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Solution of Porous Media Inverse 
Drying Problems Using a 
Combination of Stochastic and 
Deterministic Methods 
In the present work the inverse problem of simultaneous heat and mass transfer modeled 
by Luikov equations is studied using a hybrid combination of the Levenberg-Marquardt 
(LM), Simulated Annealing (SA) and Artificial Neural Network (ANN) methods. The direct 
and inverse problems are described, formulated and solved. After the use of an experiment 
design technique, the hybrid combination ANN-LM-SA yielded good estimates for the heat 
and mass transfer problem of interest. The proper choice of the set of parameters to be 
estimated allowed the design of an experiment with higher sensitivity coefficients. One 
ANN was used to generate the initial guess for the LM, another one to approximate the 
gradient needed by LM, and, finally, the global minimum was searched using the SA. The 
experimental data considered in the inverse problem was generated using the solution for 
the direct problem with the addition of noise. 
Keywords: inverse problem, design of experiment, drying, Luikov equations, heat and 
mass transfer 
 

Introduction1 

The modeling and analysis of the simultaneous heat and mass 
transfer phenomena in porous media has been tackled by many 
researchers, and different formulations have been developed 
(Whitaker, 1977; Pavón-Melendez et al., 2002; Mwithiga and 
Olwal, 2005; Kanevce et al., 2002a). In this work the mathematical 
model used is based on Luikov’s equations (Mikhailov and Özisik, 
1994; Luikov and Mikhailov, 1965). 

More recently, the inverse problem of simultaneous heat and 
mass transfer has attracted the attention of an increasing number of 
researchers (Kanevce et al., 2002a,b; Dantas et al., 2003; Huang and 
Yeh, 2002; Lugon and Silva Neto, 2004; Pedreño-Molina et al., 
2005a,b,c; Bialobrzewski, 2007). The Levenberg-Marquardt (LM) 
method was used in Kanevce et al. (2002a), and Dantas et al. 
(2003). Huang and Yeh (2002) used Alifanov’s Iterative 
Regularization method. A hybrid combination of LM and Simulated 
Annealing (SA) was used in Lugon and Silva Neto (2004). Artificial 
Neural Networks (ANN) were used in Pedreño-Molina et al. 
(2005a,b,c) and Bialobrzewski (2007).   

In the present work we extend the results of Lugon and Silva 
Neto (2004) using one ANN (Haykin, 1999; Soeiro et al., 2004a,b; 
Silva Neto and Soeiro, 2003) to generate the initial guess for the 
LM, and another one to approximate the gradient needed by LM. 
Another improvement introduced in the present work is the use of a 
different choice of the parameters to be estimated, with respect to 
the usual set of unknowns considered in previous works, allowing 
the design of an experiment with higher sensitivity coefficients 
(Dowding et al., 1999; Beck, 1988). 

Nomenclature 

a = thermal diffusivity of the porous medium, m2/s 
am = moisture diffusivity of the porous medium, m2/s 
c = specific heat of the porous medium, J/kg K 
hm = mass transfer coefficient between the porous medium and 

the air, kg/m2 s oM 
h  = heat transfer coefficient between the porous medium and 

the air, W/m2 K 
km  = moisture conductivity, kg/m s oM  
k = thermal conductivity, W/m K 
l = thickness of the medium, m 
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q  = thermal flux supplied at the left side of the porous medium, 
W/m2 

R = latent heat of evaporation, J/kg 
T0 = initial uniform temperature of the porous medium, K 
Ts = temperature of the surrounding air, K 
u0 = initial moisture potential, oM 
u* = moisture potential equilibrium with the surrounding air, oM 
X = coordinate axis, m 

Greek Symbols 

δ  = thermogradient coefficient, oM/K 
ε = phase indicator (i.e., ε = 1 → vapor, ε = 0 → liquid), 

dimensionless 

Direct Problem 

In Fig. 1, adapted from Mwithiga and Olwal (2005), it is 
represented the drying experiment setup considered in the present 
work. It was introduced the possibility of using a scale to weigh the 
samples and sensors to measure temperature in the sample, as well 
as inside the drying chamber. In order to obtain the variation of 
moisture content with time, from time to time samples are extracted 
from the drying chamber and weighed.  

