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São José dos Campos
12228-900 SP – Brazil

Paulo J. P. Gonçalvez
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Aeroelastic Stability Analysis Using
Linear Matrix Inequalities
The present work describes an alternative methodology for identification of aeroelastic
stability in a range of varying parameters. Analysis is performed in time domain based on
Lyapunov stability and solved by convex optimization algorithms. The theory is outlined
and simulations are carried out on a benchmark system to illustrate the method. The
classical methodology with the analysis of the system’s eigenvalues is presented for
comparing the results and validating the approach. The aeroelastic model is represented in
state space format and the unsteady aerodynamic forces are written in time domain using
rational function approximation. The problem is formulated as a polytopic differential
inclusion system and the conceptual idea can be used in two different applications. In the
first application the method verifies the aeroelastic stability in a range of air density (or
its equivalent altitude range). In the second one, the stability is verified for a range of
velocities. These analyses are in contrast to the classical discrete analysis performed at
fixed air density/velocity values. It is shown that this method is efficient to identify stability
regions in the flight envelope and it offers promise for robust flutter identification.
Keywords: flutter analysis, LMI, Lyapunov function, time domain

Introduction

In problems of fluid and flexible structure interactions various
physical phenomena can be observed and also, because of its
catastrophic nature, flutter is an important topic involving aeroelastic
stability. This phenomenon is an interaction between the structural
dynamics and the aerodynamics that results in divergent and
destructive oscillations of motion (Bisplinghoff et al., 1996).

Different approaches have been proposed to identify the flutter
boundaries. In general, the methods are formulated in frequency
domain as eigenvalue problems, for which the aeroelastic model is
defined for each point in the flight envelope (a pair of altitude and
velocity). Details can be found in Theodorsen and Garrick, 1940;
Hassig, 1971; and Chen, 2000. This can be costly in terms of
computational time and engineering analysis of data if a large number
of points need to be calculated. Also, the uncertainties in the aircraft
model makes the prediction of the stability boundary difficult (Chung
et al., 2008).

In modern development, authors have introduced robust
flutter analysis including structural and aerodynamics uncertainties.
Initially, Lind and Brenner (1999) introduced structured singular
value µ into the aeroelastic field and developed a µ-method
in which the aeroelastic system is parametrized with dynamic
pressure perturbations. Chung et al. (2008) included aerodynamic
uncertainties by considering variation of Mach number, which is
represented by the boundary of Theodorsen’s lift deficiency function.
Chung and Shin (2010) defined the worst case flutter boundary
by considering the structural variation due to changing natural
frequency and aerodynamic variation and, according to the authors,
this approach is more conservative than a nominal case.

In this context, this paper proposes an alternative approach to
include uncertainties in the aeroelastic stability problems. Two
applications are introduced at which the problem is formulated as a
polytopic differential inclusion system considering uncertainties in
the air density (or its equivalent altitude) or in the airspeed. The main
idea is to identify regions of stability in the flight envelope by solving
a linear matrix inequality. The method is written in time domain
using the state space realization and the Theodorsen’s aerodynamic
model using a by rational function approximation for the aerodynamic
forces. This methodology offers promise for robust flutter analysis

Paper received 1 May 2012. Paper accepted 22 July 2012.

using convex optimization.

Nomenclature

s = Laplace variable
M = mass matrix
D = damping matrix
K = stiffness matrix
Q = aerodynamic matrix
u = vector of displacement
A = dynamic matrix
C = output matrix
x = vector of states
y = vector of output
b = semi chord
k = reduced frequency
Nlag = number of lags
v = number of vertices
V = airspeed
VLyap = Lyapunov energy function
q = dynamic pressure
mM = Mach number
M = airfoil mass

Greek Symbols

β = parameter of lag
δ = differential inclusion
ρ = air density
Ω = convex space
ωh = airfoil oscillation plunge frequency
ωθ = airfoil oscillation pitch frequency
ωβ = frequency of control surface deflection

Subscripts

a = relative to aerodynamic lags
m = relative to modal coordinates
p = relative to physical domain
unc = relative to uncertain parameter

