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A Method to Determinate the 
Thickness Control Parameters in Cold 
Rolling Process through Predictive 
Model via Neural Networks  
The single stand rolling mill governing equation is a non-linear function on several 
parameters (input thickness, front and back tensions, yield stress and friction coefficient 
among others). Any alteration in one of them will cause alterations on the rolling load 
and, consequently, on the outgoing thickness. This paper presents a method to determinate 
the appropriate adjustment for thickness control considering three possible control 
parameters: roll gap, front and back tensions. The method uses a predictive model based 
in the sensitivity equation of the process, where the sensitivity factors are obtained by 
differentiating a neural network previously trained. The method considers as the best 
control action the one that demands the smallest adjustment. One of the capital issues in 
the controller design for rolling systems is the difficulty to measure the final thickness 
without time delays. The time delay is a consequence of the location of the outgoing 
thickness sensor that is always placed to some distance to the front of the roll gap. The 
proposed control system calculates the necessary adjustment based on a predictive model 
for the output thickness. This model permits to overcome the time delay that exists in such 
processes and can eliminate the thickness sensor, usually based on X-ray. Simulation 
results show the viability of the proposed technique. 
Keywords: Steel industry, rolling process, neural networks, controllers 
 
 
 

Introduction 

The single stand rolling mill governing equation is a non-linear 
function on several parameters Eq. (1). Any alterations on either of 
them: input thickness (ih ), front ( ft ) or back ( bt ) tensions, average 

yield stress (
_
y ) or friction coefficient (µ ) will cause alterations on 

the rolling load (P) and, consequently, on the outgoing thickness 
( oh ). 

 

),,,,,( MWE,Ry,,t,thP=fh fbio µ  (1) 

 
where: E: Roll radius; R: Roll radius; W: Strip width; and M: 
Stiffness Rolling Mill modulus (kgf/mm)1 

When such alterations in the rolling process occur, three control 
parameters are mainly used to restore the outgoing thickness and, 
therefore, ensuring the 0=oh∆  condition: the roll gap, the front and 

back tensions. The best control parameter will restore the output 
thickness for its nominal value with the smallest possible 
adjustment. In this paper, a method to determinate the appropriate 
adjustment, considering the three control parameters, will be 
presented. The method uses the sensitivity equation of the process 
obtained by differentiating a neural network (Zárate 1998). The 
sensitivity equation corresponds to the predictive model for the cold 
rolling process, that allows to calculate the output thickness. 

To verify the proposed method, a new Automatic Gage Control 
(AGC) system for output thickness control is proposed. Basically, 
an AGC system (Wallace, 1964; Hisikawa, 1990) is a feedback 
control system applied to rolling mills to ensure that output strip 
thickness will be as constant as possible. To measure the thickness 
deviations two techniques have been extensively used in the steel 
industry:  
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a)  The first one includes a sensor (X-ray) located after the roll 
gap, what causes a time delay in the feedback system and 
produces a significant deterioration in the control 
performance. 

b)  The second technique indirectly calculates the output 
thickness from the measurement of the roll load. This 
technique presents problems for thin strips, because 
variations in the strip thickness have little effect on the 
measured roll load (Zeltkalns and Ricciatti, 1977; Chicharo 
and Tung, 1990; Zárate, 1998). 

The proposed technique in this paper does not follow any of the 
classical approaches. It uses direct gap measurements to implement 
the controller. The method uses a neural network and sensitivity 
factors to obtain the predictive model as proposed in Zárate (1998), 
Zárate et al (1998 b) and Zárate and Helman (1999). By using a 
predictive model, it is possible to eliminate the time delay in the 
feedback loop. Also, since it is based on direct gap measurements, it 
is possible to achieve the required accuracy for control proposals 
and elimination of the X-ray sensor. 

On the other hand, Artificial Neural Network (ANN) has been 
receiving a great attention during the last decade, due to the capacity 
in solving non-linear problems by learning (Hunt, et. al.  1992; Tai 
et al. (1992), Yamada and Yabuta (1993); Sbarbaro-Hofer, 1993 
and Guez et.al. 1998). Nowadays, ANN are receiving great attention 
in metallurgical processes, as it can be seen in Andersen, et. al. 
(1992); Smart, (1992); Zárate et. al. (1998 a, b); Gunasekera et. al., 
1998; Zárate (1998); Zárate and Bittencout (2001); Schlang (2001); 
Zárate and Bittencout (2002); Kim (2002); Gálvez and Zárate 
(2003); Yang (2004) and Son (2004). 

