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Analysis of 1-3 Piezocomposite and 
Homogeneous Piezoelectric Rings for 
Power Ultrasonic Transducers 
Some power ultrasonic transducers, such as Tonpilz transducers, require high-power 
transmitting capability as well as broadband performance. Optimized vibrational modes 
can achieve these requirements. This work compares the resonant characteristics and the 
surface vibration modes between a homogeneous piezoelectric ring and a 1-3 
piezocomposite ring, both used in power ultrasonic transducers. This is the first step in the 
design of power transducers. Analytical models and finite element results are validated by 
electrical impedance measurements and the surface acoustic spectroscopy method. 
Excellent agreement between theoretical and experimental results was obtained. Results 
show that using piezocomposite ceramics minimize superposition of undesirable modes 
and increase the bandwidth, as shown in sonograms. 
Keywords: transducer characterization, piezocomposite, underwater acoustic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Conventional sandwich transducers consist of a stack of 

piezoelectric rings mounted between two masses (tail mass and head 
mass) prestressed by a central bolt. Placing a stack of piezoceramic 
rings between massive ends diminishes the operation frequency. The 
main characteristics of these transducers are low frequency (near 20 
kHz) and high power acoustic wave transmitted to the medium. As 
typical resonators, sandwich transducers have a straight bandwidth. 

When there is need for high resolution, such as in sonar 
applications, broadband transducers are required (Tonpilz 
transducer). The bandwidth of the transducer can be improved by 
using a larger soft head (Yao and Bjorno, 1997). A soft rubber cone 
in front of the head mass increases the front diameter thus enhancing 
the acoustic impedance matching. Furthermore, the correct choice of 
the piezoelectric ring can also contribute to increase the bandwidth 
of the ultrasonic transducer. In order to choose the correct 
piezoelectric ring, it is important to understand the ring vibrational 
behavior. 

In a piezoelectric ring there are three different vibration modes 
(Cheng and Chan, 2001): thickness, radial and wall thickness. To 
achieve a good performance, the piezoelectric ring used in the 
ultrasonic transducer should vibrate in the thickness mode. 
However, as the internal and external diameters are of the same 
order of thickness, there is a coupling between the thickness mode 
and the undesirable radial and wall thickness modes. This produces 
degradation of the transducer and has a negative influence on its 
performance (Yao and Bjorno, 1997; Or and Chan, 2001; Chong et 
al., 2005).  

To reduce the mode coupling between these vibration modes, Or 
and Chan (2001) suggested the use of piezoelectric composite rings 
in the transducer construction. The piezoelectric composite material 
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consists of a combination of a piezoelectric material with a non-
piezoelectric polymer (Skinner et al., 1978; Akdogan et al., 2005). 
In comparison with piezoceramics, piezoelectric composites exhibit 
high electromechanical coupling factor, low acoustic impedance and 
low radial coupling (Smith and Auld, 1991). These characteristics 
allow the construction of broadband ultrasonic transducers with high 
sensitivity and the operation in the thickness mode without mode 
coupling (Roh, 2006). Another advantage of piezoelectric 
composites is the plate wave damping. Due to the plate wave 
damping, the normal velocity distribution along the transducer face 
can be considered uniform (Cathignol et al., 1999). 

The aim of this paper is to analyze the performance of 1-3 
piezoelectric composite rings and to compare its performance with a 
conventional piezoelectric ring. The paper presents an experimental 
and a theoretical analysis for both homogeneous and 
piezocomposite rings. The manufacturing technique of 
piezocomposite rings is also described. 