Superscripts

v = relative to uncertain airspeed
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Aeroelastic Model

The aeroelastic model is characterized by the mass, stiffness,
damping and aerodynamic matrices. These matrices are typically
obtained from finite element method and the system is commonly
represented in frequency domain using modal coordinates. In this
case, the equation of motion is written as

s2Mmum(s)+ sDmum(s)+Kmum(s) = qQm(mM ,k)um(s) (1)

where the subscript m indicates the modal coordinates. Aerodynamic
matrices can be obtained using the Doublet Lattice method in a
constant Mach number (mM) for each reduced frequency k (Albano
and Rodden, 1969). However, in this work they are computed
using the Theodorsen’s aerodynamic theory. The method proposed
requires a representation in time domain of the system, in Eq. (1), but
because the term Qm(mM ,k) has no Laplace inverse, it is necessary
to write it in terms of rational function approximation, so that the
aerodynamic forces can be transformed to time domain. This is
done using Roger’s approximation (Roger, 1977), given by Eq. (2).
Its contains a polynomial part representing the forces on the section
acting directly connected to the displacements u(t) and their first and
second derivatives. Also, this equation has a rational part representing
the influence of the wake acting on the section with a time delay.

Qm(s) =

[
2

∑
j=0

Qm js j
(

b
V

) j
+

nlag

∑
j=1

Qm( j+2)

(
s

s+ b
V β j

)]
um(s)

(2)

where s is the Laplace variable, nlag is the number of lag terms and
β j is the jth lag parameter ( j = 1, · · · ,nlag).

Substituting Eq. (2) into Eq. (1), it is possible to obtain, after some
rearrangements, the classical aeroelastic equation of motion in a state
space format as:

ẋ(t) = Ax(t) and y(t) = Cx(t) (3)

where x(t) = {u̇m um uam}T is the state vector and uam are states of
lags required for the approximation. The output matrix C = [Cv Cd ]
has dimension 2m × m(2+nlag), where Cv and Cd , respectively the
velocity and displacement, are output vectors. Matrix A is presented
in the following form:

A =

[
−M−1

amDam −M−1
amKam A3

A4 A5 A6

]
(4)

where

Mam = Mm−q
(

b
V

)2
Qm2

Dam = Dm−q
(

b
V

)
Qm1 = Dm−ρ0.5V bQm1

Kam = Km−qQm2 = Km−ρ0.5V 2Qm0

A3 =
[
qM−1

amQm3 · · · qM−1
amQm(2+nlag)

] (5)

and matrices A j, for j = 4,5,6, are defined in the appendix.
In classical solutions the aeroelastic stability is treated as an

eigenvalue problem of the dynamic matrix A. Frequency of
oscillation and damping are extracted from the complex eigenvalues.
This analysis is performed for fixed values of velocity and air density
(V,ρ).

In Eq. (4), matrix A has a term Mam that has to be inverted.
For mass normalized eigenvectors, Mm = I (identity matrix), so the
inverse of the aeroelastic mass matrix can be rewritten as

M−1
am =

(
I−ρ0.5b2Qm2

)−1
(6)

For the cases where
(
−ρ0.5b2Qm2

) j vanishes when j is large, the
Taylor expansion can be used as an approximation of Eq. (6) and then,
it can be written as

M−1
am ≈ I+

NT

∑
j=1

(−1) jρ j
(
−0.5b2Qm2

) j
(7)

where NT is a positive natural number chosen conveniently.
For the problem considered in this paper, the assumption(

−ρ0.5b2Qm2
) j → 0 when j→ ∞ has shown to be true. When this

assumption is not satisfied, it is possible to use another approximation
for the inverse of Mam. Different methods to compute the inverse of
sum of matrices can be found in Petersen and Pedersen, 2008, and
Henderson and Searle, 1981.

When this assumption is satisfied, the approximated state space
matrix of Eq. (3) can be written as

Aapp =

[
A1 A2 A3
A4 A5 A6

]
(8)

where the submatrices A1, A2, ..., A6 are given in the appendix.

