00

7,00 e
@ 600 fTrarert W
T 500 e E——
S 4,00 g
Z 3,00
g3 -« - - du=68
T

2,00 du=78

1,00 ‘

0,00 ‘

10 11 12 13 14

dT °K
Figure 5. Matrix Y'Y determinant as a function of temperature (dT) and
moisture potential (du) differences.

In Fig. 6 it is represented the values of the deitreant of matrix
YTY for different values of the heat flu@ and medium thickneds
For practical reasons it was chosen to limit thmsa temperature
to 130C. In Fig. 6 when the sample temperature exceertfit of
130C it is used a dashed-line representation. Thed sstjuare
represents the chosen designed experiment.

14,00 |
12,00 +— —e—1=1.0cm
W 10,00 4| = 1=30em | T < 130°C .
o ——|=50cm| || T>130°C .
& 8,00 T —e—|=2.5cm K
= 6,00 -
3 7
T 4,00 / ]
Y
2,00 o =
c/ !____..—'—";-——'—"‘"‘
0,00
4 45 5 55 6 6,5

Fluxo de calor adimensional, Q
Figure 6. Y'Y matrix determinant for different values of the heat flux Q and
medium thickness I.

Considering the previous analysis of the sensjtigitaphs and
of the matrixY" Y determinant, it was designed the experiment
whose geometric and process parameters are showrabte 1.

Since the average moisture potent@, or U, is more difficult to

measure than temperaturé,, the measurement interval for the
average moisture potentiaAz,, was considered larger than the
interval for the temperatur@ Ty

Table 1. Reference values for the designed experiment. T, and Ts represent
the initial and final sampling times, respectively.

Geometric or process Values
paramete
dT=T,-T, 12K
T, 297 K
T, 309 K
du=u,-u’ 78°M
U, 86°M
u’ 8°M
£ 0.2
Q 6.0
| 0.03m
T, 0
T, 20
Ar, 0.2
m, 100
Arg2 1
mg, 20
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I nver se Problem Solution

In this work we used one Atrtificial Neural Netwo¢RNN) to
generate the initial guess for the Levenberg-MamdfuglM)
method, another ANN to approximate the gradiendedeby LM,
and, finally, the global minimum was searched ushrgSA for the
minimization of the objective function given by E@4a).

The Levenberg-Marquardt method (LM)

The Levenberg-Marquardt method is a deterministcall
optimization method based on the gradient of thjeadlve function.
In order to minimize the functionab we first write

ds_ d

&9 (32)
dP dP

F'wr)=0 M- JWF=0

the Jacobian
for

where J is
J s =061p/aPs,
p=m, + :I,...,mal +m§2

matrix,

p=12..m,; ‘]ps:aézp/aps’
and s=12..N,. that the
elements of the Jacobian matrix are related tcstladed sensitivity
coefficients presented before.

Using a Taylor's expansion and keeping only thengeup to the
first order:

for

Observe

F(P+4P) L F(P)+JAP (33)
and introducing the above expansion in Eq. (32)Ites
JTWJAP = -J"WF(P) (34)

In the Levenberg-Marquardt method it is added ®dlagonal

whose elements are

Jader Lugon Junior and Antdnio J. Silva Neto

emerge from the output layer. Each noéeconnected to each node
j in its preceding layer through a connection of weig; , and
similarly to nodes in the following layer.

A weighted sum is performed at nadef all the signalsq from
the preceding layer, yielding the excitation of tieele; this is then
passed through a nonlinear activation functiorip emerge as the
output of the nodeto the next layer

= (o

@37

Various choices for the functidnare possible. In this work the
hyperbolic tangent functiorf (x) = tanh) is used.

Input

Hidden

Output

Figure 7. Multi-layer perceptron network.

The first stage of using an ANN to model an inputpait
system is to establish the appropriate values lier connection

of matrix J"WJ a damping factod to help to achieve convergence.weights w;. This is the “training” or learning phase. Traigiis

The value of} is varied along the iterative process with> 0 when
convergence is achieved.

Equation (34) is then written in a more conveniimn to be
used in the iterative procedure:

-1

AP" :—[(J”)TWJ" +/\"|] (") we(p") (35)
where| is the identity matrix, andl is the iteration counter.