Nomenclature 

A  = area of the piezoelectric surface, m2  
ijc  = stiffness of the polymer, N/m2 

E
ijc  = stiffness at constant electric field, N/m2 

Ec33  = homogenized stiffness at constant electric field, N/m2 

ije  = piezoelectric constant, C/m2 

33e  = homogenized  piezoelectric constant, C/m2 

1Lf  =  frequency of the first lateral mode, Hz 

2Lf  =  frequency of the second lateral mode, Hz 

rf  =  frequency of the radial mode, Hz 

tf  =  frequency of the thickness mode, Hz 

wf  =  frequency of the wall thickness mode, Hz 
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k  = wavenumber, m-1 
l  = thickness of the piezoelectric element, m 

eZ  = electrical impedance, Ω 
Greek Symbols 
β  = damping, s 
δ  = volume fraction of piezoelectric ceramic, dimensionless 

0ε  = permittivity of free space, F/m 
S
ijε  = permittivity at constant strain, F/m 
S

33ε  = homogenized permittivity at constant strain, F/m 
cρ  = density of the piezoelectric ceramic, Kg/m3 

pρ  = density of the polymer, Kg/m3 

ρ  = homogenized density of the piezocomposite, Kg/m3 

ω  = angular frequency, rad/s 

Fabrication of a 1-3 Connectivity Piezoelectric 
Composite Ring 

In this work, the dice-and-fill technique (Smith, 1989; Savakus 
et al., 1981) is used to fabricate the 1-3 piezoelectric composite ring, 
which is illustrated in Fig. 1. First, a PZT-8 piezoelectric ring of 7.6 
mm internal diameter, 27.4 mm external diameter and 5.1 mm 
thickness is cut using a dicing machine (Buehler Isomet 4000) with 
a 150 µm-thick blade. The grooves on the ceramic are filled with 
epoxy (GY 279 with hardener HY951 in a mixing ratio of 10:1, 
supplied by Huntsman). To avoid air bubbles, this epoxy is degassed 
in a vacuum chamber for approximately 5 minutes. Then, ceramic 
with polymer is put in an oven for 2 hours at a temperature of 50 oC. 
After that, the composite is cured at room temperature for 24 hours. 
A sandpaper is used to remove the polymer excess of the 
piezoelectric composite material. After removing the polymer 
excess, the electrodes of the composite are made using a conductive 
silver ink.  

 
 

 
Figure 1. Fabrication of a 1-3 piezoelectric composite ring using the dice-
and-fill technique. 

 
 
The unit cell of this composite is shown in Fig. 2. This 

composite has a ceramic volume fraction of 88.4% because, as the 
transducer is for power application, it requires a high volume of 
piezoelectric ceramic. The piezoelectric composite can be modeled 
by considering that the material is homogeneous. According to 
Smith and Auld (Smith and Auld, 1991), the thickness mode 
behavior can be easily modeled by considering that the aspect ratio 
(ratio between the thickness and the lateral dimension of the unit 
cell) is much greater than 1. Hayward and Bennett (Hayward and 

Bennett, 1996) showed that an aspect ratio above 2 is sufficient to 
model the thickness mode in a composite with 88.4% ceramic 
volume fraction. In this work, the aspect ratio corresponds to 2.04 
and therefore this condition is satisfied. 

 
 

2.5 mm

2.35 mm 

polymer 

piezoelectric 
ceramic 

 
Figure 2. Unit cell of the piezoelectric composite.  

 

Analytical and Numerical Modeling of a Homogeneous 
Piezoelectric Ring 

First, a unidimensional model is presented to describe the 
thickness behavior of a homogeneous piezoelectric ring. The ring 
used in this work is polarized along its thickness. The polarization 
axis is aligned with direction 3. The unidimensional model assumes 
that lateral dimensions of the ring are much larger than its thickness. 
The theoretical electrical impedance Ze of the piezoelectric ring is 
given by (Kino, 1987): 
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where A is the area of the piezoelectric surface, l is the thickness, ω 
is the angular frequency. The variables Ec33 , 33e  and S

33ε  are, 
respectively, the elastic stiffness constant at constant electric field, 
the piezoelectric constant, and the permittivity at constant strain of 
the piezoelectric ring. The wavenumber k is given by: 
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where cρ  is the density of the ring. 