Continuous Range Stability Analysis

The objective of a continuous stability analysis is to introduce
a robust procedure for checking if flutter is present in a range of a
varying parameter. In the classical method, the discrete analysis is
performed by reducing the intervals of a varying parameter, such as
velocity or air density, which can be costly for analysis of a full flight
envelope. Two procedures are presented here, the first considers a
fixed velocity and analysis is carried out for a range of air density.
The second procedure is formulated for fixed value of air density and
varying parameter is now velocity.

Procedure 1: Analysis for air density range

Considering the aeroelastic model written in state space format to
describe a range of altitude for a fixed value of velocity, as illustrated
in Fig. 1. A convex space is obtained using a polytopic differential
inclusion system (PLDI) and the air density given by

ρunc = ρ+∆ρ = ρ (1+δ) (9)

where the subscript unc indicates the uncertain air density ρ and δ
denotes its associated uncertainty. In this case, the aeroelastic model
is written as a PLDI system and the dynamic matrix is given by

A = A(ρunc,ρ
2
unc, · · · ,ρ

j
unc, · · · ,ρNT+1

unc ) (10)

and, if ρ j
unc = ρ

j(1+δ j), then

A = A(δ1, · · · ,δ(NT+1)) = Aunc (11)

where δ j is the j-th uncertain parameter related to that polytopic
system.
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Figure 1. Procedure 1 - Air-Density Robust Analysis.

Procedure 2: Analysis for a velocity range

Considering the system of Eq. (3) to be written in state space
format as a PLDI system and its convex space representing an
airspeed range as shown in Fig. 2, the uncertainty range can be written
as

Vunc =V +∆V =V (1+δv) (12)

where the subscript unc indicates the uncertain airspeed V and δv

denotes its associated range in terms of percentage. In this case, the
aeroelastic model is written as a PLDI system and the dynamic matrix
is given by

A = A(Vunc,V 2
unc) (13)

and, if V 2
unc =V 2(1+δv

2), then

A = A(δv
1,δ

v
2) = Aunc (14)

where δv
1 and δv

2 are understood as uncertain parameters related to that
polytopic system and physically they represent the airspeed range. In
this case the maximum and minimum values of δv

j ( j = 1,2) are given
by

δv
j =
(

V+∆V
V

) j
−1 (15)

Substituting V by Vunc =V (1+δv
1) and V 2 by V 2

unc =V 2(1+δv
2)

into Eq. (4) it is possible to define the dynamic matrix that describes
the PLDI system and represents the velocity range [V,V +∆V ]. In
this case, the convex space is geometrically represented by a plane.

Lyapunov Energy Function

Consider the energy function VLyap(t) = xT Px. The aeroelastic
system defined in a particular pair air density and velocity is stable if

d
dt

[VLyap]< 0 (16)

Equation (16) represents the energy dissipation over time, idea
which has been proposed by Alexander Lyapunov (in 1907). The

 

Airspeed 

A
lt

it
u

d
e

 

∆V1 ∆V2 ∆Vj 

ρi 

….. 

Vmax 

Figure 2. Procedure 2 - Robust velocity analysis

method is traditionally applied to the stability analysis in control
theory because Lyapunov showed that the differential equation
(Eq. (3)) is stable if and only if exists a positive-defined P such that
(Boyd et al., 1994)

V̇Lyap(t) = ẋT Px+xT Pẋ = xT AT
uncPx+xT PAuncxT

V̇Lyap(t) = xT (AT
uncP+PAunc

)
x, or

AT
uncP+PAunc < 0

(17)

Equation (17) is called Lyapunov inequality on P and its first
application in practical control engineering problems was introduced
in the early 1960’s (Boyd et al., 1994).

Quadratic stability criteria for aeroelastic analysis

Consider a PLDI system given by

ẋ(t) = Auncx(t) = A(α)x(t) (18)

where the dynamic matrix A(α) belongs to a convex polytopic set
defined as

Co :=

{
A(α) : A(α) =

v

∑
j=1
αr j Ar j

}
(19)

where ∑
v
j=1αr j = 1 andαr j ≥ 0, ∀ j = 1, · · · ,v (Oliveira et al., 1999).