  

 
Figure 1. Drying experimental setup adapted from Mwithiga and Olwal (2005). 

 
In accordance with the schematic representation shown in Fig. 2, 

consider the problem of simultaneous heat and mass transfer in a one-
dimensional porous medium in which heat is supplied to the lower 
surface of the porous media, at the same time that dry air flows over 
the upper boundary surface. 
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Figure 2. Drying process schematic representation. 

 
The mathematical formulation used in this work for the direct 

heat and mass transfer problem considered a constant properties 
model, which in the dimensionless form is given by (Mikhailov and 
Özisik, 1994): 
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subject to the initial conditions, for 10 ≤≤ X , 
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and the dimensionless variables are defined as 
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When the geometry, the initial and boundary conditions, and the 

medium properties are known, the system of equations (1)-(8) can 
be solved, yielding the temperature and moisture distribution in the 
media. In this work the finite difference method is used to solve 
such system. 

Many previous works have studied the drying inverse problem 
using measurements of temperature and moisture potential at 
specific locations of the medium. But, to measure the moisture 
potential in a certain position is not an easy task. Therefore, in this 
work it is used the average quantity 
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Therefore, in order to obtain the average moisture 

measurements, )(tu , one has just to weigh the sample at each time 

of observation. 

Inverse Problem Formulation 

The inverse problem considered is implicitly formulated as a 
finite dimensional optimization problem where one seeks to 
minimize the objective function of squared residues (Silva Neto and 
Soeiro, 2003). 
 

[ ] [ ] WFFGPGWGPGP T
meascalc

T
meascalcS =−−= )()()(       (24a) 

 



Jader Lugon Junior and Antônio J. Silva Neto 

402 / Vol. XXXIII, No. 4, October-December 2011  ABCM 

where 
measG  is the vector of measurements, 

calcG  is the vector of 

calculated values, P  is the vector of unknowns, W  is the diagonal 
matrix whose elements are the inverse of the measurement 
variances, and the vector of residues F  is given by 
 

meascalc GPGF −= )(           (24b) 

 
The inverse problem solution is the vector *P  which minimizes 

the norm given by Eq. (24a), i.e. 
 

)(min)( * PP
P
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Using temperature measurements, q

1
, acquired by sensors 

located inside the medium, and the average of the moisture 
potential, u , during the experiment, we try to estimate the vector of 
unknowns P . In the present work a combination of unknown 
variables was used: Lu (Luikov number), δ  (thermogradient 
coefficient), r/c (relation between latent heat of evaporation and 
specific heat of the medium), h/k (relation between heat transfer 
coefficient and thermal conductivity), and hm/km (relation between 
moisture transfer coefficient and mass conductivity). 

Experiment Design 

Much research effort has already been made in order to estimate 
the Possnov, Kossovitch, heat Biot and mass Biot numbers (Dantas 
et al., 2003; Huang and Yeh, 2002; Lugon and Silva Neto, 2004), 
and it was considered the possibility of optimizing the number and 
location of temperature sensors, experiment duration, etc. In this 
work instead, d, r/c, h/k and hm/km are estimated using an 
“optimum” experiment (Dowding et al., 1999; Beck, 1988) designed 
for wood drying, and doing so it was considered the following 
process control parameters: heat flux, Q, the medium width, l, 
difference between the medium and the air temperatures, 

0TTdT s −= , and difference between the moisture potential in the  

medium and the air, *
0 uudu −= .  

The sensitivity analysis plays a major role in several aspects 
related to the formulation and solution of an inverse problem. Such 
analysis may be performed with the study of the sensitivity 
coefficients. Here we use the modified, or scaled sensitivity 
coefficients 
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where V is the observable state variable (which can be measured), Pj 
is a particular unknown of the problem, and Np is the total number 
of unknowns. 