The unidimensional model used describes only the thickness 
mode of the piezoelectric ring. In order to simulate all the 
vibrational modes of the piezoelectric ring, finite element method is 
used (Lerch, 1990; Naillon and Besnier, 1970). The piezoelectric 
ring used in this work is made of lead zirconate titanate (PZT-8). 
Due to the circular geometry of the ring, axisymmetric elements are 
used. This allows the reduction of a three-dimensional analysis to a 
two-dimensional one. The ring modeling is obtained by using the 
ANSYS commercial package. The material properties of the PZT-8 
(Vernitron, 1976) are presented in Table 1, where E

ijc is the elastic 

stiffness constant at constant electric field, ije  is the piezoelectric 

constant, 0εε S
ij is the dielectric constant at constant strain, where ε0 

= 8.85 x 10-12 F/m is the permittivity of free space and cρ  is the 
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density. The damping coefficient β is not provided by the 
manufacturer and in this work it was chosen to match the 
experimental results.  In the ANSYS package, harmonic analysis is 
used to determine the electrical impedance as a function of 
frequency. The comparison between the electrical impedance curves 
obtained by the finite element method and by the unidimensional 
model is shown in Fig. 3. In order to show the influence of the 
piezoelectric ring diameter on the coupling between the radial and 
wall thickness modes with the thickness mode, two different 
simulations were performed. In Fig. 3(a), the ring has an external 
diameter of 27.4 mm, internal diameter of 7.6 mm and a thickness of 
5.1 mm. In Fig 3(b), the ring has an external diameter of 160 mm, 
an internal diameter of 20 mm and a thickness of 5.1 mm. As it is 
seen in Fig. 3, the unidimensional model can predict only the 
thickness mode of the piezoelectric ring. In Fig. 3(a), as the 
thickness of the piezoelectric ring is not much larger than its radius, 
there is mode coupling between the thickness mode and the radial 
modes. In Fig. 3(b), as the radius of the ring is much larger than its 
thickness, the unidimensional model can be used to predict the 
thickness behavior of the piezoelectric ring. 

 
 

Table 1. Material properties of PZT-8. 

piezoelectric ceramic PZT-8 
Ec11  (1010 N/m2) 13.7 
Ec12  (1010 N/m2) 6.97 
Ec13  (1010 N/m2) 7.16 
Ec33  (1010 N/m2) 12.4 
Ec44  (1010 N/m2) 3.14 

31e  (C/m2) -4.0 

33e  (C/m2) 13.8 

15e  (C/m2) 10.4 

011 εε S  898 

033 εε S  582 
cρ  (Kg/m3) 7600 

β  (10-9 s) 2 
 
 

The resonance frequencies of the main vibrational modes 
presented in Fig. 3(a) are denoted by fr for the first radial mode 
(68.3 kHz), fw for the first wall thickness mode (194.0 kHz), and ft 
for the thickness mode (428.6 kHz). The vibration modes of the 
piezoelectric ring can be observed in Fig. 4. The first radial mode is 
shown in Fig. 4(b). In this vibration mode, the inner and outer walls 
of the ring vibrate in phase. In the wall thickness mode shown in 
Fig. 4(c), the inner and outer walls vibrate in opposite phase. In the 
thickness mode of the ring, the displacements of the upper and 
lower surfaces are in opposite phase. In Fig. 4(d), there is mode 
coupling between the first thickness mode and the harmonics of the 
radial and wall thickness modes. This mode coupling is responsible 
for the non-uniform displacement of the surfaces of the ring.  
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Figure 3. Comparison between the electrical impedance of the 
homogeneous piezoelectric ring determined by the finite element method 
and by the unidimensional model: (a) external diameter of 27.4 mm; (b) 
external diameter of 160 mm. 

 

Experimental Determination of the Vibrational Modes of 
the Piezoelectric Ring 

In order to validate the vibrational modes determined by the 
finite element method, it is necessary to measure the surface 
displacement of piezoelectric rings. Usually, the surface 
displacements are determined through laser probe measurements 
(Gururaja et al., 1985). In this work, the surface acoustic 
spectroscopy is used (Perez, 2002). Contrary to the laser probe 
measurement, this technique does not measure the absolute value of 
the displacements, but the relative ones. The advantage of the 
surface acoustic spectroscopy over the laser probe measurements is 
its possibility to measure the relative displacement in each point as a 
function of the frequency, also showing the position over the 
surface. The surface acoustic spectroscopy setup is shown in Fig. 5. 
This technique provides a graphic called sonogram.  