The iterative procedure starts with an estimatettferunknown

parametersP?, being new estimates obtained Wi =P" +AP",

accomplished using a set of network inputs for Whice desired
outputs are known. These are the so called pajtetrish are used
in the training stage of the ANN. At each trainisep, a set of
inputs are passed forward through the network iigltrial outputs
which are then compared to the desired outputhelfcomparison
error is considered small enough, the weights are adjusted.
Otherwise, the error is passed backwards throughntét and a
training algorithm uses the error to adjust thensmtion weights.
This is the back-propagation algorithm used ingtesent work.
First of all, the training patterns are generatsthg the direct
problem solution. For that purpose ten intervalseataken for each

while the correctionsAP" are calculated with Eq. (35). This iterative Parameter, ranging from 50% up to 150% of the exarameter

procedure is continued until a convergence critesiach as

AR /Ry (36)

<g k=12...,Np

is satisfied, where€ is a small number, e.g. 0

The elements of the Jacobian matrix as well asritiieé hand
side term of Eq. (34) are updated at each iteratisimg the solution
of the direct problem with the estimates for th&nowns obtained
in the previous iteration.

TheArtificial Neural Network (ANN)

The multi-layer perceptron, MLP, (Haykin, 1999)xigollection
of connected processing elements called nodeswong, arranged
in layers (see Fig. 7). Signals pass into the injayer nodes,
progress forward through the network hidden layansl finally

404 / Vol. XXXIll, No. 4, October-December 2011

values. The ANN used to solve the direct problens wained to
calculate the temperature and average moisturentitevalues,
being informed in the input layer the following etiies: Lu, 6, r/c,
h/k, hykn 7. This ANN was also used to approximate the
derivatives necessary to calculate the elementshefJacobian
matrix for LM, with respect to each parameter, gsi central
difference approximation.

The other ANN, dedicated to solve the inverse moblused a
set of five values of temperature measuremanjs,and five values

of average moisture potentiahng2 , to estimate simultaneously the

parameterd.u, 4, r/c, h/k, hy/ky. The patterns used in the training
stage of the ANN for the inverse problem were alsloulated using
the direct problem solution. After being trainedyem the five
temperature measurements and five average moigtatential
measurements, the ANN provided an estimate for dhsired

ABCM
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parameters. The number of patterns generated vi&b 3or the
inverse problem, and 31,250 for the direct problem.

The training of each ANN consisted of 2,000 epoehsying
randomly the order of patterns presentation.

Once the comparison error is reduced to an acdegalel over
the whole training set, the training phase ends thednetwork is
established. After that, the parameters of a m@uleput) may then
be determined using the real experimental dataghwaie the inputs
of the established neural network developed for ghreblem
solution. This is the generalization stage in the of the ANN.

The Simulated Annealing method (SA)

Based on statistical mechanics reasoning, applied at
solidification problem, Metropolis et al. (1953}rioduced a simple
algorithm that can be used to accomplish an efftcsémulation of a
system of atoms in equilibrium at a given tempegtin each step
of the algorithm a small random displacement of aom is
performed and the variation of the enettfyis calculated. IAE<O
the displacement is accepted, and the configuratiéih the
displaced atom is used as the starting point ferntext step. In the

case of4E>0, the new configuration may be accepted according t

the Boltzmann probability:

P(AE) = exp(- AE / k,T) (38)

A uniformly distributed random number is generated in the
interval [0,1] and compared withlP(4E). Metropolis criterion
establishes that the new configuration is accepted<P(4E);
otherwise, it is rejected and the previous configion is used again
as a starting point.

Kirkpatrick et al. (1983) developed an optimizatialgorithm
inspired in the cooling problem described abovengsithe
Metropolis criterion, the so called Simulated Anivea (SA)
method. Using the objective functid®{P), given by Eq. (24a), in
place of energy, and defining configurations byea of variables

Trying to keep the best features of each method, hawee
combined the ANN developed for the solution of timwerse
problem, the LM and the SA methods. First we udesl ANN,
obtaining quickly an initial guess for the LM. Weeh ran the LM,
reaching within a few iterations a point of minimuAfter that we
ran the SA. If the same solution was reached, & iikeely that a
global minimum was found, and the iterative procedwas
interrupted. If a different solution was obtainédmeant that the
previous one was a local minimum. In that case addcrun again
the LM and SA until the global minimum was reached.