There is no difference between the sensitivity coefficients for 
the two sets of variables, that is, the scaled sensitivity coefficients 
are exactly the same for both sets of unknowns 
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The reason for choosing the second set of unknowns to be 

estimated is based on the use of experiment design tools and 
interpretation. Consider the heat and mass Biot numbers for 
example. If one changes the medium width, l , both heat and mass 
Biot numbers change. The mathematical problem would be 
different, even though the material is still the same, because one is 
estimating two different heat and mass Biot numbers. In order to 
avoid this situation, it was decided to estimate the relation between 
heat transfer coefficient and thermal conductivity, h/k, and the 
relation between mass transfer coefficient and mass conductivity, 
hm/km, so that we could change the medium width and continue with 
the same value for both variables to be estimated. 

The same reasoning was used in the decision of estimating the 
thermogradient coefficient (δ ) and the relation between latent heat 
of evaporation and specific heat of the medium (r/c), instead of the 
Possnov (Pn) and Kossovitch (Ko) numbers. Doing so, one is able to 
optimize the experiment considering the difference between the 
medium and the air temperatures, 0TTdT s −= , and the difference 
between the moisture potential between the medium and the air, 

*
0 uudu −= , without affecting the values of the unknown 

parameters. 
As a general guideline, the sensitivity of the state (observable) 

variable to the unknown parameter we want to estimate must be 
high enough to allow estimation within reasonable confidence 
bounds. Moreover, when two or more parameters are 
simultaneously estimated, their effects on the state variable must be 
independent (uncorrelated). Therefore, when represented graphically 
the sensitivity coefficients should not have the same shape. If they 
do it means that two or more different parameters affect the state 
variable in the same way, being difficult to distinguish their 
influences separately, which yields to poor estimations. 

Since it was observed that the temperature sensor location did 
not influence significantly the sensitivity, we fixed its location at

5.0=X . 
In Figs. 3 and 4, it is represented the sensitivity coefficients 

for temperature and moisture potential for a specific case in 
which are considered the following geometric and process 
parameters: l = 0.03 m, Q = 6.0, dT = 12 K and du = 78 °M. 
Since the sensitivity to the parameter ε is too low for both the 
temperature and moisture measurements, the estimation of this 
parameter is not considered in this work. 

 

 
Figure 3. Sensitivity coefficients for Temperature. 
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Figure 4. Sensitivity coefficients for moisture potential. 

 
Another important tool used in this work to design the 

experiment consists on the study of the matrix 
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where iV  is a particular measurement of temperature or moisture 

potential and m  is the total number of measurements. With 
1θm  

data points for the temperature and 
2θ

m for the moisture potential, 

one has 
21 θθ mmm += . 

Maximizing the determinant of the matrix YT Y results in higher 
sensitivity and uncorrelation (Beck, 1988).  

In Fig. 5 it is represented the variation of the value of the matrix 
YT Y determinant as a function of the temperature differences and 
moisture potential differences between the medium and the dry air 
flowing over it. In order to achieve greater sensitivities, while the 
temperature difference has to be the lowest, the moisture potential 
difference has to be the highest possible. The solid square represents 
the chosen designed experiment, considering the existence of 
practical difficulties that may limit our freedom of choice. 
 

Figure 5. Matrix YTY determinant as a function of temperature (dT) and 
moisture potential ( ud ) differences. 
 

 
 

In Fig. 6 it is represented the values of the determinant of matrix 
YT Y for different values of the heat flux Q and medium thickness l . 
For practical reasons it was chosen to limit the sample temperature 
to 130ᴼC. In Fig. 6 when the sample temperature exceeds the limit of 
130ᴼC it is used a dashed-line representation. The solid square 
represents the chosen designed experiment. 

 
Figure 6. YT Y matrix determinant for different values of the heat flux Q and 
medium thickness l. 

 
Considering the previous analysis of the sensitivity graphs and 

of the matrix YT Y determinant, it was designed the experiment 
whose geometric and process parameters are shown in Table 1. 
Since the average moisture potential, 

2θ  or u , is more difficult to 

measure than temperature, 1θ , the measurement interval for the 

average moisture potential, 
uτ∆ , was considered larger than the 

interval for the temperature 
1θτ∆ . 