This paper is organized in five sections: In the first section, the 
representation of the rolling process, by means of ANN, is 
presented. In the second section, the expressions to calculate the 
sensitivity equations, through the differentiation of a neural 
network, are revised. In the third section, a method to calculate the 
adjustment parameters, when alterations on the rolling process 
occur, is presented. In the fourth section, the kernel of the algorithm 
to obtain the adequate control parameter and the predictive model 
will be presented. Finally, simulation results will be discussed.  
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Nomenclature 

_
y  = Average yield tensile stress (N/mm2) 

g = Gap (mm) 
hi  = Strip input thickness (mm) 
ho = Strip output thickness (mm) 
M = Stiffness Rolling Mill modulus (N/mm) 
P = Rolling load (N/mm) 

BP  = Rolling load x Strip width (N) 

Tq =Rolling Torque (N-mm/mm) 
R = Roll radius  (mm) 
tf = Front tension stress (N/mm2) 

bt  = Back tension stress (N/mm2) 

W or B = Strip width (mm.) 
E = Young modulus of the strip material 

NiU i ,...,0   , =  are the net entries and 10 =U  is a polarization 

input 

Nif a
i ,...,0   (.) =  are the normalization entry functions and 

1(.)0 =af  

NiX i ,...,0   , =  are the normalized inputss 00 UX =  

  ,...,0  e  ,...,1  NjLiWh
ij == is the weight corresponding to the 

neuron i and entry j 

∑
=

==
N

i
i

h
ji

h
j LjXWnet

0
,...,1     product of weights times inputs 

1)(   with   ,...,0   )( 00 == hhh
j

h
j netfLjnetf  is the sigmoid function 

of the hidden layer. 
LjI j ,...,0   , =  are the corresponding values of the sigmoid 

function 10 =I  

  ,...,0  e  ,...,1  LjMiW o
ij ==  is the weight of the neuron i and 

entry j for the hidden layer. 

∑ ==
=

L

i
i

o
ji

o
j MjIWnet

0
,...,1    product of the weights times inputs 

for the hidden layer. 

   ,...,1   )( Mjnetf h
j

o
j =  is the value of the sigmoid function for 

the exit layer 
MjYj ,...,1   , =  are the normalized outputs of the net, obtained 

from the sigmoid function 

Mif b
i ,...,1   (.) =  are the an-normalization functions of the 

outputs 
MiZi ,...,1   , =  net outputs values 

Nkee kk ,..,1 min,max =  higher and lower value of the inputs 

Mkss kk ,..,1 min,max =  higher and lower value of the outputs 

LimiteInf and LimiteSup are the minimum and maximum values 
of the original data sets respectively. 

Greek Symbol 

µ  = Friction coefficient 

Representation of the Rolling Mill Operation through 
ANN 

To represent the cold rolling process operation, Eq. (2), a multi-
layer neural network, with six entries (N=6), two exits (M=2) and 
one hidden layer with 13 neurons (2N+1, Kovács 1996) was used. 
In expression (2), the neurons have as activation function (f) the 
non-linear sigmod function, chosen in this work as the axon transfer 

function being the most consistent with the biophysics of the 
biological neuron.  

 

),(),,,,,( Bo
ANN

fbi Phyttgh  →µ  (2) 

 

with y : average yield stress; BP  rolling load. 

Generally, the largest care to get a trained neural network lies on 
collecting and pre-processing neural network input data. The pre-
processing operation consists in the data normalization in such a 
way that the inputs and outputs values will be within the range of  0 
to 1.  

