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A Method to Determinate the
Thickness Control Parameters in Cold
Rolling Process through Predictive
Model via Neural Networks

The single stand rolling mill governing equation dsnon-linear function on several
parameters (input thickness, front and back terssigeld stress and friction coefficient
among others). Any alteration in one of them wéluse alterations on the rolling load
and, consequently, on the outgoing thickness. Jdp®r presents a method to determinate
the appropriate adjustment for thickness controhsidering three possible control
parameters: roll gap, front and back tensions. Tiethod uses a predictive model based
In the sensitivity equation of the process, whéee sensitivity factors are obtained by
differentiating a neural network previously trainefihe method considers as the best
control action the one that demands the smallepishichent. One of the capital issues in
the controller design for rolling systems is théfidillty to measure the final thickness
without time delays. The time delay is a consequeafcthe location of the outgoing
thickness sensor that is always placed to somartistto the front of the roll gap. The
proposed control system calculates the necessgnstment based on a predictive model
for the output thickness. This model permits tao@vme the time delay that exists in such

processes and can eliminate the thickness sensoilly based on X-ray. Simulation
results show the viability of the proposed techaiqu
Keywords: Steel industry, rolling process, neural networssntrollers

Introduction

The single stand rolling mill governing equatioraismion-linear
function on several parameters Eq. (1). Any altenaton either of
them: input thicknessk ), front (t; ) or back ¢, ) tensions, average

yield stress ) or friction coefficient (1) will cause alterations on

the rolling load P) and, consequently, on the outgoing thickness

(ho)-

h,=f (P,h;,t,,t, .4, y,ER,W , M) Q)
where: E: Roll radius; R: Roll radius; W: Strip wh¢d and M:
Stiffness Rolling Mill modulus (kgf/mni)

When such alterations in the rolling process ocituge control
parameters are mainly used to restore the outgthicgness and,
therefore, ensuring thgh, =0 condition: the roll gap, the front and

back tensions. The best control parameter willoresthe output
thickness for its nominal value with the smallesbsgible

adjustment. In this paper, a method to determittaeappropriate
adjustment, considering the three control pararsgtenill be

presented. The method uses the sensitivity equafidhe process
obtained by differentiating a neural network (Zérdt998). The
sensitivity equation corresponds to the predicthalel for the cold
rolling process, that allows to calculate the otthickness.

To verify the proposed method, a new Automatic Gagatrol
(AGC) system for output thickness control is praggbsBasically,
an AGC system (Wallace, 1964; Hisikawa, 1990) ifea@dback
control system applied to rolling mills to ensuhatt output strip
thickness will be as constant as possible. To mease thickness
deviations two techniques have been extensiveld usghe steel
industry:
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a) The first one includes a sensor (X-ray) locatedratte roll
gap, what causes a time delay in the feedbackreyatel
produces a significant deterioration in the control
performance.

The second technique indirectly calculates the ututp
thickness from the measurement of the roll loadisTh
technique presents problems for thin strips, bexaus
variations in the strip thickness have little effem the
measured roll load (Zeltkalns and Ricciatti, 19Chjcharo
and Tung, 1990; Zarate, 1998).

The proposed technique in this paper does notvicdioy of the
classical approaches. It uses direct gap measuterneimplement
the controller. The method uses a neural network semsitivity
factors to obtain the predictive model as propdeedarate (1998),
Zarate et al (1998 b) and Zarate and Helman (1989)using a
predictive model, it is possible to eliminate tlmed delay in the
feedback loop. Also, since it is based on diregt g@asurements, it
is possible to achieve the required accuracy fartrob proposals
and elimination of the X-ray sensor.

On the other hand, Artificial Neural Network (ANKgs been
receiving a great attention during the last decdde,to the capacity
in solving non-linear problems by learning (Hurtt,&. 1992; Tai
et al. (1992), Yamada and Yabuta (1993); Sbarbafedi 1993
and Guez et.al. 1998). Nowadays, ANN are receigiegt attention
in metallurgical processes, as it can be seen idefsen, et. al.
(1992); Smart, (1992); Zarate et. al. (129&); Gunasekera et. al.,
1998; Zarate (1998); Zarate and Bittencout (208thlang (2001);
Zarate and Bittencout (2002); Kim (2002); Gélvezd aBarate
(2003); Yang (2004) and Son (2004).