 
Table 1. Reference values for the designed experiment. ττττ

0
 and    ττττf represent 

the initial and final sampling times, respectively. 

Geometric or process 
parameter 

Values 

0TTdT s −=  12 K 

0T
 

297 K 

sT  309 K 
*

0 uudu −=
 

78 oM 

0u  86 oM 
*u  8 oM 

ε  0.2 

Q  6.0 

l  0.03 m 

0τ  0 

fτ  20 

1θτ∆  0.2 

1θm  100 

2θτ∆  1 

2θm  20 
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Inverse Problem Solution 

In this work we used one Artificial Neural Network (ANN) to 
generate the initial guess for the Levenberg-Marquardt (LM) 
method, another ANN to approximate the gradient needed by LM, 
and, finally, the global minimum was searched using the SA for the 
minimization of the objective function given by Eq. (24a). 

The Levenberg-Marquardt method (LM) 

The Levenberg-Marquardt method is a deterministic local 
optimization method based on the gradient of the objective function. 

In order to minimize the functional S  we first write 
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and pNs ,...2,1= . Observe that the 

elements of the Jacobian matrix are related to the scaled sensitivity 
coefficients presented before. 

Using a Taylor’s expansion and keeping only the terms up to the 
first order: 
 

( ) ( ) PJPFPPF ∆+≅∆+                                                        (33) 

 

and introducing the above expansion in Eq. (32) results 

 
( )PWFJPWJJ TT −=∆                (34) 

 
In the Levenberg-Marquardt method it is added to the diagonal 

of matrix WJJT  a damping factor λ to help to achieve convergence. 
The value of λ is varied along the iterative process with λ → 0 when 
convergence is achieved. 

Equation (34) is then written in a more convenient form to be 
used in the iterative procedure: 
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where I  is the identity matrix, and n  is the iteration counter. 

The iterative procedure starts with an estimate for the unknown 

parameters, 0P , being new estimates obtained with nnn PPP ∆+=+1 , 
while the corrections nP∆  are calculated with Eq. (35). This iterative 
procedure is continued until a convergence criterion such as 
 

P
n

k
n

k NkPP ,...,2,1, =<∆ ε             (36) 

 
is satisfied, where ε  is a small number, e.g. 10-5. 

The elements of the Jacobian matrix as well as the right hand 
side term of Eq. (34) are updated at each iteration, using the solution 
of the direct problem with the estimates for the unknowns obtained 
in the previous iteration. 

The Artificial Neural Network (ANN) 

The multi-layer perceptron, MLP, (Haykin, 1999) is a collection 
of connected processing elements called nodes or neurons, arranged 
in layers (see Fig. 7). Signals pass into the input layer nodes, 
progress forward through the network hidden layers and finally 

emerge from the output layer. Each node i is connected to each node 
j in its preceding layer through a connection of weight wij

 

, and 
similarly to nodes in the following layer. 

A weighted sum is performed at node i of all the signals xj from 
the preceding layer, yielding the excitation of the node; this is then 
passed through a nonlinear activation function, f, to emerge as the 
output of the node i to the next layer 
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Various choices for the function f are possible. In this work the 

hyperbolic tangent function )tanh()( xxf =  is used. 

 

 
Figure 7. Multi-layer perceptron network. 

 
The first stage of using an ANN to model an input-output 

system is to establish the appropriate values for the connection 
weights wij. This is the “training” or learning phase. Training is 
accomplished using a set of network inputs for which the desired 
outputs are known. These are the so called patterns, which are used 
in the training stage of the ANN. At each training step, a set of 
inputs are passed forward through the network yielding trial outputs 
which are then compared to the desired outputs. If the comparison 
error is considered small enough, the weights are not adjusted. 
Otherwise, the error is passed backwards through the net and a 
training algorithm uses the error to adjust the connection weights. 
This is the back-propagation algorithm used in the present work. 

First of all, the training patterns are generated using the direct 
problem solution. For that purpose ten intervals were taken for each 
parameter, ranging from 50% up to 150% of the exact parameter 
values. The ANN used to solve the direct problem was trained to 
calculate the temperature and average moisture potential values, 
being informed in the input layer the following quantities: Lu, d, r/c, 
h/k, hm/km, τ. This ANN was also used to approximate the 
derivatives necessary to calculate the elements of the Jacobian 
matrix for LM, with respect to each parameter, using a central 
difference approximation. 