The following procedure was adopted to normalize the input 
data before using it in the ANN structure:  

a) In order to improve convergence of the ANN training 
process, the normalization interval [0, 1] was reduced to 
[0.2, 0.8], because in the sigmod function the values [0, 1] 
aren’t reached: f→ 0 for net→ -∞ and f→ 1 for net→ +∞.. 

b) The data was normalized through the following formula:  
 

) - Ln) / (L (Lo - LmíLn (Lo)f a minmax==  (3a) 
 

  mín - Ln) * L (  Ln * LLo (Ln)f b 1max +==  (3b) 
 

where Ln is the normalized value, Lo is the value to normalize, 
Lmin and Lmax are minimum and maximum variable values, 
respectively. 

c) Lmin and Lmax were computed as follows:  
 

Lmín = (4 x LimiteInf. - LimiteSup) / 3 (4a) 
 

Lmáx = (LimiteInf. – 0.8 x Lmín) / 0.2 (4b) 
 
The Eqs. (4a) and (4b) are obtained substituting in the Eq. (3a) 

Ln = 0.2 and Lo = LimiteInf; and Ln = 0.8 and Lo = LimiteSup. 
Where LimiteInf and LimiteSup are the minimum and maximum 
values of the original data sets respectively. 

Obtaining the Sensitivity Factors  

The expression to calculate sensitivity factors was proposed in 
Zárate (1998). In this work, an ANN multi-layer with a hidden layer 
is used. The ANN has N: entries, M: exits and L: neurons in the 
hidden layer. The differentiation of the neural network is generic 
and it only depends on N, M, L and on the weights of the hidden 
and exit layers, obtained during the training process.  
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with:  

 



A Method to Determinate the Thickness Control Parameters in … 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright  2005 by ABCM      October-December 2005, Vol. XXVII, No. 4 / 359 

Lk
N

i
i

Xh
ki

W

N

i
i

Xh
ki

W

Qk ,...,1      

2)0
)(

exp1(

0
)(

exp =
∑
=

−
+

∑
=

−

=  

 

Mk
V

V

Rk ,..,1         
2)kexp1(

kexp
)

k
smin

k
smax( =−

+

−
−=  

 

M,...,1 para   ))((
N

0

L

0

== ∑∑
==

kUfWfWV
i

i
a

i
h
ji

h
j

j

o
kjk  

 
Note that Eq. (5) is valid for little variations in the process 

parameters and provides the linearization of the process for an 
operation point (Ui) (Zárate et. al. 1998c). 

Determination of the Adjustment in the Control 
Parameters  

The steps to determine the adjustments corresponding to the 
control of the rolling process are described as below: 

I. The nominal inputs and outputs are contained in the vectors: 

),,,,,(
*

*****
*

yttghX fbi µ=  and ),( **
*

PhY o=  respectively. 

II. Through Eq. (5), it is possible to calculate the sensitivity 
factors for the selected nominal point. After calculating the 
factors, is possible to obtain the linear equation of the 
process, Eq. (6), neighboring the nominal operation point: 
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where: -XX=X *∆  

If variation takes place either in one or all the operational 

parameters yttgh fbi ,,,,, µ , a variation will occur in the oh value. 

There is a factor K such that 0=oh∆ . Eq. (7):  
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Equating Eq. (6) and Eq. (7), it is obtained: 
 

fhK ∆−=  (8) 

 
The value of K depends on the selected control parameter: roll 

gap, front or back tensions and may be defined as: 
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If control action by means of the roll gap is considered, the 

equations to calculate the K value are: 
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Similarly, choosing the front and back tensions: 
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Observe that expressions (10), (11) and (12) don't depend on the 

measurement of the rolling load, although it is necessary to know 
the variation in the exit thickness, which will be obtained indirectly 
by the predictive model.  

Kernel of the Algorithm to Obtain the Control 
Parameters  

In the previous section three possible control parameters were 
calculated to restore the variations in the output thickness. A 
strategy to select the appropriate adjustment can be to choose the 
parameter with the smallest adjustment. The kernel of the proposed 
algorithm is shown as follows: 
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The proposed algorithm considers that gap values, smaller than 
the sensitivity of the measurement instrument, should be saturated in 
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the value of the sensitivity of the instrument (by example, 0.001). 
For back and front tensions the saturation is established in 85% of 
the yield stress in plane-strain deformation, in the entry )( iS  and in 

the exit )( oS  respectively.  