This paper is organized in five sections: In thetfsection, the
representation of the rolling process, by meansAbdiN, is
presented. In the second section, the expressmmsltulate the
sensitivity equations, through the differentiatiasf a neural
network, are revised. In the third section, a méttacalculate the
adjustment parameters, when alterations on thengolprocess
occur, is presented. In the fourth section, thedleof the algorithm
to obtain the adequate control parameter and tedigiive model
will be presented. Finally, simulation results va# discussed.

b)
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Nomenclature

y = Average yield tensile stress (N/Am
g = Gap (mm)

h; = Strip input thickness (mm)

h, = Strip output thickness (mm)

M = Stiffness Rolling Mill modulus (N/mm)
P = Rolling load (N/mm)

P; =Rolling load x Strip width (N)

Tq =Rolling Torque (N-mm/mm)

R = Roll radius (mm)

t; = Front tension stress (N/nfin

t, = Back tension stress (N/mjm

W or B = Strip width (mm.)
E = Young modulus of the strip material

U;, i =0,...,N are the net entries and, =1 is a polarization
input

f2() i=0,.,N are the normalization entry functions and
f@()=1

X;i, i=0,...,N are the normalized inputsg, =U,

\Nijh i=1..L ej=0,..N is the weight corresponding to the
neuron i and entry j

N
net}j‘=ZWj?Xi j=1..,L product of weights times inputs
i=0

f/'(net!) j=0...L with f§'(ne})=1 is the sigmoid function
of the hidden layer.

L. E. Zarate

function being the most consistent with the biojts/sof the
biological neuron.

(.9t ts, ) O B (R, Pe) @

with Yl: average yield stres$} rolling load.

Generally, the largest care to get a trained newgtalork lies on
collecting and pre-processing neural network ingata. The pre-
processing operation consists in the data norntaizan such a
way that the inputs and outputs values will be initihhe range of 0

to 1.

The following procedure was adopted to normalize itput

data before using it in the ANN structure:

a)

In order to improve convergence of the ANN firain
process, the normalization interval [0, 1] was i to
[0.2, 0.8], because in the sigmod function the esl[0, 1]
aren't reachedf - Ofor net- -wandf- 1for net- +c..

b) The data was normalized through the followingrfola:

f%Lo)=Ln = (Lo - Lmh)/(Lmax - Lmin) (3a)

f%Ln)=Lo = Ln*Lmax + (1-Ln)*Lmin (3b)

where Ln is the normalized value, Lo is the valaenbrmalize,
Lmin and Lmax are minimum and maximum variable esalu
respectively.

¢) Lmin and Lmax were computed as follows:

Iy, 1=0..,L are the corresponding values of the sigmoid

function Ip=1
WP i=1..M ej=0,...L is the weight of the neuron i and
entry j for the hidden layer.

for the hidden layer.

fo(nef!) j=1..M is the value of the sigmoid function for

the exit layer
from the sigmoid function

outputs
Z;, i=1..,M net outputs values

emax,emin, k=1..,N higher and lower value of the inputs

smax,,smin, k=1,..,M higher and lower value of the outputs

Limitelnf and LimiteSup are the minimum and maxinvatoes
of the original data sets respectively.

Greek Symbol

1 = Friction coefficient

Representation of the Rolling Mill Operation through
ANN

To represent the cold rolling process operation,(Ey a multi-
layer neural network, with six entries (N=6), tweite (M=2) and
one hidden layer with 13 neurons (2N+1, Kovacs ) 3%&s used.
In expression (2), the neurons have as activatimetion f) the
non-linear sigmod function, chosen in this worktss axon transfer
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Lmin = (4 x Limitelnf. - LimiteSup) / 3 (4a)

Lméx = (LimiteInf. — 0.8 x Lmin) / 0.2 (4b)

The Egs. (4a) and (4b) are obtained substitutindpénEq. (3a)
Ln = 0.2 andLo = Limitelnf andLn = 0.8 andLo = LimiteSup
Where Limitelnf and LimiteSupare the minimum and maximum

net = iwj?li j=1..,M product of the weights times inputsVvalues of the original data sets respectively.
=0

Obtaining the Sensitivity Factors

The expression to calculate sensitivity factors wesposed in

: ) _ Zarate (1998). In this work, an ANN multi-layer tvia hidden layer

Yj, j=1..M are the normalized outputs of the net, obtaineg ;seq. The ANN has N: entries, M: exits and Lumes in the

hidden layer. The differentiation of the neuralwmtk is generic

£5() i=1..,M are the an-normalization functions of theand it only depends on N, M, L and on the weigfftshe hidden
and exit layers, obtained during the training pssce

with:

RWY  RW RyW
0Zy _| RoWS,  RoW3, A
0l i : : :
RuWai RyWig2 R W,
[ h h h 1
Q;Wj1 QW5 QiWiN )
ema)i—eminl emaxy —emin2 emax —eminN
h
QW QW QWoN
ema){l—emin1 emax, —emin2 emaxy —eminN
N : N h
QW AW, QLWIN
ema){l—emin1 emax, —emin2 emaxy —eminN
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N
(X W)
i=0
Q.= exp < K=1..L
-(Z wix)
+exp 1=0
_Vk
- e exp
Rk—(smaxk smlnk)

-V
@+exp k)2

L

Note that Eqg. (5) is valid for little variations ithe process
parameters and provides the linearization of thecess for an

operation point (Ui) (Zarate et. al. 1998c).

Determination of the Adjustment in the Control

Parameters

The steps to determine the adjustments correspgnmirthe

control of the rolling process are described aswel

. The nominal inputs and outputs are contained irvéotors:
X =(h,g", 1 t,t f,y) andY =(h;,P") respectively.

Il. Through Eq. (5), it is possible to calculate thessivity
factors for the selected nominal point. After cédting the
factors, is possible to obtain the linear equatainthe
process, Eqg. (6), neighboring the nominal operagpioint:

o, , g O, O
ou at, at,

4h, =

Ag

where: A4X=X "-X

If variation takes place either in one or all thpemtional
parametersh,, g, 1,t,,t,,y, a variation will occur in theh, value.

There is a factoK such thatah, =0. Eq. (7):

ah, . oh ah ah ah

' oh ag ou “Cat, "o,
Equating Eq. (6) and Eq. (7), it is obtained:

K = -4h,

The value of K depends on the selected controlmpeter: roll
gap, front or back tensions and may be defined as:

K=Ag% or K=Atbah° or
ag ot

b

If control action by means of the roll gap is colesed, the

equations to calculate the K value are:

Zh
=, AgE g
%g

Similarly, choosing the front and back tensions:

k=1.,M

N
=YW Wi frU,)) parak =1,..,M
=0 i=0

+Ag—+ Au—=+ 4, — + At °+Aya

.. Ih
L=t +W (11)
at,
. 4h,
t =t +W 12)
at,

Observe that expressions (10), (11) and (12) diepéend on the
measurement of the rolling load, although it isessary to know
the variation in the exit thickness, which will bbtained indirectly
by the predictive model.

Kernel of the Algorithm to Obtain the Control
Parameters

In the previous section three possible control petars were
calculated to restore the variations in the outthitkness. A
strategy to select the appropriate adjustment etolchoose the
parameter with the smallest adjustment. The keshéhe proposed
algorithm is shown as follows:

Begin
calculate:
. dhy ;
g=g9 +6hi controlactionongap
Vag
., dnhy ) .
t, =t, +r controlactionon back tensin
7ot
. 4h, . .
t, =t +ah controlactiononfront tenon
7ot
calculate:

Var_g=|g -g|*100/g" adjustmenof thegap
Var_t, =|t, —t,|*100/t,  adjustmenbf theback tensdn

Var_t, =|t; —t,|*100/t; adjustmenbf thefront tenson
If Var_g<Var_t, e Var_g<Var_t,
Then
If |g" —g|<0.001 Then g =0.001
If P+t Then g ! (control action)
If P11 Then g 1 (control action)
else
If Var_t, <= Var_t,
Then
If t,>085*S Then t, = 085* S
If Pt Then t, 1t (control action)
If Pl Then t, | (control action)
else
If Var_t, <Var_t,
Then
If t, >085*S, Then t, = 085* S,
If P11 Then t, t (control action)
If P11 Then t, | (control action)
End.

The proposed algorithm considers that gap valueallar than

the sensitivity of the measurement instrument, khba saturated in
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the value of the sensitivity of the instrument @ample, 0.001).
For back and front tensions the saturation is éstedd in 85% of
the yield stress in plane-strain deformation, i@ émtry (S) and in

the exit (S,) respectively.