Also, v is the number of vertices of the polytopic system and r j

denotes its jth vertex. The number of vertices is given by 2(NT+1)

for application 1 (and 22 = 4 for application 2) and the operator Co
means that matrices Ar1 , · · · ,Arv define the desired convex space Ω

(Boyd et al., 1994).
Substituting Eq. (19) into inequality (17), the Lyapunov inequality

is rewritten as

(
rv

∑
j=1
αr j Ar j

)T

P+P

(
rv

∑
j=1
αr j Ar j

)
< 0 (20)

Pre and post multiplying the last LMI by X = P−1 and after some
rearrangement, the quadratic stability criteria is written as

αr1

(
Ar1 X+XAT

r1

)
+ · · ·+αrv

(
Arv X+XAT

rv

)
< 0 (21)
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The necessary condition to ensure the quadratic stability of the
aeroelastic system into this convex space is to solve Eq. (21) at its
vertices for which A(α) = Ar j with αr j = 1 and αk = 0, ∀ k 6= j. In
this case, all LMIs must be satisfied simultaneously (Barmish, 1985).

Ar1 X+XAT
r1
< 0

...
Ar j X+XAT

r j
< 0

...
Arv X+XAT

rv
< 0

(22)

The vertices of the parameter box (or the convex space) are a
combination of the minimum and maximum values of the parameters
of the system. It is supposed that the system can assume any
combination of values inside the box (Boyd et al., 1994; Silva and
Lopes Jr., 2006).

Lyapunov Stability Index

In order to identify regions into the flight envelope at which
system is stable, the Lyapunov stability index is defined to classify the
regions of aeroelastic stabilities. Particular details are presented here
and the conceptual understanding is the same for both applications.

Application 1: Robust air-density analysis

The convex space Ω ∈R(NT+1) must be understood as a fictitious
domain at which the aeroelastic stability is verified. The main
reason is that although the product (ρδ1) ∈ R∗+ represents a physical
parameter variation, the parameters (ρ jδ j), j = 2, · · · ,NT + 1, are
introduced only for creating the convex space and they have no
physical information. However, the physical domain Ωp ⊂ Ω and
then:

• if there is X such that all inequalities in (22) are simultaneously
feasible⇒ the system is stable in Ω and stable in Ωp. So,

σLyap = 1 (23)

• otherwise⇒ the system is not stable in Ω. So,

σLyap =−1 (24)

where Ωp :=
{
(ρ,ρ+∆ρ) and V j

}
| Ωp ∈ R. If the proposed

Lyapunov stability index is σLyap = −1, it is not possible to say that
the system is unstable in Ωp because it can be stable in that physical
domain, but unstable in Ω\Ωp. In this case a complementary discrete
stability analysis must be performed in each point V j and ρ j.

Application 2: Robust velocity analysis

The convex space Ωv ∈ R2 is a fictitious domain at which
the aeroelastic stability is verified. Similarly to application 1, the
parameter δv

2 is introduced as a mathematical artifice only for creating
the convex space. In this case, the physical domain Ωv

p ⊂Ω and then:

• if there is X such that all inequalities in Eq. (22) are
simultaneously feasible ⇒ the system is stable in Ω and then
stable in Ωv

p. So,

σv
Lyap = 1 (25)

• otherwise⇒ the system is not stable in Ω. So,

σv
Lyap =−1 (26)

where Ωv
p :=

{
(V,V +∆V ) and ρ j

}
| Ωv

p ∈ R. If the proposed
Lyapunov stability index is σv

Lyap = −1, it is not possible to say that
the system is unstable in Ωv

p because it can be stable in that physical
domain, but unstable in Ω\Ωv

p. In this case a complementary discrete
stability analysis must be performed in each point V j and ρ j.

Numerical Application

In order to illustrate the approach, numerical simulations are
performed on a three degree of freedom airfoil section (semichord
b), for which the equations of motion describing an aeroelastic
response are presented by Theodorsen (1935). An illustrative scheme
is presented in Fig. 3. The structural mass and stiffness and the
aerodynamic forces matrices are not presented in this paper because
this classical problem is easily found in literature. The physical
displacement vector is u(t) = {h(t)θ(t)β(t)}T , where h(t), θ(t)
and β(t) are the degrees of freedom of plunge, pitch and control
surface rotation, respectively. Its physical and geometric properties
are presented in Table 1 (note that nlag = 4).