The other ANN, dedicated to solve the inverse problem, used a 
set of five values of temperature measurements, 

1θm , and five values 

of average moisture potential, 
2θm , to estimate simultaneously the 

parameters Lu, d, r/c, h/k, hm/km. The patterns used in the training 
stage of the ANN for the inverse problem were also calculated using 
the direct problem solution. After being trained, given the five 
temperature measurements and five average moisture potential 
measurements, the ANN provided an estimate for the desired 
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parameters. The number of patterns generated was 3,125 for the 
inverse problem, and 31,250 for the direct problem. 

The training of each ANN consisted of 2,000 epochs varying 
randomly the order of patterns presentation.  

Once the comparison error is reduced to an acceptable level over 
the whole training set, the training phase ends and the network is 
established. After that, the parameters of a model (output) may then 
be determined using the real experimental data, which are the inputs 
of the established neural network developed for the problem 
solution. This is the generalization stage in the use of the ANN. 

The Simulated Annealing method (SA)  

Based on statistical mechanics reasoning, applied to a 
solidification problem, Metropolis et al. (1953) introduced a simple 
algorithm that can be used to accomplish an efficient simulation of a 
system of atoms in equilibrium at a given temperature. In each step 
of the algorithm a small random displacement of an atom is 
performed and the variation of the energy ∆E is calculated. If ∆E<0 
the displacement is accepted, and the configuration with the 
displaced atom is used as the starting point for the next step. In the 
case of ∆E>0, the new configuration may be accepted according to 
the Boltzmann probability: 
 

( ) ( )TkEEP B/exp ∆−=∆                                                    
(38) 

 
A uniformly distributed random number p is generated in the 

interval [0,1] and compared with P(∆E). Metropolis criterion 
establishes that the new configuration is accepted if p<P(∆E); 
otherwise, it is rejected and the previous configuration is used again 
as a starting point. 

Kirkpatrick et al. (1983) developed an optimization algorithm 
inspired in the cooling problem described above using the 
Metropolis criterion, the so called Simulated Annealing (SA) 
method. Using the objective function S(P), given by Eq. (24a), in 
place of energy, and defining configurations by a set of variables 
{ } pi NiP ,...,2,1, = , where Np represents the number of unknowns we 

want to estimate, the Metropolis procedure generates a collection of 
configurations of a given optimization problem at some temperature 
T. This temperature is simply a control parameter. The simulated 
annealing process consists of first “melting” the system being 
optimized at a high “temperature”, then lowering the “temperature” 
until the system “freezes” and no further change occurs. 

The main control parameters of the algorithm implemented 
(“cooling procedure”) are the initial “temperature”, T0, the cooling 
rate, r

t
, number of steps performed through all elements of vector P, 

Ns, number of times the procedure is repeated before the 
“temperature” is reduced, Nt, and the number of points of minimum 
(one for each temperature) that are compared and used as the 
stopping criterion if they all agree within a tolerance ε, Nε . 

Combination of ANN, LM and SA optimizers 

After the training stage, an ANN is able to quickly obtain an 
inverse problem solution. This solution is then used as an initial 
guess for the LM. 

Due to the complexity of the design space, if convergence is 
achieved with a gradient based method it may in fact correspond to 
a local minimum. Therefore, global optimization methods are 
required in order to reach the global minimum, or at least its 
vicinity. The main disadvantage of these methods is that the number 
of function evaluations is high, becoming sometimes prohibitive 
from the computational point of view (Soeiro et al., 2004a,b). 

Trying to keep the best features of each method, we have 
combined the ANN developed for the solution of the inverse 
problem, the LM and the SA methods. First we used the ANN, 
obtaining quickly an initial guess for the LM. We then ran the LM, 
reaching within a few iterations a point of minimum. After that we 
ran the SA. If the same solution was reached, it was likely that a 
global minimum was found, and the iterative procedure was 
interrupted. If a different solution was obtained, it meant that the 
previous one was a local minimum. In that case we could run again 
the LM and SA until the global minimum was reached. 