Predictive Model for Output Thickness 

There are several theoretical models to calculate rolling load and 
rolling torque. The mathematical modeling of the rolling process 
involves several parameters that may lead to non-linear equations of 
difficult analytical solution. Such is the case of Alexander's model 
(Alexander 1972), considered one of the most complete in the 
rolling theory. This model requires significant computational effort, 
which prevents its application in on-line control and supervision 
systems. On the other hand, the theoretical models allow to calculate 
the rolling load, where the output thickness (oh ) is an input 

parameter of the model. In Zárate (1998). a new representation 
(predictive model) to determinate the output thickness (Eq. 13), 
based on sensitivity factors, was presented.  
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Those factors are obtained through the differentiation of a neural 

network previously trained. For this purpose the considered neural 
network is represented by expression (14):  

 

),(),,,,,( TqP
ANN

fboi ytthh  →µ  (14) 

 
The neural network (Eq. 14) was trained with data of the rolling 

process during the deformation of the material. The new 
representation (Eq. 13) possesses predictive characteristics, 
eliminating time delay and the X-ray sensor of the rolling mill 
system.  

The predictive model can be expressed as:  
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Usually the entries of [ ]S  are calculated from equations that 
demand a difficult analytical solution from complex models, such as 
Alexander’s model. In this work, [ ]S is obtained through the 
differentiation of a neural network, using Eq. (5).  

Control System Proposed 

The controllers’ classic development requests the knowledge of 
the dynamics of the plant besides a linear model for a specific 
operation point. In rolling systems there are time delays that difficult 
the development of control systems and that normally present a low 
performance (Zárate 1998). In addition to this, a characteristic of 
those systems is the existence of significant time delays of the order 
of 30 s. This can happen for low rolling speeds, that normally occur 
in the first stand of a tandem mill.  

This work introduces a new control structure, that uses the 
predictive model, Eq. (16), to estimate the output thickness and the 
measurement of the gap, Eq. (10). Usually, an AGC measures the 
rolling load to determinate, through Eq. (20), the necessary 
adjustment for the gap and to assure the condition 0=oh∆ . 

 

 
M

P.B
hg= o

∆∆∆ −   (20) 

 
To calculate the adjustment of the gap, the proposed controller 

structure uses the sensitivity factor gho ∂∂  in Eq. (10). Observe 

that ooo hhh −= *∆  uses the predicted value of the output thickness 

p
oo hh = .  

Figure 2 shows the controller's structure proposed. Note that the 
predictive model is being implemented as a virtual sensor whose 

exit is the output thickness poh . 

The Controller PD was projected to adjust the gap calculated by 
means of the method of the sensitivity, Eq. (10). The controller PI 
was introduced to eliminate possible errors in the predictive model 

and to guarantee the condition: 0* =− p
ss hh . 
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Figure 1. The proposed Control System. 
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Application and Results 

As an example of the possibilities of the method, a numerical 
application to a rolling process will be presented. The operation 
point was chosen as: ih =5.0 mm; oh = 3.6 mm; g=1.846 mm.; µ 

=0.12; ft =89.22 2N/mm ; bt =4.325 2N/mm ;
_
y =460.106 2N/mm ; B 

= 500 mm; E = 200054.64 2N/mm ; R=292.1 mm; M=4903,300 

N/mm and P=875310 N/mm . With: =iS 250.556 2N/mm  and 

=oS 534.900 2N/mm . 

To obtain the data sets for training of the neural networks, Eq. 
(2) and Eq. (14), the parameters were varied as shown in  Table 1: 

 

Table 1. Variation of the operational parameters. 

ih  oh  µ ft  bt  y  

± 8% ± 3% ± 20% ± 30% ± 30% ± 10% 
 
Three different values were chosen for each parameter, resulting 

in 729 training sets. The rolling load was obtained through 
Alexander's model and the roll gap by the elastic equations of the 
rolling mill, Eq. (21). 

 

M
PBhg o −=  (21) 

 
For the neural network represented by Eq. (2) (to calculate the 

control parameters) the final weights for the hidden and output 
layers with its polarization weights are: 

 















































=

   4.2330-   4.0985-  1.5484-   11.5151-   4.8319      2.9411   

4.2602-   0.7387     0.0733    1.6808-   11.9576-   1.4947-  

1.8826     4.0553-   8.1868-   5.9967    2.3521       8.3913   

2.1458-   0.4850     0.0399     0.0338-  10.6099-   1.2378-  

1.5593-   2.2323-    0.1518-   7.6049-  8.2071-     0.8914   

8.9722     0.6086-   3.4559-   6.5208     3.2388-    4.8199- 

0.9006-   7.0447-   0.5558     7.4542     3.4810      6.1621- 

5.5016     0.9096     9.7730     0.7990     3.9726      8.9832   

4.7363     0.5938-   0.0343     3.4006     5.2707      3.3504   

0.8293-    3.3595-   0.2737-   5.5920-    8.3214-    0.2767- 

3.3125      0.6941-   0.2171-   1.2562      1.7129-    11.4365-

6.0229-    0.7813     0.0734     2.4238-   9.2425-     1.5239- 

1.3078      1.8475     0.2642-   1.7278-    9.4161      6.2010   

hW

 















