Before showing the sonogram of the piezoelectric ring, the 
simulated electrical impedance of the ring is compared with the one 
obtained experimentally by the HP4194A impedance analyzer. The 
comparison between the experimental and simulated electrical 
impedances is shown in Fig. 6. There is excellent agreement 
between the experimental electrical impedance and that obtained by 
the finite element method, as shown in Fig. 6. As previously 
predicted by the finite element method, the experimental electrical 
impedance curve shows that there is a mode coupling between the 
first thickness mode (ft = 428.6 kHz) and the harmonics of the radial 
and wall thickness modes.  
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Figure 4. Vibrational modes of the homogeneous piezoelectric ring: (a) non-
deformed; (b) radial mode; (c) wall thickness mode; (d) thickness mode. 
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Figure 5. Surface acoustic spectroscopy setup. 

 

 
Figure 6. Comparison between the experimental and simulated electrical 
impedance.  

Figure 7 shows the comparison between the experimental and 
simulated sonogram. In order to enhance weak displacement 
amplitudes, the sonogram was plotted in a logarithmic scale. In the 
sonogram, the frequencies of the white vertical lines agree with the 
resonance frequencies from the electrical impedance curve.  

 
 

 
Figure 7. Comparison between the experimental and simulated sonogram: 
(a) experimental sonogram; (b) simulated sonogram. 

 
 
Figure 8 shows the comparison between the simulated and 

experimental surface displacement profiles for the radial, wall 
thickness and thickness modes of the piezoelectric ring. The radial 
mode shown in Fig. 8(a) corresponds to the first white vertical line 
(fr = 68.3 kHz) in Fig. 7. The wall thickness and thickness modes 
shown in Figs. 8(b) and 8(c) correspond to the white vertical lines of 
frequencies 194.0 kHz and 428.6 kHz respectively, shown in Fig. 7. 
As the surface acoustic spectroscopy setup measures relative values 
of the displacements, the experimental displacements are 
normalized to fit to the simulated ones. Figure 8 shows good 
agreement between the experimental and simulated results, 
especially for the radial and wall thickness modes. As it can be seen 
in Figs. 6 and 7, there is no mode superposition at these two 
frequency ranges. In these cases, it is easier to model the 
displacements of these two modes. In displacement profile of Fig. 
8(c), there is mode coupling between the thickness mode and the 
harmonics of the radial and wall thickness modes. When there is 
mode coupling, small changes in the geometry and material 
properties can lead to a completely different displacement profile. 

 

 a) 

b) 

c) 

d) 
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Figure 8. Surface displacement profiles of the piezoelectric ring: (a) radial 
mode; (b) wall thickness mode; (c) thickness mode. 

 

Analytical and Numerical Modeling of a Piezoelectric 
Composite Ring 

The modeling of the piezoelectric composite can be made by the 
unidimensional model and the finite element method. The 
unidimensional model assumes that the piezoelectric composite can 
be treated as a homogeneous medium. Thus, it is necessary to 
calculate the effective properties of the composite in order to use 
equation (1) to determine the electrical impedance. In Eq. (1), the 
properties Ec33 , 33e  and S

33ε  are replaced by the properties Ec33 , 33e  

and S
33ε , which represent the homogenized properties of the 

composite. These properties are given by (Smith and Auld, 1991): 
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where δ is the volume fraction of piezoelectric ceramic. In Eqs. (3), 
(4) and (5), the elastic and dielectric constants of the ceramic phase 
are distinguished from those of the polymer phase by the 
superscripts E and S. The model used to determine the homogenized 
properties is valid for any ceramic volume fraction and it is assumed 
that the aspect ratio of the unit cell is much higher than 1. In Eq. (2) 

the density cρ  should be replaced by the effective density ρ  that is 
given by the mixture rule: 

 
( ) pc ρδδρρ −+= 1  (6) 

 
where cρ  is the density of the piezoelectric material and pρ  is the 
density of the polymer. 