The canonical LM depends on the calculation of the gradient, 
which in many cases must be approximated by finite differences. In 
practice it means that the direct problem has to be solved many 
times. As previously described, in this work an ANN was trained to 
solve the direct problem and then it was used to approximate the 
gradient in the first steps of the LM. After this initial stage a 
refinement in the solution was implemented, with the use of finite 
differences for the calculation of the gradient. 

Results 

An experiment was designed to perform the simultaneous 
estimation of Lu, δ, r/c, h/k, hm/km. In order to study the proposed 
method, since real experiment data were not available, we generated 
synthetic data using 
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where r

i
 are random numbers in the range [-1,1], 

1θm  and 
2θm  

represent the total number of temperature and moisture potential 
experimental data, and 

1θσ  and 
2θσ  emulates the standard deviation 

of measurement errors. It was used 03.0
1

=θσ  considering 100 

temperature measurements ( 2.0=∆τ ), resulting in a maximum 
error of 2%, and 001.0

2
=θσ  considering 20 moisture 

measurements ( 0.1=∆τ ), resulting in a maximum error of 4%.  
In Figs. 8 and 9, it is shown the temperature (θ1) and the moisture 

potential ( 2θ ) measurements, respectively, represented by squares, 
and the solid lines correspond to the direct problem solution using the 
parameters estimated with the inverse problem solution. In order to 
give a clearer representation, only 20 temperature (θ1) measurements 
were represented. 

 
 

 
Figure 8. Temperature ( 1θ ) artificially simulated data. 
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Figure 9. Moisture potential (

2θ ) artificially simulated data. 

 
The results obtained using the LM 1 (gradient approximated by 

finite differences), LM 2 (gradient approximated by ANN), ANN, 
SA and hybrid combinations, for different levels of noise 
represented by different values for the standard deviation of 
measurements errors in temperature and average moisture potential, 

1θσ  and 
2θσ , are  shown in Table 2. In parenthesis are shown the 

percentage errors between the estimates and the exact values of the 
unknowns. 

One observes that when there is no noise, that is, the standard 
deviation of measurements errors is null, the LM method was able to 
estimate all variables very quickly (test cases 1 and 2). When noise is 
introduced, the LM is retained by local minima (test cases 3 and 4). 
The ANN alone did not reach a good solution, but quickly got close to 
it (test case 5). The ANN solution was used as a first guess for the LM 
method with good performance in test cases 6 and 7. The SA alone 
reached a reasonable solution (test case 8), but it required a high 
computational time. Finally, the combination of all methods was able 
to reach a good solution (test case 9), without being retained by local 
minima, and without taking too much time, i.e. six times less than SA. 

The time shown in the sixth column of Table 2 corresponds to 
the CPU time on a Pentium IV 2.8 GHz processor. 

Conclusions  

The direct problem of simultaneous heat and mass transfer in 
porous media, modeled with Luikov equations, can be solved using 
the finite difference method, yielding the temperature and moisture 
distribution in the media, when the geometry, the initial and 
boundary conditions as well as the medium properties are known. 

Inverse problem techniques can be useful to estimate the 
medium properties when they are not known. After the use of an 
experiment design technique, the hybrid combination ANN-LM-SA 
resulted in good estimates for the drying inverse problem using 
artificially generated data. 

The design of experiment technique is of great importance for 
the success of the estimation. While previous works studied the 
estimation of Lu, Pn, Ko, Biq and Bim, in this work it was considered 
Lu, δ, r/c, h/k and hm/km. The main advantage is to be able to design 
an “optimum” experiment using different medium width, l, porous 
medium and air temperature difference, Ts – T0, and porous medium 

and air moisture potential difference, *
0 uu − . 

The combination of deterministic (LM) and stochastic (ANN 
and SA) methods achieved good results, reducing the time needed 
and not being retained by local minima. The use of ANN to obtain 
the derivatives in the first steps of the LM method reduced the time 
required for the solution of the inverse problem. 