+θ

-β

+h

kh

kβ
kθ

b b

c

a

xθ

xβ

rθ

rβ
c. g.

c. e.

c. a.

c. g.
 flap

Figure 3. Three degree of freedom typical section airfoil.

Considering δ = 0.0526 and ρ = 1.1638 kg/m3, let
1 ≤ V ≤ 25 m/s and ρ to ρ(1+δ) be the flight envelope defined for
this work. Figures 5 and 6 present frequency and damping plotted
against airspeed for nominal system (ρ). Additionally, flutter speeds
are identified as 17.4 m/s and 17.0 m/s, respectively for ρ and
ρ(1 + δ) extracting the eigenvalues of the dynamic matrix. These
reference results are used to show that this partially continuous
method is able to identify stability regions in the flight envelope.

Application 1: Robust air density analysis

The stability analysis is performed according to the first approach
(application 1) increasing ∆V in 0.1 m/s and also considering ρunc =
1.1638(1 + 0.0526) kg/m3. In the example NT = 2 the Taylor’s
expansion provides the inverse aeroelastic mass matrix as shown
below
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Table 1. Physical and geometric properties of the 2D airfoil.

δ1 = 0.0526 (5.26%) r̄β =
√

0.00625
ρ = 1.1638 kg/m3 a =−0.4

M = 5 kg ωh = 3 Hz
b = 0.15 m and c = 0.6 ωθ = 5.5 Hz

x̄θ = 0.2 ωβ = 12 Hz
x̄β = 0.0125 β1 = 0.2 β2 = 1.2 β3 = 1.6 β4 = 1.8
r̄θ =

√
0.25 0.1≤ k ≤ 2.0; ∆k = 0.1

M−1
am ≈ I−ρQm2 +ρ

2Q2
m2 ⇒

M−1
am =

 0.9154 -0.0261 0.0176
-0.0288 0.9431 -0.0047
0.0073 0.0049 0.9863



I−ρQm2 +ρ
2Q2

m2 =

 0.9165 -0.0256 0.0174
-0.0283 0.9435 -0.0048
0.0072 0.0048 0.9863


(27)

where its possible to note a good approximation for the inverse matrix.
The convex space Ω ∈ R3 is presented in Fig. 4 for which v = 3,

rv = 8 and the dynamic matrices are defined by

Ar1 = A(δmax
1 ,δmin

2 ,δmin
3 ) Ar5 = A(δmax

1 ,δmin
2 ,δmax

3 )
Ar2 = A(δmax

1 ,δmax
2 ,δmin

3 ) Ar6 = A(δmax
1 ,δmax

2 ,δmax
3 )

Ar3 = A(δmin
1 ,δmax

2 ,δmin
3 ) Ar7 = A(δmin

1 ,δmax
2 ,δmax

3 )
Ar4 = A(δmin

1 ,δmin
2 ,δmin

3 ) Ar8 = A(δmin
1 ,δmin

2 ,δmax
3 )

(28)

Note that the matrix Ar j defines the r jth vertex based on ρunc, ρ2
unc,

ρ3
unc and δ(.)j , such that

ρunc = ρ(1+δ1) ⇒ δ1 =
∆ρ
ρ | ∆ρ = δρ

ρ2
unc = ρ

2(1+δ2) ⇒ δ2 =
(
ρ+∆ρ
ρ

)2
−1

ρ3
unc = ρ

3(1+δ3) ⇒ δ3 =
(
ρ+∆ρ
ρ

)3
−1

(29)

Lyapunov inequality is solved for the range of interest of
air density and the stability index is plotted against airspeed
(Fig. 7). According to these results the system is stable for
V < 17 m/s. Although a classical eigenvalue analysis indicates
that the system is stable if V ≤ 16.5 m/s, only this introduced
approach is able to indicate stability over all continuous interval
1.1638 ≤ ρ ≤ 1.2250 kg/m3 for each velocity. In order to verify the
system stability in this flight envelope, only a complementary discrete
analysis for each air density must be performed if V > 16.5 m/s.
Figure 8 illustrates the geometric region of analysis of the flight
envelope for this novel approach. This continuous analysis over ρ
to ρ(1 + δ) is an advantage mainly for flutter analysis in complex
and large structures whose stability boundaries may be not easily
predicted through discrete evaluation.