Predictive M odel for Output Thickness

There are several theoretical models to calcutdlieg load and
rolling torque. The mathematical modeling of thdling process
involves several parameters that may lead to nwati equations of
difficult analytical solution. Such is the caseAléxander's model
(Alexander 1972), considered one of the most comapie the
rolling theory. This model requires significant qmmational effort,
which prevents its application in on-line contraldasupervision
systems. On the other hand, the theoretical madiels to calculate
the rolling load, where the output thicknesh,} is an input

parameter of the model. In Zarate (1998). a newessmtation
(predictive model) to determinate the output thess (Eq. 13),
based on sensitivity factors, was presented.

W JP

JP
+—Lh+— 4
D S A S A,

+E4f+f4u+d—f4§} (13)
ou = gy

M
tw at,

M —WE w
o,

A’]D:

Those factors are obtained through the differaotiadf a neural
network previously trained. For this purpose thaesidered neural
network is represented by expression (14):

(hi’h07/'1’tb’tf1§)Dm_’(Pqu) (14)

The neural network (Eg. 14) was trained with ddtehe rolling
process during the deformation of the material. Thew
representation (Eq. 13) possesses predictive deastics,
eliminating time delay and the X-ray sensor of tioding mill
system.

The predictive model can be expressed as:
2h, =D[s]au]=h; -h, (15)
or
h, =h; - D[S]4u] (16)
where
ps| W (17)
M -W
d10
with
[§=|]M & ® & & & (18)
W h & & du o
and
(497 [g'] [9]
M| |h h
Ju= a4 _ t,x |t (19)
4t t, t,
- WAL
L4y |y | LY]
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Usually the entries 01[8] are calculated from equations that
demand a difficult analytical solution from complerodels, such as
Alexander's model. In this Work,[S] is obtained through the
differentiation of a neural network, using Eq. (5).

Control System Proposed

The controllers’ classic development requests timakedge of
the dynamics of the plant besides a linear modelafespecific
operation point. In rolling systems there are tohatays that difficult
the development of control systems and that noynmatsent a low
performance (Zarate 1998). In addition to this,haracteristic of
those systems is the existence of significant tielays of the order
of 30 s. This can happen for low rolling speedat tiormally occur
in the first stand of a tandem mill.

This work introduces a new control structure, thaes the
predictive model, Eq. (16), to estimate the outpitkness and the
measurement of the gap, Eq. (10). Usually, an AG&sures the
rolling load to determinate, through Eq. (20), thecessary
adjustment for the gap and to assure the conditign=0.

4P.B
=dh) ———
@ o M

(20)

To calculate the adjustment of the gap, the prapasatroller
structure uses the sensitivity factdh,/dg in Eq. (10). Observe

that 4h, = h, —h, uses the predicted value of the output thickness

h=he.

Figure 2 shows the controller's structure propobkxde that the
predictive model is being implemented as a virtsethsor whose
exit is the output thicknesi? .

The Controller PD was projected to adjust the gadputated by
means of the method of the sensitivity, Eq. (10)e Eontroller PI
was introduced to eliminate possible errors inphedictive model

and to guarantee the condition; —h? = . 0
g
108
s+108 [
Pl
- -
- Predictive Mode |4
—?04—‘ (ho) Equation (16)
S
Rolling Mill Parameters
Figure 1. The proposed Control System.
ABCM
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Application and Results

As an example of the possibilities of the methodyuanerical
application to a rolling process will be present@tie operation
point was chosen ady =5.0 mm h,= 3.6 mm;g=1.846 mm.;u

=0.12; t; =89.22 N/mm?; t, =4.325N/mm?; y =460.106 N/mm?; B

= 500 mm;E = 200054.64 N/mm?; R=292.1 mm;M=4903,300
N/mmand P=875310 N/mm. With: S =250.556 N/mm? and

S, =534.900N/mm?.

To obtain the data sets for training of the neuetivorks, Eq.
(2) and Eq. (14), the parameters were varied asrsio Table 1:

Table 1. Variation of the operational parameters.

hy ho U ts ty y
+ 8% +3% | £+20% | £+30% | +30% | +10%

Three different values were chosen for each paennetsulting
in 729 training sets. The rolling load was obtaindough
Alexander's model and the roll gap by the elasfigations of the
rolling mill, Eq. (21).

g=h, -PB (21)

M

For the neural network represented by Eg. (2) @loutate the
control parameters) the final weights for the hiddend output
layers with its polarization weights are:

[ 6.2010 9.4161 -1.7278-0.2642 1.8475 1.3078 ]
15239 -9.2425-2.4238 0.0734 0.7813 -6.0229
-11.4365 -1.7129 1.2562-0.2171-0.6941 3.3125
-0.2767 -8.3214 -5.5920 -0.2737 -3.3595 -0.8293
3.3504 5.2707 3.4006 0.0343-0.5938 4.7363
8.9832 3.9726 0.7990 9.7730 0.9096 5.5016
Wh=| -6.1621 3.4810 7.4542 0.5558-7.0447 -0.9006
-4.8199 -3.2388 6.5208 - 3.4559 - 0.6086 8.9722
0.8914 -8.2071-7.6049 -0.1518 - 2.2323 -1.5593
-1.2378-10.6099-0.0338 0.0399 0.4850 - 2.1458
8.3913 2.3521 5.9967 -8.1868 - 4.0553 1.8826
-1.4947 -11.9576-1.6808 0.0733 0.7387 - 4.2602
| 29411 4.8319-11.5151-1.5484-4.0985-4.2330 |
-11.478 [ 0.5503 0.4083]
8.926 -1.7551 - 2.1503 b?as[ 6'459ﬂ
2.565 -0.9245 -0.1960 -1.4108
10.980 -0.2976 0.2163
-10.491 4.2976 0.9087
-15.109 0.0021 0.0045
Wi =|  5.3887 we=| 01479 0.1406
-4.552 0.1378 0.0480
7.130 -1.1542 -0.0074
8.837 -6.4508 1.0470
-0.458 -0.0276 - 0.0106
8.777 -3.9372 2.4463
| 2508 | 0.1814 0.0746

The weights were obtained after 330,000 iteratioith an
average quadratic error of 0.040 (Pentium IV 3.@z5H

For the neural network represented by Eq. (14Ji¢termine the
predictive model) the final weights for the hiddemd output layers
with its polarization weights are:

J. of the Braz. Soc. of Mech. Sci. & Eng.
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[-2.3472 0.7327-1.6876 -0.0036 0.6561 -2.6032]
3.9055 3.0808-5.1249 -2.8544 -5.3232 -5.6772
-8.4711 5.1593 6.1539 -1.5899 -4.3587 3.4279
-11.7598 0.2278-0.9994 -0.3439 0.1404 6.6674
-8.4249-9.2360-5.5525 1.1392 2.4098 -5.1437
-1.3988 1.6645 9.0436 0.0068 5.0951 -7.2585

W"=| 3.4416 0.4525 8.6002 -6.6928 5.2036 1.8066
-2.0861 0.6307-0.6206 0.0006 0.8530 -1.8555
-4.1920 0.5245-4.9311 7.3975 1.3536 6.6874
10.5998 3.1857 -4.8274 1.8625 -3.3112 -2.8462
3.8174 13.3982 -3.9206 -1.5036 -1.7811 0.6947
3.9012 -2.6002 0.5488 2.1261 -5.7294-5.7072

| 8.5121-6.7925 -2.3503 2.8321 4.0080 -3.0901
r 5_2516 [ -3.1772 -29064
6.0337| -0.0878 0.0705
-3.8067) -0.0626 -0.0884 Wb?as{ 32101
51585 0.1237 0.0306 2.886
5.4216) 0.0126 0.0401
-1.0687| 0.0767 -0.0340|
wh.| -7.2570 W°=| 0.0418 -0.0196
0.2414| -2.4975 -2.2320
-3.2777| 0.0412 -0.0437
-0.9663 -0.0568 0.0361
-5.8385 0.0205 0.0008
3.7317| -0.1528 0.1381
| -3.0088 | -0.0468 0.0634)

The weights were obtained after 540,000 iterationth an
average quadratic error of 0.033 (Pentium IV 3.QzGH

The events sequence to determine the control aperat
adjustments are described as follows:

1) Define the nominal inputsih’,g", 4" t;.t;,y]= [5.00;
1.846; 0.12; 4.324; 89.22; 460.106] and provide ti@minal
outputs:[h;, P"]=[3.6; 8583.81];

2) Calculate through Eq. (5) the sensitivity factoos the
o 9hy dhy 9Ny Oy 9Ny | _ (g 3566:

selected nominal point: 20 o To To To

] 'ag ’6y'6tb '6tf ’ay
0.6436; 4.7345; -0.0163; -0.011; 0.0327];

3) Considering, for example disturbances of -2% in itigut
thickness, in the friction coefficient and in thack tension, define
the current entries asgh;, g, i1ty t;,yl = [4.9; 1.846; 0.118; 1.157;
89.22; 460.918];

4) Use an ANN, Eq. (2) previously trained to determthe
current outputsfhg, Pg] = [3.552; 8389.81];