As the piezoelectric composite has a lateral periodic structure, 
Bragg diffraction can occur. This phenomenon leads to a lateral 
vibration mode. The lateral modes (Certon et al., 1997) of the 
piezoelectric composite cannot be predicted by the unidimensional 
model. In this work, these modes are predicted by the finite element 
method. As the composite has a periodic structure, the simulation is 
performed in a single unit cell of the piezoelectric composite. Due to 
the symmetry of the unit cell, only one-eighth of it is modeled, as 
shown in Fig. 10(a). As boundary conditions, the displacements in 
the normal directions to the lateral and lower surfaces of the unit 
cell are set to zero. The thickness of the electrodes is thin and 
therefore, it can be neglected in the finite element analysis. An 
electrical potential difference of 0.5 V between the upper and lower 
surfaces is applied. The properties of the piezoelectric material are 
shown in Table 1, and the properties of the polymer are presented in 
Table 2. The electrical impedance of the composite is determined by 
a harmonic analysis in ANSYS package and it is compared with the 
one obtained by the unidimensional model. The comparison 
between the electrical impedances is shown in Fig. 9. As it can be 
seen in this figure, the unidimensional model cannot predict the 
lateral modes of the piezoelectric composite. In Fig. 9, the first and 
second lateral modes are denoted by fL1 and fL2, respectively. The 
peak associated with the first lateral mode cannot be clearly seen in 
the electrical impedance curve. The resonance frequency is 804 kHz 
for the first lateral mode and 912 kHz for the second lateral mode. 
The unidimensional model does not account for losses and, 
therefore, the peak associated with the harmonic of the thickness 
mode (around 1.25 MHz) is much more pronounced in the 
unidimensional model than in the finite element method. 

 
 

Table 2. Mechanical properties of the epoxy GY 279 with hardener HY951. 

polymer GY279/HY951 

11c  (1010 N/m2) 0.704 

12c  (1010 N/m2) 0.422 
pρ  (Kg/m3) 1126 

β  (10-8 s) 2 
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Figure 9. Comparison between the electrical impedance of the 
piezoelectric composite ring determined by finite element method and by 
the unidimensional model.  
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The vibrational modes of the piezoelectric composite are shown 
in Fig. 10. The thickness mode (ft = 362 kHz) of the composite is 
shown in Fig. 10(b). As it can be seen in this figure, the surface 
displacements are almost uniform for this vibrational mode. The 
lateral modes of the composite are shown in Figs. 10(c) and 10(d). 
To avoid mode coupling between the first lateral mode and the first 
thickness mode, the aspect ratio (ratio between the thickness and the 
lateral dimension of the unit cell) of the composite should be 
sufficiently high. As this condition is satisfied in this composite, 
there is no mode coupling in the thickness mode. 

 
 
 

 
Figure 10. Vibrational modes of the piezoelectric composite: (a) non-
deformed; (b) thickness mode; (c) first lateral mode; (d) second lateral 
mode.  

 

Experimental Determination of the Vibrational Modes of 
the Piezoelectric Composite Ring 