The next step of this research is to study the impact of larger 
measurement deviation and to use real experiment data to estimate 
medium properties for industrial cases of interest. 
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Table 2. Results obtained using LM 1, LM 2, ANN, and hybrid combinations. 
1θσ  = 0.03 corresponds to a 2% noise level in temperature data. 

2θσ = 0.001 

corresponds to a 4% noise level in moisture potential data.    

C
as

e
 

Method 
1θσ  

2θσ  S  
Eq.  (24a) 

Time 
(s) 

Information Lu δ r/c h/k hm/km 

- - - - - - Exact values 0.0080 2.0 10.83 34.0 114.0 

1 
LM 1 

(grad. FDM) 
0 0 0 15 

Initial guess 0.0040 1.50 8.00 20.0 80.0 

Result FDMLM
Z  0.0080 

(0%) 
2.00 
(0%) 

10.83 
(0%) 

34.0 
(0%) 

114.0 
(0 %) 

2 
LM 2 

(grad. ANN) 
0 0 0 10 

Initial guess 0.0040 1.50 8.00 25.0 80.0 

Result ANNLM
Z  0.0080 

(0%) 
2.00 
(0%) 

10.83 
(0%) 

34.0 
(0%) 

114.0 
(0%) 

3 
LM 1 

(grad. FDM) 
0.03 0.001 977 15 

Initial guess 0.0040 1.50 8.00 20.0 80.0 

Result FDMLM
Z  0.0076 

(5%) 
2.09 

(4.5%) 
10.76 
(0.6%) 

34.1 
(0.3%) 

121.2 
(6.3%) 

4 
LM 2 

(grad. ANN) 
0.03 0.001 897 11 

Initial guess 0.0040 1.50 8.00 20.0 80.0 

Result ANNLM
Z  0.0093 

(16%) 
1.71 
(14%) 

10.73 
(0.9%) 

34.1 
(0.3%) 

95.7 
(16%) 

5 
ANN (without 
initial guess) 

0.03 0.001 3190 1 Result ANNZ  0.0083 
(3.8%) 

2.10 
(5%) 

10.04 
(7.3%) 

35.0 
(2.9%) 

117.1 
(2.7%) 

6 
LM 1 

(grad. FDM) 
0.03 0.001 974 16 

Initial guess ANNZ  0.0083 2.10 10.04 35.0 117.1 

Result FDMLM
Z  0.0083 

(3.8%) 
1.92 
(4%) 

10.75 
(0.7%) 

34.1 
(0.3%) 

110.0 
(3.5%) 

7 
LM 2 

(grad. ANN) 
0.03 0.001 903 11 

Initial guess ANNZ  0.0083 2.10 10.04 35.0 117.1 

Result ANNLM
Z  0.0082 

(2.5%) 
1.79 

(10.5%) 
9.89 

(8.7%) 
35.1 

(3.2%) 
114.5 
(0.4%) 

8 

SA 
(SA 20,000 

function 
evaluations)1 

0.03 0.001 856 300 
Initial guess 0.0040 1.50 8.00 25.0 80.0 

Result SAZ  0.0094 
(17.5%) 

1.58 
(21%) 

9.96 
(8%) 

35.0 
(2.9%) 

98.2 
(14%) 

9 

ANN-LM 2-SA 
(SA 2,000 
function 

evaluations)1 

0.03 0.001 760 47 

Initial guess ANNZ  0.0083 2.10 10.04 35.0 117.1 

Result ANNLM
Z  0.0082 

(2.5%) 
1.79 

(19.5%) 
9.89 

(8.7%) 
35.1 

(3.2%) 
114.5 
(0.4%) 

Result SAZ  0.0079 
(1.3%) 

2.01 
(0.5%) 

11.00 
(1.5%) 

33.9 
(0.3%) 

113.8 
(0.2%) 

Result ANNLM
Z  0.0080 

(0%) 
2.05 

(2.5%) 
10.93 
(0.9%) 

33.8 
(0.6%) 

113.9 
(0.1%) 

Note 1: One function evaluation corresponds to one solution of the direct problem. 
 