=

2.5081    

8.7774    

0.4583-   

8.8376    

7.1306    

4.5520-   

5.3887    

15.1094-  

10.4911-  

10.9804   

2.5654    

8.9265    

11.4784-  

 h
biasW

   















































=

0.0746    0.1814    

2.4463    3.9372-  

0.0106-   0.0276-  

1.0470     6.4508-  

0.0074-   1.1542-  

0.0480      0.1378   

0.1406      0.1479   

0.0045      0.0021   

0.9087     4.2976   

0.2163     0.2976-  

0.1960-   0.9245-  

2.1593-    1.7551-  

0.4083     0.5503   

  oW

   









1.4106-   

6.4599    
   o

biasW
 

 
The weights were obtained after 330,000 iterations with an 

average quadratic error of 0.040 (Pentium IV 3.0 GHz).  
For the neural network represented by Eq. (14) (to determine the 

predictive model) the final weights for the hidden and output layers 
with its polarization weights are: 

 















































=

3.0901-   4.0080    2.8321    2.3503-   6.7925-   8.5121   

5.7072-  5.7294-   2.1261    0.5488     2.6002-   3.9012  

0.6947    1.7811-   1.5036-   3.9206-   13.3982   3.8174  

2.8462-   3.3112-   1.8625    4.8274-   3.1857    10.5998 

6.6874      1.3536    7.3975    4.9311-  0.5245    4.1920- 

1.8555-     0.8530    0.0006    0.6206-  0.6307    2.0861- 

1.8066      5.2036    6.6928-   8.6002    0.4525    3.4416  

7.2585-    5.0951    0.0068    9.0436    1.6645    1.3988- 

5.1437-     2.4098    1.1392    5.5525-  9.2360-  8.4249- 

6.6674      0.1404    0.3439-   0.9994-  0.2278   11.7598-

3.4279     4.3587-   1.5899-   6.1539   5.1593    8.4711- 

5.6772-   5.3232-   2.8544-   5.1249-  3.0808    3.9055  

2.6032-     0.6561    0.0036-   1.6876-  0.7327    2.3472-

    hW
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biasW















































=

0.0634    0.0468-   

0.1381    0.1528-   

0.0008    0.0205    

0.0361    0.0568-   

0.0437-   0.0412    

2.2320-   2.4975-   

0.0196-   0.0418    

0.0340-   0.0767    

0.0401    0.0126    

0.0306    0.1237    

0.0884-   0.0626-   

0.0705    0.0878-   

2.9064-   3.1772-   

   oW

    








=

2.8861    

3.2107    o
biasW

 

 
The weights were obtained after 540,000 iterations with an 

average quadratic error of 0.033 (Pentium IV 3.0 GHz).  
The events sequence to determine the control operation 

adjustments are described as follows: 
1) Define the nominal inputs: ],,,,,[ ***** yttgh fbi µ = [5.00; 

1.846; 0.12; 4.324; 89.22; 460.106] and provide the nominal 

outputs: ],[ ** Pho =[3.6; 8583.81]; 

2) Calculate through Eq. (5) the sensitivity factors for the 

selected nominal point:  [
y

h

t

h

t

hh

g

h

h

h o

f

o

b

ooo

i

o

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

,,,,,
µ

] = [0.3566; 

0.6436; 4.7345; -0.0163; -0.011; 0.0327]; 
3) Considering, for example disturbances of -2% in the input 

thickness, in the friction coefficient and in the back tension, define 
the current entries as: ],,,,,[ yttgh fbi µ = [4.9; 1.846; 0.118; 1.157; 

89.22; 460.918];  
4) Use an ANN, Eq. (2) previously trained to determine the 

current outputs: ],[ Bs Ph = [3.552; 8389.81];  

5) Determine the three control parameters using Eqs. (10), (11) 

and (12): [g , bt  ft ] = [1.920; -4.94; 46.42]. That corresponds to 

corrections of: +3.8%, -639.9% and -54% respectively.  
6) Apply proposed algorithm to select the control parameter. 