The canonical LM depends on the calculation of dhedient,
which in many cases must be approximated by fidifterences. In
practice it means that the direct problem has tosddeed many
times. As previously described, in this work an AMMds trained to
solve the direct problem and then it was used forapmate the
gradient in the first steps of the LM. After thisitial stage a
refinement in the solution was implemented, witk tise of finite
differences for the calculation of the gradient.

Results

An experiment was designed to perform the simutiase
estimation ofLu, 4, r/c, h/k, hy/ky,. In order to study the proposed
method, since real experiment data were not avajlake generated
synthetic data using

glmeas, = glcalc‘ (ﬁexact) + 051 ri ! I = J"Z"'vmgl (39&)
meeas = chaIQ (Pexact) +J§2 ri i= l21m§2 (39b)

wherer, are random numbers in the range [-1,), and m;

represent the total number of temperature and oreigbotential
experimental data, and, and 05 emulates the standard deviation

of measurement errors. It was usey = 003 considering 100

{P}.i=12...N,., whereN, represents the number of unknowns Wee\heratyre measurementar(= 0.2), resulting in a maximum

want to estimate, the Metropolis procedure gensrateollection of
configurations of a given optimization problem atre temperature
T. This temperature is simply a control parametdre Eimulated
annealing process consists of first “melting” thgstem being
optimized at a high “temperature”, then lowering themperature”
until the system “freezes” and no further changauce

The main control parameters of the algorithm immated
(“cooling procedure”) are the initial “temperaturd’, the cooling
rate,r,, number of steps performed through all elementgeoforP,

N, number of times the procedure is repeated befibre

“temperature” is reducedy,, and the number of points of minimum

(one for each temperature) that are compared aed as the
stopping criterion if they all agree within a taaceg, N,.

Combination of ANN, LM and SA optimizers

After the training stage, an ANN is able to quickiptain an
inverse problem solution. This solution is thenduses an initial
guess for the LM.

Due to the complexity of the design space, if cogeece is
achieved with a gradient based method it may ih dacrespond to
a local minimum. Therefore, global optimization hwds are
required in order to reach the global minimum, orleast its
vicinity. The main disadvantage of these methodkas the number
of function evaluations is high, becoming sometinpeshibitive
from the computational point of view (Soeiro et 2004a,b).

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright 0 2011 by ABCM

error of 2%, and 05220001 considering 20 moisture

measurements7 =1.0), resulting in a maximum error of 4%.

In Figs. 8 and 9, it is shown the temperatiig §énd the moisture
potential @) measurements, respectively, represented by sxjuare
and the solid lines correspond to the direct pratdelution using the
parameters estimated with the inverse problem isolutn order to
give a clearer representation, only 20 tempergi}lemeasurements
were represented.

1

[ 2 N = - B R = - =1

o2 4 6 8 10 12 14 16 18 20
T

Figure 8. Temperature (51) artificially simulated data.
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Figure 9. Moisture potential (52) artificially simulated data.

The results obtained using the LM 1 (gradient apipnated by
finite differences), LM 2 (gradient approximated AjNN), ANN,
SA and hybrid combinations, for different levels afoise
represented by different values for the standarsgliaten of
measurements errors in temperature and averagéungopotential,

g, and g, , are shown in Table 2. In parenthesis are shdwen t Prentice Hall.

percentage errors between the estimates and tloe \&daes of the
unknowns.

One observes that when there is no noise, thahésstandard
deviation of measurements errors is null, the LMhoe was able to
estimate all variables very quickly (test casesd 2). When noise is
introduced, the LM is retained by local minima (teases 3 and 4).
The ANN alone did not reach a good solution, butkiy got close to
it (test case 5). The ANN solution was used assaduess for the LM
method with good performance in test cases 6 arich@.SA alone
reached a reasonable solution (test case 8), beyitired a high
computational time. Finally, the combination of mléthods was able
to reach a good solution (test case 9), withouidegtained by local
minima, and without taking too much time, i.e. tiires less than SA.

The time shown in the sixth column of Table 2 cepends to
the CPU time on a Pentium IV 2.8 GHz processor.

Conclusions

The direct problem of simultaneous heat and maasster in
porous media, modeled with Luikov equations, carsddeed using
the finite difference method, yielding the temperatand moisture
distribution in the media, when the geometry, timiial and
boundary conditions as well as the medium propedie known.

Inverse problem techniques can be useful to estinthe
medium properties when they are not known. After tise of an
experiment design technique, the hybrid combinafidiN-LM-SA
resulted in good estimates for the drying inversebjem using
artificially generated data.