The electrical impedance of the piezoelectric composite ring 
was measured through the HP4194A impedance analyzer. The 
comparison between the experimental impedance curve and those 
obtained by finite element method is shown in Fig. 11. When 
comparing the experimental results of electrical impedance of the 
piezoelectric composite ring with the one of the homogeneous 
piezoelectric ring (Fig. 6), it can be observed that the amplitudes 
of the resonance peaks associated with the radial and wall 
thickness modes of the piezoelectric composite ring are lower than 
those of the homogeneous piezoelectric ring. In the homogeneous 
piezoelectric ring, the harmonics of the radial and thickness modes 
interfere with the thickness mode of the ring, causing a non-
uniform velocity distribution of the ring surfaces. In the 
piezoelectric composite, there is a reduction of the radial and wall 
thickness modes, generating a smoother impedance curve. Due to 
the boundary conditions used in finite element method, the radial 
and wall thickness modes of the composite cannot be predicted. A 
possible alternative to model the composite radial and wall 
thickness modes is to use the homogenization theory (Silva et al., 
1999) to determine the composite homogenized properties. These 
properties could be used in the finite element method to simulate 
the piezoelectric composite, however, this procedure would not 
predict the composite lateral modes, since it considers that the 
piezoelectric composite is homogeneous. Comparing the electrical 
impedance curves of Figs. 6 and 11, the resonance frequency for 
the thickness mode of the composite is lower than the one of the 
homogeneous piezoelectric ring. This reduction of the resonance 
frequency in the composite can be explained by the determination 
of the effective properties of the composite (Smith and Auld, 
1991). According to the model used by Smith and Auld to 
calculate the effective properties of the composite, the longitudinal 
velocity of the composite is lower than that of the homogeneous 
piezoelectric material. This reduction of the longitudinal velocity 
is responsible for the reduction of the resonance frequency of the 
piezoelectric composite. 
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Figure 11. Comparison between the experimental and simulated electrical 
impedance of the piezoelectric composite ring.  

 
 
Figure 13 shows the sonogram of the piezoelectric composite 

ring. The sonogram shown in Fig. 13(a) is obtained by the finite 
element method and the sonogram in Fig 13(b) is experimentally 
obtained through the surface acoustic spectroscopy technique. 
Contrary to Fig. 7, the relative displacements for the composite are 
not measured along the radial direction, but along six unit cells, as 
shown in Fig. 12. In Fig. 13(b), the peak associated with the 
thickness mode is more pronounced when compared with the radial 
and wall thickness modes. This phenomenon occurs due to the 
reduction of the radial and wall thickness modes in the composite, 
as observed in the electrical impedance curve. It can be observed in 
Fig. 13 that there is no mode coupling between the first thickness 
mode and the harmonics of the radial and wall thickness mode. 
However, in the frequency range around 1.25 MHz there is mode 
coupling between the third harmonic of the thickness mode and the 
lateral vibration modes of the piezoelectric composite. This mode 
coupling does not affect the performance of the piezoelectric 
composite, since this composite was designed to operate in the first 
thickness mode.  

 

 
Figure 12. Diagram showing the displacement scanning position. 

 

 
Figure 13. Comparison between the experimental and simulated 
sonogram for the piezoelectric composite ring: (a) simulated sonogram; 
(b) experimental sonogram. 
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Conclusion 

This paper presented the theoretical and experimental studies of 
the vibrational modes of homogeneous and 1-3 piezoelectric 
composite rings. The theoretical studies were performed using an 
analytical model and a finite element analysis, and the experimental 
studies were performed by measuring the electrical impedance of 
the rings and by using the surface acoustic spectroscopy method.  

The analysis of the vibrational modes of a homogeneous 
piezoelectric ring showed that the radial and wall thickness modes 
can superpose with the thickness mode of the ring, causing a non-
uniform vibration pattern of the ring surface. In comparison with a 
homogeneous piezoelectric ring, a piezoelectric composite ring has 
a lower mode coupling between the thickness mode and the radial 
and wall thickness modes. The reduction of the mode coupling is 
responsible for a more uniform vibration pattern of the ring surface. 

Another difference between a homogeneous and a piezoelectric 
composite ring is its bandwidth. The bandwidth of a piezoelectric 
ring can be estimated by the width of the vertical lines in the 
sonogram. When the bandwidth of the ring is increased, the width of 
the vertical lines is also increased. Some applications, such as coded 
signal transmission and sonar, require broadband transducers.   

As a future work, piezoelectric composite rings should be used 
in the construction of Tonpilz transducers. The performance of 
Tonpilz transducers constructed with composite rings should be 
compared with that a conventional Tonpilz transducer. It is expected 
that the performance of the transducer with the piezocomposite ring 
should be better than that with a homogeneous piezoelectric ring. 
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