The smallest correction indicates the best control action. Notice that 

the calculated value for bt  is negative and this should be saturated 

in 0=bt . Thus the adjustment for the output thickness should be 

made through gap. 
To verify the control action, the three possible corrections were 

simulated through an iterative process using Alexander's model and 

Eq. (21). For the action on the gap (g =1.920) the output thickness 
was 3.585 mm with error of 0.42%. For the control action on the 

back tension (bt =0) the output thickness was 3.555 mm with error 

of 1.25%. For the control action on the front tension ( ft =46.42) the 
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value of the output thickness was 3.584 mm with error of 0.44%.  
The smallest error confirms the action on the gap to restore the 
deviations in the output thickness.  

Table 2 shows the sensitivity factors for the nominal operation 
point obtained by differentiation of the neural network, Eq. (14).  

 

Table 2. Sensitivity Factors (for the Predictive Model). 

ih

P

δ
δ  

oh

P

δ
δ  

δµ
δ P  

bt

P

δ
δ  

ft

P

δ
δ  

y

P

δ
δ  

498.66 -631.16 7909.25 -86.56 -5.83 56.75 
 
The sensitivity factor for the adjustment of the gap is obtained in 

step 2: 
g

h o

δ
δ =0.6436. The transfer function of the plant considered 

in this work is given for:  
 

)08.1(

08.1
)(

+
=

ss
sG  (22) 

 
The controllers’ parameters PD and PI were adjusted by 

simulation and they were chosen as: PK = 5 and DK = 1.5 for the 

PD controller and as: PK = 3 and IK = 1.0 for the PI controller. 

To analyze the proposed controller, two simulations were 
accomplished applying disturbance on the rolling parameters (Table 
3). 

 

Table 3. Disturbances in parameters. 

Parameter t (star) s. t (final) s. 
Sequence 1   

(%) 
Sequence 2   

(%) 

ih  15 30 + 3.0 + 8.0 

bt  45 60 + 10.0 + 30.0 

ft  75 90 +10.0 + 30.0 
µ  105 120 + 5.0 + 20.0 

y  135 150 + 3.0 + 10.0 

 
Figure 2 shows the response of the output thickness for the 

sequence 1. In this case, the controller has an error below 1.4% and 
the stationary-state was reached in less than 4 s.  

 

 
Figure 2. Output thickness response for sequence 1. 

 

Notice that the alterations in the back and front tensions are not 
relevant. For sequence 1, the significant variations are due to 
disturbances in the average yield stress, in the input thickness and in 
the friction coefficient. Figure 3 shows the behavior of the gap for 
the same simulation.  

 

 

Figure 3. Gap responses for sequence 1. 

 
The last simulation was to verify the proposed controller's 

robustness. Figure 5 shows the response of the output thickness for 
sequence 2. This sequence considers typical values of maximum 
deviations in the rolling processes (Bryant et. al. 1973). Observe 
that the output thickness of the predictive model uses sensitivity 
factors obtained for small disturbances in the operation point. In this 
case, the controller maintained the error in the output thickness 
below 4.1%, and the response reached the stationary state in 12 s. 
The Figure 6 shows the response of the gap for this situation.  

 

 
Figure 4. Output thickness response for sequence 2. 
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Figure 5.  Gap responses for sequence 2. 

Conclusion 

In this paper, it was presented a method to determinate the 
appropriate adjustment for thickness control, considering three 
possible control parameters: gap, front tension and back tension. 
This method, a new technique AGC, uses the sensitivity factors to 
choose the best control parameter.  

The proposed control structure uses a predictive model for the 
output thickness based on neural networks and sensitivity factors. 
The structure allows to eliminate the time delay presented in the 
dynamics of the system and to eliminate the thickness sensor, 
usually X-ray. This control system implements a virtual sensor for 
output thickness, allowing to estimate "on-line" outgoing thickness.  

The analysis and simulation results show that the proposed 
structure has results that are acceptable for rolling processes. The 
predictive model uses sensitivity factors calculated in the 
neighborhood of an operation point and it was observed that the 
control system had a satisfactory behavior for great deviations in the 
nominal operation point.  
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