The design of experiment technique is of great ingoee for
the success of the estimation. While previous watkglied the

estimation ofLu, Pn, Ko, Biy andBir, in this work it was considered
Lu, ¢ rlc, h/lk andh./ky,. The main advantage is to be able to desig

an “optimum” experiment using different medium vhigdt, porous
medium and air temperature differen€g- Tj, and porous medium

and air moisture potential differenog, —u”.

The combination of deterministic (LM) and stochastANN
and SA) methods achieved good results, reducindithe needed
and not being retained by local minima. The us@&NN to obtain
the derivatives in the first steps of the LM methreduced the time
required for the solution of the inverse problem.

The next step of this research is to study the anpé larger
measurement deviation and to use real experimeattdaestimate
medium properties for industrial cases of interest.
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Table 2. Results obtained using LM 1, LM 2, ANN, and hybrid combinations. 0'31 =0.03 corresponds to a 2% noise level in temperature data. U*Z: 0.001
corresponds to a 4% noise level in moisture potential data.

(] .
I S Time .
I Method g g Information Lu o ric h/k
o &1 7% | Eq. (248)| Fir/ken
- - - - - - Exact values 0.008d 2.0 10.9 34[0 14
Initial guess 0.0040 1.50 8.0Q 20.0 80.¢
1 LM 1 0 0 0 15
(grad. FDM) 0.0080 | 2.00 | 10.83 | 34.0 114.0
ResultZ
LM oM (0%) (0%) (0%) | (0%) (0 %)
Initial guess 0.0040 1.50 8.04 25.0 80.(
2 LM 2 0 0 0 10
(grad. ANN) 0.0080 | 2.00 | 10.83 | 34.0 114.0
ResultZ
LM AW (0%) (0%) (0%) | (0%) (0%)
LM 1 Initial guess 0.0040 1.50 8.04 20.0 80.(
3 0.03| 0.001 977 15
(grad. FDM) Result Z 0.0076 | 2.09 | 10.76 | 34.1 121.2
Lm FoM (5%) (4.5%) | (0.6%) | (0.3%) | (6.3%)
LM 2 Initial guess 0.0040 1.50 8.04 20.0 80.(
4 0.03| 0.001 897 11
(grad. ANN) ResultZ 0.0093 | 1.71 | 10.73 | 34.1 95.7
LM AN (16%) (14%) | (0.9%) | (0.3%) | (16%)
ANN (without 0.0083 | 2.10 | 10.04 | 35.0 117.1
5| initial guess) | 03| 0-001| 3190 1 ResultZ sy B8%) | (5%) | (7.3%) | @9%) | (2.7%)
3 M1 0.03| 0001 o7a o Initial guessZ 5\, 0.0083 210 | 10.04 35.0 117.1
(grad. FDM) | ' ResultZ 0.0083 | 1.92 | 10.75 | 34.1 110.0
Lm oM (3.8%) (4%) | (0.7%) | (0.3%) | (3.5%)
, LM 2 0.03| 0001 003 " Initial guessZ 5\ 0.0083 210 | 10.04 35.0 117.1
(grad. ANN) |~ ' ResultZ 0.0082 | 1.79 | 9.89 | 351 1145
LM AN (2.5%) | (10.5%)| (8.7%) | (3.2%) | (0.4%)
SA Initial guess 00040 150 800 250  80.
g | (SA20,000 14315001 856 300
function : ' Result 7 0.0094 | 1.58 | 9.96 | 35.0 98.2
evaluations) SA (175%) | (21%) | (B%) | (2.9%) | (14%)
Initial guessZ 5\ 0.0083 210 | 10.04 35.0 117.1
ANN-LM 2-SA ResultZ 0.0082 | 1.79 | 9.89 | 35.1 1145
(SA 2,000 LM AN (2.5%) | (19.5%)| (8.7%) | (3.2%) | (0.4%)
9 function 0.03) 0.001 760 ar ResultZ 0.0079 | 2.01 | 11.00 | 33.9 113.8
evaluations) SA (1.3%) | (0.5%) | (1.5%) | (0.3%) | (0.2%)
0.0080 | 2.05 | 10.93 | 33.8 113.9
ResultZ |, aw ©% | (25%) | 09%) | 0.6%) | (0.1%)

Note 1: One function evaluation corresponds toswmietion of the direct problem.
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