5) Determine the three control parameters using Bdy, (11)
and (12): [g .ty t; | = [1.920; -4.94; 46.42]. That corresponds to

corrections of: +3.8%, -639.9% and -54% respedtivel
6) Apply proposed algorithm to select the control paster.
The smallest correction indicates the best comtrtibn. Notice that

the calculated value fot, is negative and this should be saturated

in t; = 0. Thus the adjustment for the output thickness shba

made through gap.
To verify the control action, the three possiblerections were
simulated through an iterative process using Aldeas model and

Eq. (21). For the action on the gaa £1.920) the output thickness
was 3.585 mm with error of 0.42%. For the contrcian on the
back tension i, =0) the output thickness was 3.555 mm with error

of 1.25%. For the control action on the front tensft, =46.42) the

October-December 2005, Vol. XXVII, No. 4 /361



value of the output thickness was 3.584 mm witloreaf 0.44%.
The smallest error confirms the action on the gapeistore the
deviations in the output thickness.

Table 2 shows the sensitivity factors for the nahioperation
point obtained by differentiation of the neuralwetk, Eq. (14).

Table 2. Sensitivity Factors (for the Predictive Model).

op P o op opP P
oh, oh, u Oty Ot ¢ sy
498.66 -631.16f 7909.25 -86.96 -5.88 56.75

The sensitivity factor for the adjustment of th@ gmobtained in

step 2: sh, =0.6436. The transfer function of the plant consde
a9
in this work is given for:

108

(5= s(s+ 109

(22)

The controllers’ parameters PD and Pl were adjudigd
simulation and they were chosen a6, = 5 and Kp = 1.5 for the

PD controller and asK p = 3 andK = 1.0 for the PI controller.

To analyze the proposed controller, two simulatiomsre
accomplished applying disturbance on the rollintapeeters (Table
3).

Table 3. Disturbances in parameters.

Parameter t (star) s.| t(final) s. Seq(L;/(:)nce . Seq(l;/(j)nce 1
h 15 30 +3.0 +8.0
tp 45 60 +10.0 +30.0
te 75 90 +10.0 +30.0
H 105 120 +5.0 +20.0
y 135 150 +3.0 +10.0

Figure 2 shows the response of the output thickfi@sshe
sequence 1. In this case, the controller has am kelow 1.4% and
the stationary-state was reached in less than 4 s.

Ty ] DI frmsnmnaans S feesonnnnan :
- !
333.5‘5 1:
= |
Z 36 .
éa.sa- : ! :
2 i : :
L e
aqsﬁr
3.4 ! : : :
0 50 100 150 200
Time [s&c.)

Figure 2. Output thickness response for sequence 1.
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Notice that the alterations in the back and frentstons are not
relevant. For sequence 1, the significant variati@me due to
disturbances in the average yield stress, in thetithickness and in
the friction coefficient. Figure 3 shows the beloavdf the gap for
the same simulation.

21

100
Time (sec )

Figure 3. Gap responses for sequence 1.

The last simulation was to verify the proposed aulEr's
robustness. Figure 5 shows the response of theibtltickness for
sequence 2. This sequence considers typical valfi@saximum
deviations in the rolling processes (Bryant et.1473). Observe
that the output thickness of the predictive modsdausensitivity
factors obtained for small disturbances in the af@n point. In this
case, the controller maintained the error in thépwuthickness
below 4.1%, and the response reached the statiatatey in 12 s.
The Figure 6 shows the response of the gap fosthiation.
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Figure 4. Output thickness response for sequence 2.
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Figure 5. Gap responses for sequence 2.

Conclusion

In this paper, it was presented a method to detextaithe
appropriate adjustment for thickness control, aderéng three
possible control parameters: gap, front tension back tension.
This method, a new technique AGC, uses the seitgifactors to
choose the best control parameter.

The proposed control structure uses a predictivdeinfor the
output thickness based on neural networks and tsatysfactors.
The structure allows to eliminate the time delagsented in the
dynamics of the system and to eliminate the thiskneensor,
usually X-ray. This control system implements auat sensor for
output thickness, allowing to estimate "on-linetgning thickness.

The analysis and simulation results show that thepgsed
structure has results that are acceptable fommlfirocesses. The
predictive model uses sensitivity factors calcudatén the
neighborhood of an operation point and it was oletbrthat the
control system had a satisfactory behavior fortgdeaiations in the
nominal operation point.
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