Application 2: Robust velocity analysis
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Figure 4. Fictitious (parallelepiped) versus physical (line) domain.
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Figure 5. Aeroelastic Frequency: 2D model (ρ = 1.1638 kg/m3).
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Figure 6. Real part of the eigenvalues (ρ = 1.1638 kg/m3).

The stability analysis is performed according to the second
approach (application 2) particularly for the nominal air density and
for each range [V,V + ∆V ]. Different values of ∆V are considered
in order to demonstrate that the approach is able to identify stability
regions in the flight envelope. Figures 9 through 15 present the
stability indexes for this partially continuous stability analysis; and
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Figure 7. Lyapunov stability index: application 1.
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Figure 8. Flight envelope discretization: application 1 (continuous range of
ρ).

Fig. 16 is obtained by performing a discrete analysis (∆V = 0). If
∆V is large, a small number of analyses is required for evaluating
the range [1,25] m/s. However, the aeroelastic stability region cannot
be completely identified. Note that the mathematical domain Ω can
result in not identifying the stability even at low speeds. This work
does not propose criteria which should be used for choosing the
optimal values of ∆V .
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Figure 9. Stability index: ∆V = 1.6m/s.
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Figure 10. Stability index: ∆V = 1.5m/s.
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Figure 11. Stability index: ∆V = 1.2m/s.
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Figure 12. Stability index: ∆V = 1.0m/s.
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Figure 13. Stability index: ∆V = 0.8m/s.
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Figure 14. Stability index: ∆V = 0.2m/s.
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Figure 15. Stability index: ∆V = 0.1m/s.

Conclusions

This paper has presented the aeroelastic stability analysis using a
polytopic differential inclusion system. Polytopic systems have been
used extensively in control design; however, they are not commonly
used for solving aeroelastic problems. An eigenvalue analysis is
defined as discrete method over the air density and it is used to
compare the results with this introduced methodology. Simulations

550 / Vol. XXXIV, Special Issue 2, 2012 ABCM



Aeroelastic Stability Analysis Using Linear Matrix Inequalities

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Airspeed [m/s]

S
ta
b
il
it
y
In
d
ex

Discrete Analysis

17.4 m/s −− unstable

Figure 16. Stability index obtained by computing a discrete analysis.

on a simple system have shown that this approach can be used to
provide robustness in the flutter identification. Also, the paper has
demonstrated that Lyapunov’s linear matrix inequality is a sufficient
condition for verifying the aeroelastic stability.
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Appendix

This appendix presents the submatrices introduced in Eq. (8).

A11 =−Dm +ρV 0.5bQm1−∑
NT
j=1(−1) jρ j (0.5b2Qm2

) j Dm

A12 = ∑
NT
j=1(−1) jρ( j+1)V

(
0.5b2Qm2

) j 0.5bQm1

A1 = A11 +A12

(30)

A21 =−Km +ρV 20.5Qm0−∑
NT
j=1(−1) jρ j (0.5b2Qm2

) j Km

A22 = ∑
NT
j=1(−1) jρ( j+1)V 2 (0.5b2Qm2

) j 0.5Qm0

A2 = A21 +A22

(31)

A31 = ρV 20.5
[
Qm3 · · ·Qm(2+nlag)

]
A32 = ∑

NT
j=1

[
(−1) jρ( j+1)V 2 (0.5b2Qm2

) j
][

Qm3 · · ·Qm(2+nlag)

]
A3 = A31 +A32

(32)

A4 = [I · · ·I · · ·I]T , (nlag +1)m×m | I, m×m (33)

A5 = [0](nlag+1)m×m (34)

A6 =V
(
−1

b

)
0 0 · · · 0
β1I 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · βnlag I

 , (nlag+1)m×nlagm

(35)
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